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Gut microbes have important functions in host health and dis-
ease throughout life, particularly during infancy1. Infant gut 
microbiota (IGM) assembly is accelerated during the first 

months of life, following inoculation with organisms from mothers 
and the environment2, but stabilizes by approximately three years 
of age3. Treatment with antibiotics during this interval may dis-
proportionately damage the host–microbiota ecosystem3–5. Indeed, 
emerging data suggest that early-life gut microbial alterations corre-
late with chronic metabolic and immune disorders later in life1,4,6–16, 
including allergies17, psoriasis18, adiposity19, diabetes20 and inflam-
matory bowel disease21–23. For most of these disorders, a causal link 
between antibiotic-mediated microbiota disruption and onset of 
pathology is lacking. However, antibiotic treatment during infancy 
is associated with permanent immune alterations18,24 and inflamma-
tory bowel disease in childhood23, highlighting the damaging long-
term potential of early-life antibiotic treatment.

Over 11% of live births worldwide occur preterm25, and preterm 
birth and its sequelae are prominent causes of childhood morbidity 
and mortality worldwide26. As bacterial infections are frequent com-
plications of preterm birth27, 79% of very-low birthweight and 87% 
of extremely low birthweight infants in neonatal intensive care units 
(NICUs) in the United States receive antibiotics within 3 d of birth28. 
Even in healthy infants, the gastrointestinal tract harbours a diverse 
antibiotic resistome29, which is shaped by factors including antibiotics, 
diet and environment30–32. Preterm IGM perturbation immediately 
following antibiotic treatment is characterized by decreased alpha 
diversity, increased Enterobacteriaceae abundance and antibiotic-
specific enrichment of antibiotic-resistance genes (ARGs) and mul-
tidrug-resistant organisms (MDROs)33. As microbiota perturbation 
during infancy may be disproportionately damaging34,35, it is impera-
tive to study the lasting effects of antibiotics and hospitalization on 

the preterm IGM. Previous studies of preterm infants report IGM 
recovery that is concomitant with NICU discharge36–38. However, 
these studies rely on culture or amplicon sequencing (for example, 
16S rRNA) based analyses focussing on the taxa found in the micro-
biota rather than the functions that they collectively encode. Here we 
analyse ~1.2 Tb of metagenomic DNA from 437 infant stools, culture 
and sequence 530 bacterial isolates, and functionally select 300 Gb of 
metagenomic DNA for antibiotic resistance to investigate the long-
term consequences of antibiotic treatment on the preterm IGM.

The effect of antibiotics on the preterm IGM
To understand the long-term effects of prematurity and associated  
early-life hospitalization and antibiotic therapy on the IGM, we 
performed whole-metagenome shotgun sequencing of 437 fae-
cal samples from 58 infants throughout the first 21 months of 
life (Supplementary Figs. 1 and 2). Our cohort included 41 pre-
term infants who were sampled at the NICU of St Louis Children’s 
Hospital and after being discharged to home. One subset of this 
cohort (n = 9) received scant antibiotic therapy neonatally (each 
received a single concurrent course of gentamicin and ampicil-
lin for less than 7 d). The remaining 32 preterm infants received 
extensive antibiotic treatment over the first 21 months (median 
(interquartile range (IQR) 8 courses (6, 10.3) and 29.5 d (41.63 d, 
68.3 d) antibiotic therapy). All of the infants in this cohort were 
classified as being born preterm ((median (IQR) gestational age at 
birth of 26 weeks (25, 27)) with very low birth weights (median 
(IQR) 840 g (770 g, 960 g)). Furthermore, we included 17 antibi-
otic-naive, healthy early term39 or late-preterm40 (median (IQR) 
gestational age at birth 36 weeks (36, 37 weeks); near-term) infants  
of the same chronological age range, sampled synchronously with 
the preterm cohort.
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We inferred bacterial taxonomic composition using 
MetaPhlAn241. Across all of the infants, Shannon diversity increased 
during a developmental phase before stabilizing (Fig. 1a). In near-
term infants, the Shannon diversity of the microbiota increases rap-
idly during the first month before plateauing, whereas the diversity 
of the preterm-infant microbiota increases more gradually and with 
greater variation (Fig. 1a). Enterobacteriaceae and Enterococcaceae 
dominate the preterm IGM during the first months of life. By con-
trast, early colonization by Enterobacteriaceae in near-term infants 
precedes robust colonization with Bifidobacteriaceae (Fig. 1b,  
Supplementary Fig. 3). Enterococcaceae is significantly less abun-
dant early in life (<4 months chronological age) in near-term 
compared with preterm infants (P < 0.001, Wilcoxon rank sum), 
and Prevotellaceae is similarly less abundant later during infancy 
(>8 months chronological age) in preterm infants compared with 
near-term infants (P < 1 × 10−10, Wilcoxon rank sum). Despite these 
differences, we observed predicted functional stability of the micro-
biota both over time and between groups (Fig. 1c), as inferred by 
HUMAnN242. Although it is probable that greater variation exists 
when finer functional categories or predicted hosts of functions are 
taken into account, the invariability of microbiota functional capac-
ity at this high level suggests that although prematurity, early-life 
hospitalization and antibiotic treatment substantially perturb the 
taxonomic composition of the microbiota, a core set of microbial 
functions remains conserved across hosts43.

Low gut-microbiota diversity is often associated with adverse 
health in infants44–46, children5 and adults47. To identify features 
associated with microbiota diversity, we regressed Shannon diver-
sity on clinical variables (see Methods; Supplementary Table 1) 
using a generalized linear mixed model with the subject defined 
as individual effect. All of the variables in Supplementary Table 1 
were included in the initial modelling, and a final model was fit by 
backwards elimination of variables. After correcting for multiple 
comparisons, we found that day of life was significantly associ-
ated with increased Shannon diversity (P < 0.001), whereas recent 
(within 30 d of sample collection) administration of vancomycin 
(P < 0.001), ampicillin (P < 0.001), meropenem (P = 0.009) or 
cefepime (P = 0.012) was significantly associated with decreased 
diversity (Fig. 1d). No clinical variable included in the model 
other than antibiotic treatment was significantly associated with 
IGM diversity. The sparse model explained 57% of the variance 
in Shannon diversity by the fixed effects (day of life and antibiotic 
treatments) alone, and an additional 12% by subject. The magni-
tude of the model estimate for day of life (0.002) was substantially 
less than those for recent antibiotics (vancomycin, −0.34; ampicil-
lin, −0.60; meropenem, −0.42; cefepime, −0.46; oxacillin, −0.70). 
Thus, a single recent course of antibiotics has an effect on diver-
sity of the same magnitude as the diversity increase observed over 
around 5–12 months of life. Across all of the infants in our cohort 
through the first 110 d of life, the Shannon diversity of the micro-
biota was significantly lower in infants who received more than one 
course of antibiotics in the previous month (Fig. 1e). Accordingly, 
recent antibiotic treatment seems to be a key driver of microbiota 
diversity early in life.

Partial microbiota recovery following NICU discharge
Although the taxonomic composition of the preterm infant microbi-
ota clustered by both gestational age at birth and antibiotic treatment 
status (Adonis test, P < 0.001, Bray–Curtis distance), chronological 
age was a major driver of microbiota composition across all infants 
(Fig. 2a). We hypothesized that after observed early-life perturba-
tion, the composition of the preterm microbiota would converge 
towards that of age-matched healthy, antibiotic-naive near-term 
infants within the first 21 months of life, but that microbiota ‘scars’ 
from this early-life disruption (for example, enriched ARGs and 
MDROs) would persist.

To quantify the extent of this perturbation, we used random for-
ests to regress the relative abundances of species in the microbiota 
of infants against their chronological age as previously described48. 
The minimum number of variables required for accurate predic-
tion was 50 (Fig. 2b). We trained a model consisting of the 50 most 
informative predictors on the subset of antibiotic-naive near-term 
infants to model healthy microbiota development, and subsequently 
refined and validated the model. The top age-discriminatory taxa in 
the IGM of antibiotic-naive near-term infants were Faecalibacterium 
prausnitzii, Subdoligranulum sp., Ruminococcus gnavus and 
Oscillobacter sp. (Fig. 2c). We used this sparse model to predict 
infant chronological age using the relative abundance of these 
50 species. This prediction—or ‘microbiota age’—approximates 
relative microbiota maturity48. We observed a linear relationship 
between the chronological and microbiota ages of antibiotic-naive 
near-term infants, suggesting that the model accurately predicts the 
age of near-term infants. However, for preterm infants, predicted 
microbiota ages were younger than chronological age across several 
stages of development, indicating that microbiota development is 
disrupted in these infants. To better quantify the extent of disrup-
tion, we computed a microbiota-for-age z-score (MAZ) for each 
metagenome, as previously described48. Using a z-score to com-
pare age bins is necessary because this value reflects the variance 
of the predicted age across the development of infant microbiota. 
Preterm infants who receive antibiotic treatment have significantly 
lower MAZ values than near-term infants in the first months of life  
(Fig. 2e). However, by months 12–15 of life, the MAZ values of hos-
pitalized preterm infants closely resemble those of healthy antibi-
otic-naive near-term infants (Fig. 2f). Thus, despite transient delays 
in the development of the preterm IGM, the bacterial taxonomic 
composition converges to common structures with those of healthy 
antibiotic-naive infants within the first 21 months of life (Fig. 2d).

Antibiotic resistome of preterm IGM
We next characterized the antibiotic resistome encoded in the IGM 
of our cohort. We conducted functional metagenomic analysis49 
of 217 preterm- and term-infant stools, selected to encompass the 
diversity in clinical variables in our cohort. We constructed 22 func-
tional metagenomic libraries totalling 396 Gb (Supplementary Fig. 4,  
Supplementary Table 1; see Methods) with an average insert size of 
2–3 kb, selected libraries on 16 antibiotics relevant to infants and 
children (Supplementary Table 3), and we recovered resistant trans-
formants for each antibiotic except for meropenem (Supplementary 

Fig. 1 | Clinical variables predict microbiota diversity and composition. a, Shannon diversity of all near-term (n = 17) and preterm (n = 41) infants in this 
study, shown by month of life. b, Microbiota species and functional compositions inferred by MetaPhlAn2 of all near-term (n = 17) and preterm (n = 41) 
infants in this study. c, Microbiota species and functional compositions inferred by HUMAnN2 of all near-term (n = 17) and preterm (n = 41) infants in this 
study. d, Day of life is significantly associated with an increase in microbiota Shannon diversity, whereas vancomycin, ampicillin, meropenem or cefepime 
treatment within the month before sampling is associated with significantly decreased species richness. ***P < 0.001; **P < 0.01; *P < 0.05; generalized 
linear mixed model with subject as random effect using 437 infant gut metagenomes. Oxacillin was included in the model but was not significant after 
correction for multiple comparisons. Error bars indicate s.e.m. e, Shannon diversity is significantly lower in infants who received more than one course of 
antibiotic treatment in the past month compared with infants who had not received antibiotic treatment during that time period. ****P < 0.0001; ns, not 
significant; statistical analysis was performed using two-sided Wilcoxon rank sum tests with Benjamini–Hochberg correction; n = 212 samples. For box 
plots, data are the first quartile, median and third quartile of the data with whiskers extending to the last data point within 1.5× the interquartile range.
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Fig. 4). We found that the infant gut metagenome encoded trans-
ferrable resistance even to antibiotics that are rarely or never  
used in neonates, such as ciprofloxacin and chloramphenicol, and 
those that represent last lines of defence against MDROs, such as 

tigecycline and colistin. Only one of eight libraries constructed from 
stools of antibiotic-naive near-term infants encoded ciprofloxacin 
resistance (mediated by loci other than gyrA or parC), whereas six 
out of fourteen libraries constructed from preterm-infant stools 
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encoded ciprofloxacin resistance. This observation, given the scarce 
use of ciprofloxacin in neonates50, suggests that either acquired  
(as opposed to intrinsic) ciprofloxacin resistance occurs naturally in 
preterm infant gut bacterial communities, or that organisms resistant 
to ciprofloxacin are co-selected by other antibiotics to which they  
are resistant.

We sequenced resistance-conferring metagenomic inserts and 
assembled 874 unique ARGs. The median identity of these func-
tionally selected ARGs to the NCBI non-redundant protein database 
was 94.4%, whereas their median identity to the Comprehensive 
Antibiotic Resistance Database (CARD) entries51 was 32.0% (Fig. 3a).  
Therefore, although most resistance determinants discovered in our 
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functional selections have been previously sequenced, they have 
frequently not been assigned resistance functions—a discordance 
that we have previously noted33. Functionally selected ARGs with a 
low identity to CARD entries, while not canonical resistance genes 
that are widespread in the clinical setting at this point, represent  
candidates for or progenitors of clinical resistance genes given 

opportunity, mobilization or evolution49,52. The predicted sources 
of resistance conferring open reading frames (ORFs) (determined 
by best BLAST hit to the NCBI non-redundant protein database) 
were predominantly uncultured bacteria or Enterobacteriaceae 
(Fig. 3b). The identification of Enterobacteriaceae as probable hosts 
of ARGs in the IGM is consistent with the current understanding 
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of Enterobacteriaceae as prolific hosts and traffickers of ARGs53–55. 
Moreover, the identification of uncultured (189 ORFs) and unclas-
sified (24 ORFs) bacteria as sources of ARGs highlights the value 
of functional metagenomics as a culture- and sequence-unbiased 
method for characterizing resistomes52.

Highlighting the potential for lateral ARG exchange within  
the infant microbiome, 225 contigs (6.4% of all contigs) recovered 
in functional selections encoded a mobile genetic element (MGE; 
Supplementary Fig. 5a–e). MGEs were most frequently observed  
in tetracycline selections (Supplementary Fig. 5f) but were also 
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commonly observed in β-lactam, chloramphenicol, gentamicin 
and ciprofloxacin selections. We observed enrichment for MGEs 
on amoxicillin and clavulanate (P < 0.01, hypergeometric test), tet-
racycline (P < 0.01, hypergeometric test) and gentamicin (P < 0.001, 
hypergeometric test). The synteny of functionally selected ARGs with 
MGEs suggests the possibility of a mobilizable resistome in the IGM.

We extended our resistome analysis using ShortBRED56 to quan-
tify translated ARG abundance in all of the sequenced metagenomes 
with a custom database that included all of the ARGs from CARD 
as well as the functionally selected ARGs identified here. Resistomes 
clustered according to gestational age at birth and antibiotic-treat-
ment status (Fig. 3c; P < 0.001, Adonis test). The gut metagenomes 
of preterm infants encoded fewer unique ARGs than those of near-
term infants (P < 0.01, Wilcoxon rank sum; Fig. 3d). However, the 
cumulative resistome relative abundance was significantly higher 
in the IGM of preterm infants who received early and subsequent 
antibiotic treatment compared with preterm infants who received 
only early antibiotic treatment and antibiotic-naive near-term 
infants (P < 0.05, Wilcoxon rank sum; Fig. 3e). There was a weak 
inverse correlation between taxonomic alpha diversity and cumu-
lative resistome burden across all of the metagenomes (R2 = 0.09; 
Supplementary Fig. 6a), indicating that resistome-enriched micro-
biota are dominated by a few species. Indeed, in 41 of the 54 metage-
nomes with a cumulative resistome of reads per kb per million 
mapped reads (RPKM) of more than 5000, a single species com-
prised more than 50% of the relative abundance of the microbiota. 
In 25 of these samples, the dominant species was Escherichia coli 
(Supplementary Fig. 6b). Other dominant species were Enterococcus 
faecalis (n = 5), Klebsiella pneumoniae (n = 2), Staphylococcus epi-
dermidis (n = 2), Enterobacter aerogenes (n = 2), Bifidobacterium 
breve (n = 2), Pseudomonas aeruginosa, Bifidobacterium longum  
and Citrobacter koseri (n = 1 each). Thus, it seems that extreme pre-
maturity and its associated hospitalization and antibiotic treatment 
select for one or two MDROs that dominate the IGM rather than 
enriching for a greater diversity of resistant organisms.

To define the developmental progression of the infant gastro-
intestinal resistome over the first months of life, we regressed the 
abundance of ARGs in a subset of antibiotic-naive near-term infant 
gut metagenomes against the day of life for these infants using ran-
dom forests57. We constructed a sparse model using the 50 most 
informative ARGs. The sparse model was subsequently applied to 
preterm samples to predict ‘resistome age’. A clear developmental 
trajectory on the basis of these 50 ARGs was evident in near-term 
infants (Fig. 3g). The developmental trajectory of the preterm-infant 
gut resistome deviates from that of the antibiotic-naive near-term 
infants in prolonged carriage of some ARGs (for example, oqxA, 
oqxB, catI, fosA5 and cdeA), near absence of others (for example, 
abeM) and a general increase in the normalized abundance of these 
genes in the gut across all of the timepoints (Fig. 3g). Overall, we 
found that the model only modestly predicted the chronological age 
of preterm infants (R2 = 0.62; Fig. 3f), suggesting that distinct pat-
terns of resistome development emerge on the basis of antibiotic 
treatment status and gestational age at birth.

Persistence of MDR Enterobacteriaceae in the preterm IGM
Whole-metagenome shotgun sequencing is a powerful method for 
describing high-level microbiota composition and function, but 
it is less-well equipped to elucidate strain-level variation. The gut 
has been established as an early reservoir of bacteria that cause late 
onset bloodstream infections in neonates58 and is dominated by 
multidrug-resistant (MDR) Proteobacteria33, but the extent to which 
these early colonizing strains persist in the IGM is poorly defined. 
We hypothesized that early-life hospitalization and antibiotic treat-
ment in preterm infants might create a gastrointestinal niche for 
such Proteobacteria that is not relinquished after discharge from 
the NICU. To better understand the persistence of specific bacterial 

strains in the microbiota of infants in our cohort, we cultured pairs 
of stools collected 8–10 months apart from 15 infants (9 preterm 
and 6 near-term) on a series of selective agars (see Methods). We 
optimized culture conditions to isolate opportunistic extraintesti-
nal pathogens that are known to be highly prevalent and are abun-
dant in the IGM as well as those that are frequently MDR. In total,  
we cultured 530 isolates from these 30 samples. We whole-genome 
sequenced, assembled and annotated 277 and 253 isolates from the 
preterm and near-term sets, respectively.

The species most frequently isolated by this direct selection 
were E. coli (n = 139), K. pneumoniae (n = 62), E. faecalis (n = 50), 
Enterobacter cloacae (n = 42), Enterococcus faecium (n = 22), 
Citrobacter freundii (n = 15) and Klebsiella oxytoca (n = 14). We 
identified within-infant persistence of nearly identical strains 
of E. coli, E. cloacae and K. variicola in samples collected from 
both preterm and near-term infants. These highly similar, per-
sistent isolate pairs from infants included isolates from samples 
collected both while in the hospital and after discharge (Fig. 4).  

Table 1 | Clinical characteristics of infant cohorts analysed in 
this study

Preterm 
early 
antibiotic 
exposure 
only (n = 9)

Preterm early 
and subsequent 
antibiotic 
exposure 
(n = 32)

Term 
antibiotic-
naive infants 
(n = 17)

Birth weight (g), median 
(IQR)

1,080  
(880, 1,270)

830  
(698.75, 897.5)

2,529 
(2,359.5, 
2,966.5)

Gestational age (weeks) 
at birth median (IQR)

27 (26, 27) 25 (24, 26) 36 (36,37)

Gender, male/female 4/5 15/17 4/13

Route of delivery, 
Caesarean section/
vaginal

6/3 25/7 15/2

Antibiotic exposure, number of courses

 Gentamicin 9 74 None

 Ampicillin 9 37 None

 Vancomycin None 67 None

 Clindamycin None 16 None

 Meropenem None 14 None

 Cefepime None 11 None

 Cefotaxime None 10 None

 Mupirocin None 7 None

 Trimethoprim–
sulfamethoxazole

None 4 None

 Ticarcillin–clavulanate None 3 None

 Oxacillin None 3 None

 Cefoxitin None 3 None

 Cefazolin None 2 None

 Amoxicillin None 2 None

 Metronidazole None 1 None

 Penicillin G None 1 None

Bacterial culture positive (n)

 Blood 0 22 0

 Trachea 0 30 0

 Urine 0 17 0

Nature Microbiology | www.nature.com/naturemicrobiology

http://www.nature.com/naturemicrobiology


Articles NaTurE MIcrobIology

Among the persistent isolates recovered were strains of E. coli 
ST405 and E. cloacae ST108, both of which are high-risk lineages 
known to encode extended-spectrum β-lactamases and NDM-
family carbapenemases59–61. Each of the E. coli strains encoded a 
TEM-1 β-lactamase as well as an aac(3)-IId aminoglycoside acetyl-
transferase with predicted resistance to aminoglycosides, and each  
E. cloacae strain encoded an AmpC type β-lactamase. The  
K. variicola strains each contained oqxAB, which encodes the RND-
type multidrug efflux pump62, and the chromosomal Klebsiella 
β-lactamase blaOKP-B-163 (Supplementary Table 4). We isolated 
nearly identical MDR Enterobacteriaceae—as suggested by the aver-
age nucleotide identity of more than 99.997% (Fig. 4b,d,f) and core 
gene single-nucleotide-polymorphism distances (Supplementary 
Table 4)—from the preterm IGM both in the NICU and after dis-
charge. These data support an enduring and transmissible patho-
logical microbiome scar associated with preterm birth, early-life 
hospitalization and antibiotic treatment.

As Enterococcus species are prevalent and abundant in the 
preterm-infant gut33, often MDR64, and cause nosocomial blood 
stream infections in preterm infants65, we investigated their resis-
tance and virulence phenotypes. A particular concern among 
hospitalized populations is vancomycin-resistant Enterococci66. 
Of the 15 unique Enterococcus strains that we isolated, ten were 
E. faecalis and five were E. faecium (Supplementary Fig. 7a). No 
E. faecalis, and two E. faecium isolates were resistant to vanco-
mycin. However, no E. faecium strain formed a biofilm, whereas 
four of the E. faecalis strains formed robust biofilms at room tem-
perature and an additional six strains formed biofilms at 37 °C 
(Supplementary Fig. 7b). Interestingly, all of the biofilm-forming 
strains were isolated from preterm-infant stool. This is consistent 
with the prevailing understanding that early colonizers of the pre-
term-infant gut are largely surface-adapted strains that are preva-
lent in the NICU environment67. The biofilm-forming strains of 
E. faecalis, although susceptible to vancomycin when planktonic, 
were resistant to this antibiotic when in biofilms (Supplementary 
Fig. 7c). Thus, despite the apparent trade-off between vancomycin 
resistance and biofilm formation observed among Enterococcus 
strains, nearly all have evolved strategies for surviving vancomy-
cin treatment. This is concerning given the widespread usage of 
vancomycin (Table 1) and prevalence of Enterococcus colonization 
(Fig. 1b) in the NICU.

Persistent metagenomic signature of antibiotic treatment
To understand whether prematurity, hospitalization and antibi-
otic treatment had persistent effects on gut microbial content and 
function, we sought to identify metagenomic features that distin-
guished post-NICU discharge samples in preterm infants from age-
matched samples from antibiotic-naive near-term infants. We used 
a supervised learning approach to classify samples as originating 
from a hospitalized preterm infant (including both early-only and 
early-and-subsequent antibiotic treatment groups) or an antibiotic-
naive near-term infant residing at home, on the basis of the relative 
abundance of bacterial taxa and ARGs in their IGM. Using a support 
vector machine, we identified the 15 most informative features and 
constructed a model consisting of only these variables, which cor-
rectly classified all of the preterm and 15 of the 17 near-term samples 
(96.4% accuracy; Fig. 5a). Of the 15 variables that were most impor-
tant to model performance, six were ARGs and nine were bacte-
rial taxa (Fig. 5b). The ARGs important to classification were the 
class A β-lactamase cfxA668, and five genes functionally selected on 
piperacillin or tetracycline. The highest identity BLAST hit of four 
of the functionally selected ARGs was an ABC transporter, whereas 
the other was a MATE family efflux transporter. The predictive spe-
cies were members of the order Clostridiales (Eubacterium rectale, 
Ruminococcus obeum, Ruminococcus lactaris, Dorea formicigenerans, 
Eubacterium ventriosum, Eubacterium ramulus and Eubacterium 
eligens) and Bacteroidales (Prevotella copri and Barnesiella  
intestinihominis). Our model accurately identified whether a pre-
term infant was hospitalized and received early-life antibiotic treat-
ment on the basis of metagenome composition following NICU 
discharge despite high-level architectural recovery.

Conclusion
By combining metagenomic sequencing, selective and differential 
stool culture paired with isolate sequencing, functional metagenom-
ics and machine learning, we demonstrate persistent metagenomic 
signatures of early-life antibiotic treatment and hospitalization in pre-
term infants. These signatures are characterized by an enriched gut 
resistome and persistent carriage of MDR Enterobacteriaceae, despite 
apparent recovery in microbiota maturity. Regardless of prematurity 
or antibiotic exposure, we observed little variation in the functional 
capacity of the microbiota, albeit using broad functional categories. Our 
work highlights the need to integrate sequencing- and culture-based  
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approaches for examining microbiota to reveal underappreciated 
effects of perturbations. These complementary methods provide data 
that support a persistent metagenomic signature of early-life hospi-
talization and antibiotic treatment associated with prematurity in the 
dynamic microbial community housed in the infant gut.

We were unable to isolate the effects of antibiotics from those of 
other adverse early-life events that coincide with prematurity, such 
as extended hospitalization and illness. Although an interventional 
study to probe these variables in neonates is infeasible, future animal 
studies could provide important insights into their relative contri-
butions. Furthermore, it is probable that yet-to-be-defined environ-
mental variables play a role in the co-development of the immune 
system and the microbiota, which needs to be addressed in future 
studies. Despite these caveats, we found compelling evidence for the 
underappreciated lasting effect of prematurity and the associated 
hospitalization and antibiotic treatment on the microbiome. These 
perturbations may play a role in chronic pathologies associated with 
prematurity for which the aetiology is unclear. From a clinical stand-
point, our findings emphasize a necessity for alternatives to broad-
spectrum antimicrobial therapy for managing infection in the NICU. 
This should not only entail therapeutic approaches, such as narrow-
spectrum antibiotics and probiotic therapies69, but also improved 
accuracy and speed of diagnostics to reduce unnecessary courses 
of antibiotics. It is unclear whether these results are generalizable 
across NICUs. Future multicentre studies are important to reveal the 
effect of neonatal antibiotic stewardship practices in IGM develop-
ment. Although the metagenomic scars that we identified may be 
implicated in sequelae of preterm birth, such as neurodevelopmen-
tal70–72, metabolic73,74, cardiac75,76 and respiratory77,78 defects, further 
experiments with model systems, including gnotobiotic animals, are 
needed to link these enduring dysbioses and lasting pathologies.

Methods
Sample and metadata collection. All of the samples and patient metadata used 
in this study were collected as part of the Neonatal Microbiome and Necrotizing 
Enterocolitis Study (P.I.T. and B.B.W.) or the St Louis Neonatal Microbiome Initiative 
(B.B.W. and P.I.T.) at Washington University School of Medicine and approved by the 
Human Research Protection Office (approval numbers 201105492 and 201104267, 
respectively). Samples were obtained from infants after parents provided informed 
consent. As very few hospitalized preterm infants are antibiotic naive, we stratified 
our cohort for sample analysis by antibiotic exposure and gestational age at birth, 
with a subset of individuals who received early antibiotic exposure only (n = 9) and 
no antibiotic exposure outside the first week of life, a subset of individuals with early 
and subsequent antibiotic exposure (n = 32), and a subset of late-preterm or early-
term infants (n = 17) who were not hospitalized and were antibiotic-naive throughout 
the first months of life (Table 1). All of the stools produced were collected and stored 
as previously described79,80. In total, 437 samples collected longitudinally from 58 
infants were shotgun sequenced and included in all metagenomic analyses.

Metagenomic DNA extraction. Metagenomic DNA was extracted from 
approximately 100 mg of stool samples using the PowerSoil DNA Isolation Kit 
(MoBio Laboratories) following the manufacturer’s protocol with the following 
modification: samples were lysed by two rounds of 2 min of bead beating at 2,500 
oscillations min−1 for 2 min followed by 1 min on ice and an additional 2 min of 
beadbeating using a Mini-Beadbeater-24 (Biospec Products). DNA was quantified 
using a Qubit fluorometer dsDNA HS Assay (Invitrogen) and stored at −20 °C.

Preparation of the metagenomic sequencing library. Metagenomic DNA was 
diluted to a concentration of 0.5 ng µl−1 before preparation of the sequencing 
library. Libraries were prepared using a Nextera DNA Library Prep Kit (Illumina) 
following the modifications described previously by Baym et al.81. The libraries 
were purified using the Agencourt AMPure XP system (Beckman Coulter) and 
quantified using a Quant-iT PicoGreen dsDNA assay (Invitrogen). For each 
sequencing lane, 10 nM of approximately 96 samples was pooled three independent 
times. These pools were quantified using the Qubit dsDNA HS Assay and 
combined in an equimolar manner. Samples were then submitted for 2 × 150 bp 
paired-end sequencing on an Illumina NextSeq High-Output platform at the 
Center for Genome Sciences and Systems Biology at Washington University in St 
Louis with a target sequencing depth of 2.5 million reads per sample.

Rarefaction analysis. To determine the appropriate sequencing depth necessary to 
fully characterize IGM composition and function, 17 representative metagenomes 

that were sequenced most deeply were subsampled at the following read depths: 
8,000,000, 7,000,000, 6,000,000, 5,000,000, 4,000,000, 3,000,000, 2,000,000, 
1,000,000, 100,000 and 10,000. Subsampled metagenomes were profiled using 
MetaPhlAn v.2.041 to determine species richness at each depth. Rarefaction 
was only used to establish an appropriate sequencing depth, and subsampled 
metagenomes were not used for any downstream analyses.

Metagenome profiling. Before all downstream analyses, Illumina paired-end reads 
were binned by index sequence. Adapter and index sequences were trimmed and 
sequences were quality-filtered with Trimmomatic v.0.3682 using the following 
parameters: java -Xms2048m -Xmx2048m -jar trimmomatic-0.33.jar PE -phred33 
ILLUMINACLIP: NexteraPE-PE.fa:2:30:10:1:true SLIDINGWINDOW:6:10 
LEADING:13 TRAILING:13 MINLEN:36. Relative abundance of species was 
calculated using MetaPhlAn v.2.041 (repository tag 2.2.0). Relative abundance 
tables were merged using the ‘merge_metaphlan_tables.py’ script. Abundance of 
metabolic pathways was determined using HUMAnN242. Raw count values were 
normalized for sequencing depth, collapsed by ontology and tables were merged 
using the ‘humann2_renorm_table’, ‘humann2_regroup_table’ and ‘humann2_
join_tables’ utility scripts.

Construction of metagenomic libraries from infant gut samples for functional 
selection. We constructed 22 functional metagenomic libraries by pooling 
metagenomic DNA from 9–10 stools per library, encompassing 396 Gb of 
metagenomic DNA with an average library size of 18 Gb (Supplementary Fig. 4, 
Supplementary Table 1) and an average insert size of 2–3 kb. Approximately 5 µg 
purified extracted total metagenomic DNA was used as starting material for the 
metagenomic library construction. To create small-insert metagenomic libraries, 
DNA was sheared to a target size of 3,000 bp using the Covaris E210 sonicator 
following the manufacturer’s recommended settings (http://covarisinc.com/
wp-content/uploads/pn_400069.pdf). Sheared DNA was concentrated using a 
QIAquick PCR Purification Kit (Qiagen) and then eluted in 30 μl nuclease-free 
H2O. The purified DNA was then size-selected using a BluePippin instrument 
(Sage Science) to a range of 1,000–6,000 bp DNA fragment through a premade 
0.75% Pippin gel cassette. Size-selected DNA was then end-repaired using an  
End-It DNA End Repair kit (Epicentre) with the following protocol:

	(1)	 Mix the following in a 50 μl reaction volume: 30 μl of purified DNA, 5 μl 
dNTP mix (2.5 mM), 5 μl 10× End-Repair buffer, 1 μl End-Repair Enzyme 
Mix and 4 μl nuclease-free H2O.

	(2)	 Mix gently and incubate at room temperature for 45 min.
	(3)	 Heat inactivate the reaction at 70 °C for 15 min.

End-repaired DNA was then purified using the QIAquick PCR purification 
kit (Qiagen) and quantified using the Qubit fluorometer HS assay kit (Life 
Technologies) and ligated into a pZE21-MCS-1 vector at the HincII site. The 
pZE21 vector was linearized at the HincII site using inverse PCR with PFX DNA 
polymerase (Life Technologies):

	(1)	 Mix the following in a 50 μl reaction volume: 10 μl of 10× PFX reaction buffer, 
1.5 μl of 10 mM dNTP mix (New England BioLabs), 1 μl of 50 mM MgSO4, 
5 μl of PFX enhancer solution, 1 μl of 100 pg μl−1 21 circular pZE21, 0.4 μl of 
PFX DNA polymerase, 0.75 μl forward primer (5′-GACGGTATCGATAA-
GCTTGAT-3′), 0.75 μl reverse primer (5′-GACCTCGAGGGGGGG-3′) and 
29.6 μl of nuclease-free H2O, to a final volume of 50 μl.

	(2)	 PCR cycle temperature as follows: 95 °C for 5 min, then 35 cycles of (95 °C for 
45 s, 55 °C for 45 s, 72 °C for 2.5 min), then 72 °C for 5 min.

Linearized pZE21 was size-selected (~2,200 bp) on a 1% low melting point 
agarose gel (0.5× TBE) stained with GelGreen dye (Biotium) and purified by 
QIAquick Gel Extraction Kit (Qiagen). Pure vector was dephosphorylated using 
calf-intestinal alkaline phosphatase (CIP, New England BioLabs) by adding 1/10 
reaction volume of CIP, 1/10 reaction volume of New England BioLabs Buffer 3  
and nuclease-free H2O to the vector eluate, and incubating at 37 °C overnight 
before heat inactivation for 15 min at 70 °C. End-repaired metagenomic DNA 
and the linearized vector were ligated together using the Fast-Link Ligation Kit 
(Epicentre) at a 5:1 ratio of insert:vector using the following protocol:

	(1)	 Mix the following in a 15 μl reaction volume: 1.5 μl 10× Fast-Link buffer, 
0.75 μl ATP (10 mM), 1 μl FastLink DNA ligase (2 U μl−1), 5:1 ratio of 
metagenomic DNA:vector and nuclease-free H2O to final reaction volume.

	(2)	 Incubate at room temperature overnight.
	(3)	 Heat inactivate for 15 min at 70 °C.

After heat inactivation, ligation reactions were dialysed for 30 min using a 
0.025 µm pore-size cellulose membrane (Millipore, VSWP09025) and the full 
reaction volume was used for transformation by electroporation into 25 μl E. coli 
MegaX (Invitrogen) according to the manufacturer’s recommended protocols 
(http://tools.invitrogen.com/content/sfs/manuals/megax_man.pdf). Cells were 
recovered in 1 ml Recovery Medium (Invitrogen) at 37 °C for 1 h. Libraries were 
titred by plating out 0.1 μl and 0.01 μl of recovered cells onto Luria–Bertani (LB) 
agar plates containing 50 μg ml−1 kanamycin. For each library, the insert size 
distribution was estimated by gel electrophoresis of PCR products obtained by 
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amplifying the insert from 36 randomly picked clones using primers flanking the 
HincII site of the multiple cloning site of the pZE21-MCS1 vector (which contains 
a selectable marker for kanamycin resistance). The average insert size across all 
libraries was determined to be 3 kb, and library size estimates were calculated by 
multiplying the average PCR-based insert size by the number of titred colony-
forming units (CFUs) after transformation recovery. The rest of the recovered 
cells were inoculated into 50 ml of LB containing 50 μg ml−1 kanamycin and grown 
overnight. The overnight culture was frozen with 15% glycerol and stored at −80 °C 
for subsequent screening.

Functional selections for antibiotic resistance. Each metagenomic library was 
selected for resistance to each of 16 antibiotics (at the concentrations listed in 
Supplementary Table 3 supplemented with 50 μg ml−1 kanamycin for plasmid 
library maintenance) was performed using LB agar. Of note, as our library host— 
E. coli—is intrinsically resistant to vancomycin, we are unable to functionally 
screen for loci conferring resistance to this antibiotic. Furthermore, the use of 
kanamycin as the selective marker for the metagenomic plasmid library results 
in low-level cross-resistance with other aminoglycoside antibiotics, resulting in 
a higher required minimum inhibitory concentration for gentamicin. For each 
metagenomic library, the number of cells plated on each antibiotic selection 
represented 10× the number of unique CFUs in the library, as determined by 
titres during library creation. Depending on the titre of live cells following library 
amplification and storage, the appropriate volume of freezer stocks were either 
diluted to 100 μl using MH broth + 50 μg ml−1 kanamycin or centrifuged and 
reconstituted in this volume for plating. After plating (using sterile glass beads), 
antibiotic selections were incubated at 37 °C for 18 h to enable the growth of clones 
containing an antibiotic-resistance-conferring DNA insert. Of the 352 antibiotic 
selections performed, 296 yielded antibiotic-resistant E. coli transformants 
(Supplementary Fig. 4). After overnight growth, all of the colonies from a single 
antibiotic plate (library by antibiotic selection) were collected by adding 750 μl of 
15% LB-glycerol to the plate and scraping with an L-shaped cell scraper to gently 
remove colonies from the agar. The slurry was then collected and this process was 
repeated a second time for a total volume of 1.5 ml to ensure that all of the colonies 
were removed from the plate. The bacterial cells were then stored at −80 °C before 
PCR amplification of antibiotic-resistant metagenomic fragments and Illumina 
library creation.

Amplification and sequencing of functionally selected fragments. Freezer 
stocks of antibiotic-resistant transformants were thawed and 300 μl of cells were 
pelleted by centrifugation at 13,000 r.p.m. for 2 min and then gently washed with 
1 ml of nuclease-free H2O. Cells were subsequently pelleted a second time and 
resuspended in 30 μl of nuclease-free H2O. Resuspensions were then frozen at 
−20 °C for 1 h and thawed to promote cell lysis. The thawed resuspension was 
pelleted by centrifugation at 13,000 r.p.m. for 2 min and the resulting supernatant 
was used as template for amplification of resistance-conferring DNA fragments by 
PCR using Taq DNA polymerase (New England BioLabs):

	(1)	 Mix the following for a 25 μl reaction volume: 2.5 μl of DNA template, 2.5 μl 
of ThermoPol reaction buffer (New England BioLabs), 0.5 μl of 10 mM 
deoxynucleotide triphosphates (dNTPs, New England BioLabs), 0.5 μl of Taq 
polymerase (5 U μl−1), 3 μl of a custom primer mix and 16 μl of nuclease-free 
H2O.

	(2)	 PCR cycle temperatures were as follows: 94 °C for 10 min, then 25 cycles of 
(94 °C for 45 s, 55 °C for 45 s, 72 °C for 5.5 min) and finally 72 °C for 10 min.

The custom primer mix consisted of three forward and three reverse 
primers, each targeting the sequence immediately flanking the HincII site in 
the pZE21-MCS1 vector, and staggered by one base pair. The staggered primer 
mix ensured a diverse nucleotide composition during early Illumina sequencing 
cycles and contained the following primer volumes (from a 10 mM stock) in 
a single PCR reaction: primer F1, CCGAATTCATTAAAGAGGAGAAAG, 
0.5 μl; primer F2, CGAATT CATTAAAGAGGAGAAAGG, 0.5 μl; 
primer F3, GAATTCATTAAAGAGGAGAAAGGTAC, 0.5 μ); 
primer R1, GATATCAAGCTTATCGATACCGTC, 0.21 μl; primer 
R2, CGATATCAAGCTTATCGATACCG, 0.43 μl; and primer R3, 
TCGATATCAAGCTTATCGATACC, 0.86 μl. The amplified metagenomic inserts 
were then cleaned using the Qiagen QIAquick PCR purification kit and quantified 
using the Qubit fluorometer HS assay kit (Life Technologies).

For amplified metagenomic inserts from each antibiotic selection, elution 
buffer was added to the PCR template for a final volume of 200 μl and sonicated 
in a half-skirted 96-well plate using a Covaris E210 sonicator with the following 
setting: duty cycle, 10%; intensity, 5; cycles per burst, 200; sonication time, 600 s. 
After sonication, sheared DNA was purified and concentrated using the MinElute 
PCR Purification kit (Qiagen) and eluted in 20 μl of prewarmed nuclease-free H2O. 
In the first step of library preparation, purified sheared DNA was end-repaired:

	(1)	 Mix the following for a 25 μl reaction volume: 20 μl of elute, 2.5 μl T4 DNA 
ligase buffer with 10 mM ATP (10×, New England BioLabs), 1 μl dNTPs 
(1 mM, New England BioLabs), 0.5 μl T4 polymerase (3 U μl−1, New England 
BioLabs), 0.5 μl T4 PNK (10 U μl−1, New England BioLabs) and 0.5 μl Taq 
Polymerase (5 U μl−1, New England BioLabs).

	(2)	 Incubate the reaction at 25 °C for 30 min followed by 20 min at 75 °C.

Next, 5 μl of 1 μM pre-annealed, barcoded sequencing adapters were added 
to each end-repaired sample (adapters were thawed on ice). Barcoded adapters 
consisted of a unique 7-bp oligonucleotide sequence specific to each antibiotic 
selection, facilitating the demultiplexing of mixed-sample sequencing runs. 
Forward and reverse sequencing adapters were stored in TES buffer (10 mM Tris, 
1 mM EDTA, 50 mM NaCl, pH 8.0) and annealed by heating the 1 μM mixture to 
95 °C followed by a slow cool (0.1 °C s−1) to a final holding temperature of 4 °C. 
After the addition of barcoded adapters, samples were incubated at 16 °C for 40 min 
and then for 10 min at 65 °C. Before size selection, 10 μl each of adapter-ligated 
samples were combined into pools of 12 and concentrated by elution through a 
MinElute PCR Purification Kit (Qiagen), eluting in 14 μl of elution buffer (10 mM 
Tris-Cl, pH 8.5). The pooled, adapter-ligated, sheared DNA was then size-selected 
to a target range of 300–400 bp on a 2% agarose gel in 0.5× TBE, stained with 
GelGreen dye (Biotium) and extracted using a MinElute Gel Extraction Kit 
(Qiagen). The purified DNA was enriched using the following protocol:

	(1)	 Mix the following for a 25 μl reaction volume: 2 μl of purified DNA, 12.5 μl  
2× Phusion HF Master Mix (New England BioLabs), 1 μl of 10 mM Illumina 
PCR Primer Mix (5′-AATGATACGGCGACCACCGAGATC-3′ and 5′-CAA-
GCAGAAGACGGCATACGAGAT-3′), and 9.5 μl of nuclease-free H2O.

	(2)	 The PCR cycle was as follows: 98 °C for 30 s, then 18 cycles of (98 °C for 10 s, 
65 °C for 30 s, 72 °C for 30 s) and then 72 °C for 5 min.

Amplified DNA was measured using the Qubit fluorometer HS assay kit (Life 
Technologies) and 10 nM of each sample was pooled for sequencing. Subsequently, 
samples were submitted for paired-end 101 bp sequencing using an Illumina Next 
Seq platform at the DNA Sequencing and Innovation Laboratory at the Edison 
Center for Genome Sciences and Systems Biology, Washington University in St 
Louis. In total, three sequence runs were performed at a concentration of 10 pM 
per lane.

Assembly and annotation of functionally selected fragments. Illumina paired-
end sequence reads were binned by barcode (exact match required) such that 
independent selections were assembled and annotated in parallel. Assembly of 
the resistance-conferring DNA fragments from each selection was achieved using 
PARFuMS49 (Parallel Annotation and Reassembly of Functional Metagenomic 
Selections), a tool developed specifically for the high-throughput assembly and 
annotation of functional metagenomic selections.

ORFs were predicted in assembled contigs using MetaGeneMark83 and 
annotated by searching amino acid sequences against Pfam, TIGRFAMs and  
an ARG-specific profile hidden-Markov-model (pHMM) database, Resfams84 
(http://www.dantaslab.org/resfams), using HMMER385. MetaGeneMark was run 
using default gene-finding parameters and ‘hmmscan’ (HMMER3) was run with 
the option --cut_ga as implemented in the script ‘annotate_functional_selections.
py’. Selections were excluded from analysis if (1) more than 200 contigs were 
assembled or (2) the number of contigs assembled exceeded the number of 
colonies on the selection plate by a factor of ten. Furthermore, assembled contigs 
of less than 500 bp were discarded. As many assembled contigs include multiple 
annotated ORFs, the subset of proteins that are considered to be causative 
resistance determinants for downstream analysis were classified using the following 
hierarchical scheme. First, if a contig encoded a protein with a 100% amino acid 
identity hit to the CARD database51, it was considered to be the causative resistance 
determinant on that contig. Next, if a contig encoded a protein with a significant 
hit to a Resfams pHMM using profile-specific gathering thresholds, it was 
considered to be the causative resistance determinant on that contig. In the  
absence of a high-scoring hit to the CARD or Resfams databases, contigs were 
manually curated to identify plausible resistance determinants on an antibiotic-
specific basis. The rationale for this hierarchical classification scheme was to first 
identify perfect matches to known resistance determinants through BLAST to 
CARD (with a threshold of 100% amino acid identity), and subsequently identify 
variants of known resistance determinants using Resfams pHMMs. Using these 
criteria, 1,184 of the 5,658 unique predicted proteins (20.9%) were classified as 
resistance determinants.

The percentage identity of all resistance determinants were determined 
using BLASTp86 queries against both the NCBI non-redundant protein database 
(retrieved 21 May 2018) and the CARD51 database (v.1.2.1, retrieved 24 January 
2018). Once the top local alignment was identified using BLASTp, it was used for a 
global alignment using the Needleman–Wunsch algorithm as implemented in the 
‘needle’ program of EMBOSS87 v.6.6.0 as previously described33.

Putative mobile genetic elements were identified on functionally selected 
contigs on the basis of string matches to one of the following keywords in Pfam 
and TIGRFAMs annotations: ‘transposase’, ‘transposon’, ‘conjugative’, ‘integrase’, 
‘integron’, ‘recombinase’, ‘conjugal’, ‘mobilization’, ‘recombination’ or ‘plasmid’.

Quantification of ARGs in metagenomes. The relative abundance of ARGs was 
calculated using ShortBRED30. Causative resistance determinants, as identified 
using the hierarchical annotation scheme described above, were used as proteins of 
interest for the identification of marker families using ‘shortbred_identify.py’. These 
proteins included all of the ARGs in CARD (v.1.2.1, retrieved 24 January 2018)51 and 
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antibiotic-resistance proteins identified using functional metagenomic selections 
performed in the current study. Thus, the custom ShortBRED database included 
markers to canonical antibiotic-resistance determinants as well as resistance 
determinants functionally identified in this study that are most relevant to the IGM. 
To calculate the relative abundance of resistance genes in metagenomes, ‘shortbred_
quantify.py’ was used.

Bacterial isolation from infant stools. Approximately 50 mg of frozen stool was 
resuspended in 1 ml tryptic soy broth (TSB) and incubated with shaking at 37 °C 
for 4 h. Then, 50 µl of culture was streaked for isolation using the four-quadrant 
method on each of the following agars: bile esculin agar, ESBL agar, MacConkey 
agar, MacConkey agar + cefotaxime, MacConkey agar + ciprofloxacin, and blood 
agar (Hardy Diagnostics, G12, G321, G35, G121, G258 and A10, respectively). 
The plates were incubated for 18–24 h at 37 °C. Four colonies of each distinct 
morphology on each plate were substreaked onto blood agar and incubated 
for 18–24 h at 37 °C. Following confirmation of morphology, a 1 ml TSB was 
inoculated with a single colony and grown overnight at 37 °C with shaking. 
Overnight cultures were frozen in 15% glycerol in TSB.

Isolation of genomic DNA. For the isolation of genomic DNA, 1.5 ml TSB 
was inoculated from isolate glycerol stocks and grown overnight at 37 °C with 
shaking. DNA was extracted using the BiOstic Bacteremia DNA Isolation Kit 
(MoBio Laboratories) following the manufacturer’s protocols. Genomic DNA 
was quantified using a Qubit fluorometer dsDNA HS Assay (Invitrogen) and 
stored at −20 °C.

Preparation of the isolate sequencing libraries. Isolate sequencing libraries were 
prepared in the same manner as described for metagenomic sequencing libraries, 
following the protocol described previously by Baym et al.81. For each sequencing 
lane, 10 nM of approximately 300 samples were pooled three independent times. 
These pools were quantified using the Qubit dsDNA HS Assay and combined in 
an equimolar manner. Samples were then submitted for 2 × 150 bp paired-end 
sequencing on an Illumina NextSeq High-Output platform at the Center for 
Genome Sciences and Systems Biology at Washington University in St Louis  
with a target sequencing depth of 1 million paired-end reads per sample.

Assembly of isolate genomes. Before all downstream analyses, Illumina paired-end 
reads were binned by index sequence. Adapter and index sequences were trimmed 
using Trimmomatic v.0.3682 using the following parameters: java -Xms2048m 
-Xmx2048m -jar trimmomatic-0.33.jar PE -phred33 ILLUMINACLIP: NexteraPE-
PE.fa:2:30:10:1:true. Contaminating human reads were removed using DeconSeq88 
and unpaired reads were discarded. Reads were assembled with SPAdes89 using the 
following parameters: spades.py -k 21,33,55,77 –careful. Contigs that were less than 
500 bp were excluded from further analysis. Assembly quality was assessed using 
QUAST90. Average coverage across the assembly was calculated by mapping raw 
reads to contigs using bbmap (https://jgi.doe.gov/data-and-tools/bbtools/).

Genomic analysis of isolates. A total of 406 assemblies had an N50 of greater 
than 50,000 bp and fewer than 500 total contigs longer than 1,000 bp and were 
included in further analysis. Genomes were annotated using Prokka91 with default 
parameters. Multilocus sequence types were determined using in silico MLST 
(https://github.com/tseemann/mlst). Species assignments were determined by 
querying assemblies against a RefSeq sketch using Mash identifying RefSeq hits 
with the minimum Mash distance92. Assemblies were binned by species according 
to Mash designation. For each of the seven most commonly occurring species, 
pangenome analysis was performed using Roary, with core-genome alignments 
created using PRANK93. An outgroup assembly of the same genus but different 
species was downloaded from NCBI and included in each pangenome analysis 
(Supplementary Table 2). Maximum-likelihood core-genome phylogenies  
were constructed using RAXML under the GTRGAMMA model with 1,000 
bootstraps and maximum-likelihood optimization initialized from a random 
starting tree. Average nucleotide identities were computed using pyani  
(https://github.com/widdowquinn/pyani). Pairwise single-nucleotide 
polymorphism distances were calculated from core-genome alignments generated 
by Roary using snp-dists (https://github.com/tseemann/snp-dists). Resistance 
genes were annotated by nucleotide BLAST to the ResFinder database  
(https://bitbucket.org/genomicepidemiology/resfinder/src/master/README.md).

Enterococcus biofilm formation assay. Mid-log phase cultures in freshly 
prepared tryptic soy broth containing 0.5% glucose (TSBG) were diluted to an 
optical density of 0.1 at 600 nm. Then, 200 µl of the diluted culture was added in 
quadruplicate to 96-well polystyrene plates and incubated at room temperature 
or 37 °C without shaking. After 24 h of growth, wells were decanted, washed three 
times with sterile PBS and fixed for 30 min with 200 µl Bouin’s solution. Fixative 
was removed by washing three times with sterile PBS, then wells were stained 
with 0.1% crystal violet for 30 min. Excess stain was removed by washing three 
times with sterile PBS, the stain was solubilized in 200 µl ethanol and absorbance 
was read at 590 nm. The E. faecalis strains TX5682 (biofilm negative) and TX82 
(biofilm positive) were used as controls94.

Enterococcus vancomycin susceptibility testing. Isolates identified as Enterococcus 
were phenotyped for vancomycin resistance using microbroth dilution according 
to the CLSI guidelines. ATCC29212 (vancomycin-susceptible) and ATCC51299 
(vancomycin-resistant) were included in all of the assays as controls. Isolates were 
grown to mid-log phase, diluted in culture media to 1 × 106 CFU ml−1 and used to 
inoculate plates containing vancomycin at a concentration ranging from 128 to 
2 µg ml−1. After 24 h of static growth at 37 °C, optical density was read at 600 nm 
and the minimum inhibitory concentration was determined by scoring by eye  
for turbidity.

Vancomycin resistance of biofilms was assayed after establishing biofilms 
as above. After 24 h of static growth at 37 °C, planktonic cells were removed by 
washing three times with sterile water and then with 200 µl of TSBG containing 
5 mg ml−1, 5 µg ml−1 or no vancomycin, and the plates incubated at 37 °C for an 
additional 24 h. After washing planktonic cells three times with sterile water, 200 µl 
sterile water was added to each well and the viability of the cells in the biofilm 
was assessed using an XTT Cell Viability Kit (Cell Signaling Technology, 9095) 
according to the manufacturer’s protocols, reading absorbance at 450 nm 60 min 
after the addition of reagents.

Generalized linear mixed model of microbiota diversity. To model the effect 
of clinical variables on microbiota diversity, a generalized linear mixed model 
was fit by maximum likelihood using the lme4 package in R. All of the variables 
in Supplementary Table 1 were included in initial modelling, and a final model 
was fit by backwards elimination of variables. Pseudo-R2 was determined 
using the ‘r.squaredGLMM’ function in the ‘MuMin’ package. P values were 
corrected for multiple hypotheses using the glht function in the multcomp 
(lincfit = mcp(tension = ‘Tukey’)).

Prediction of microbiota age using random forests. Random forest models 
were used to regress the relative abundances of all of the species predicted by 
MetaPhlAn2 in infant stool samples against their chronological age using the  
R package ‘randomForest’ as previously described48. The default parameters were 
used with the following exceptions: ntree = 10,000, importance = TRUE. Fivefold 
cross-validation was performed using the ‘rfcv’ function over 100 iterations to 
estimate the minimum number of features needed to accurately predict microbiota 
age. The features most important for prediction were identified over 100 iterations 
of the ‘importance’ function, and a sparse model consisting of the 50 most 
important features was constructed and trained on a set of nine antibiotic-naive 
near-term infants randomly selected from the larger near-term infant set. This 
model was validated in the remaining eight antibiotic-naive near-term infants, and 
then applied to preterm infants to predict microbiota age. The MAZ was computed 
as previously described48. This enabled comparisons of microbiota maturity 
between age bins as the metric accounts for differing variance in predicted 
microbiota age throughout infant development.

Classification of post-discharge samples. A single sample from each individual 
was selected (the final post-discharge sample collected from each preterm infant 
and a roughly age-matched sample from each near-term infant). All metagenomic 
data (species and ARG abundances, centred and scaled) were initially used as 
input for logistic regression, k-nearest neighbour, support vector machine, naive 
Bayes and random forests classifiers. Ultimately, a support vector machine as 
implemented in the R package e1071 was selected as it was both the highest 
performing and the most parsimonious classifier. Feature importance was 
determined by computing the element-wise absolute value of the matrix of weights 
by the matrix of support vectors. A sparse model was subsequently constructed 
consisting of only the 15 most important features.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Assembled functional metagenomic contigs, shotgun metagenomic reads, shotgun 
genomic reads and assemblies have been deposited to NCBI GenBank and SRA 
under BioProject ID PRJNA489090.

Code availability
The software packages used in this study are free and open source. Analysis scripts 
used here (and associated usage notes) are available from the authors on reasonable 
request.
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Software and code
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Data collection No software was specifically used for data collection. 

Data analysis All of the applied software is cited in the Methods section. We list the tools here: 
- Trimmomatic v0.36: quality filtering and adapter trimming 
- DeconSeq v0.4.3: remove contaminating human DNA 
- MetaPhlAn 2.0: metagenome taxonomic profiling 
- HUMAnN2 v0.9.4: metagenome functional profiling 
- PARFuMS: assembly of functionally selected fragments 
- MetaGeneMark v3.2.6: gene prediction 
- EMBOSS v6.6.0: global alignment 
- SPAdes v3.11.0: genome assembly 
- QUAST v4.5: assembly quality assessment 
- Prokka v1.12: genome annotation 
- Roary v3.8.0: pangenome analysis 
- RAXML v8.2.11: maximum likelihood phylogeny construction 
- Resfams: resistance gene annotation in functional selections 
- Resfinder: resistance gene annotation in isolate genomes 
- snp-dist: core genome SNP distance calculations 
- HMMER3 v3.2.1: resistance gene annotation in functional selections 
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- ShortBRED: resistance gene quantification in metagenomes 
- bbtools v38.26: short read alignment  
- PRANK v1.0: core genome alignment:  
- MLST v2.11: in silico MLST 
- pyani v0.2.7: average nucleotide identity calculation 
- R 3.5.2: statistical analysis

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
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- A description of any restrictions on data availability

Assembled functional metagenomic contigs, shotgun metagenomic reads, shotgun genomic reads, and assemblies have been deposited to NCBI GenBank and SRA 
under BioProject ID PRJNA489090.
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Sample size Because this was a non-interventional, observational study that leveraged existing samples for which recruitment, enrollment, and sample 
collection had concluded and anticipated effect sizes were unclear, we did not perform a priori power calculations. We included all infants 
from whom post-discharge (follow up) samples were available.

Data exclusions Subjects were enrolled without regard to race, gender, or ethnic statuses, proportional to neonatal patient populations. Because we were 
focused on early life development of the gut microbiota, we excluded samples from children older than 20 months of age from our study. 
These exclusion criteria were pre-established. 

Replication Enterococcus biofilm formation and antimicrobial susceptibility testing assays were performed in triplicate at a minimum, and all results were 
found to be reproducible across replicates. 

Randomization This work is a non-interventional observational study, so randomization of participants was not necessary. 

Blinding This work is a non-interventional observational study and investigators had no direct contact with participants, so blinding is not relevant. 
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Population characteristics Study category: 9 preterm early only antibiotics, 32 early and subsequent antibiotics, 17 term antibiotic naive; sex: 23 male, 35 
female; mode of delivery: 46 C-section, 12 vaginal. 
The characteristics of the study population are further detailed in Table 1 and Supplementary Table 1. 

Recruitment Samples and patient metadata proposed for use in this study are drawn from two prior studies: 
1. Dr. Barbara Warner’s “The St. Louis Neonatal Gut Microbiome Initiative” study, funded by Children’s Discovery Institute grant 
MD-II-2009-201, and approved by the Washington University IRB (HRPO #201105492). 
2. Dr. Phillip Tarr’s “The Neonatal Microbiome and Necrotizing Enterocolitis” study, funded by NIH grant UG3AI083265, and 
approved by the Washington University IRB (HRPO #201104267).  
Both studies have completed recruitment, enrollment and sample collection. Initial consent included sample sharing with other 
investigators. No patients were specifically recruited for this study. Of infants meeting study criteria, 92% were enrolled (infants 
with major congenital anomalies and unlikely to survive the first week of life were not eligible). 
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