Results: Group A had significantly changes in the oropharynx and hypopharynx; Groups B and C had significantly changes in the nasopalatine region; Group D showed changes in nasopalatine region but no changes in the oropharynx and hypopharynx.

Conclusion: We showed the changes in the pharyngeal airway space after different orthognathic surgery procedures including advancement genioplasty. There are not significantly changes between the groups underwent bimaxillary surgery, but genioplasty increase the changes in the pharyngeal airway space.

Conflict of interest: None declared.


205 Treating severe condylar resorption patients with orthognathic surgery and tumor necrosis factor alpha inhibitors

M.J. Gunson*, G.W. Arnett
Arnett Gunson Facial Reconstruction, Santa Barbara, CA, USA

Objective: This study evaluates the longterm stability and efficacy of treating severe mandibular condylar resorption patients with orthognathic surgery and tumor necrosis factor alpha inhibitors (TNF-α).

Methods: As part of an ongoing prospective study of orthognathic surgery patients with presurgical condylar resorption, we analyzed the results of those patients who received concomitant TNF-α therapy as part of their treatment. We looked at the severity of their preoperative condition and the longterm stability of the mandibular condyles and occlusion post orthognathic surgery.

Results: We performed bimaxillary orthognathic surgery with counterclockwise rotation on 7 patients with severe condylar resorption. Each patient was treated post operatively with a TNF-α. The average advancement at pogonion was 19.3 mm. The average occlusal plane change was 15.9°. Mean follow up was 24 months (11–48). There was no statistical difference from immediate postsurgical overbite to the longterm overbite (p = 0.31) and there were no frank openbites (minimum OB = 1.5 mm). Cone beam CT scans revealed only minor surface changes to the mandibular condyle post surgery. The average maximum incisal opening was 36.7 mm (32–47) before surgery and 41 mm after surgery (35–49). There were no complications as a result of taking TNF-α (no infections, laboratory abnormalities, etc.).

Conclusions: It appears that in these seven patients concomitant TNF-α therapy with orthognathic surgery is effective in preventing occlusal and skeletal relapse as a result of post surgical condylar remodeling.

Conflict of interest: None declared.


206 Periosteum versus bone for fixation in endoscopic forehead lift: a prospective, randomized, split-face trial

L.G. Patrocínio¹, T.G. Patrocínio¹, M.M. Naves¹, C.V. Pereira¹,², D.R. Parreira³
¹ Department of Otorhinolaryngology & Craniofacial Surgery, Federal University of Uberlandia, Uberlandia, Brazil
² OTOFACE - Recife, Recife, Brazil
³ University of Brasilia Medical School - UNB, Brasilia, Brazil

Introduction: The endoscopic forehead lift brought great advances in aesthetic surgery of the upper third of the face. The method of fixation of the brow and forehead in the upper position has always been a point of controversy due to the lack of studies that compare these different types of fixation.

Objective: To compare the elevation of the eye brow by two different methods of fixation: bone and periosteum.

Methods: Fifteen patients were submitted to endoscopic forehead lift with two different methods of fixation of the brows: bone and periosteum, randomized to each eye of the same patient. The degree of brow elevation was measured bilaterally and compared pre and 6-month postoperative.

Results: There were not statistically significant difference when comparing the two types of fixation in any of the 3 sites of measurement of the oculopalpebral complex: CP (distance from the pupil to the inferior border of the eye brow), LP (distance from the lateral margin of the pupil to the inferior border of the eye brow), and CO (external canthus of eye to the inferior border of the eye brow). All the patients were satisfied with the outcomes.

Conclusion: Similar results were found when either bone or periosteum fixation were performed in the endoscopic forehead lift.

Conflict of interest: None declared.


207 Mastoid bone autograft for dorsal nasal augmentation

L.G. Patrocínio¹, T.G. Patrocínio¹, M.M. Naves¹, C.V. Pereira¹,², D.R. Parreira³
¹ Department of Otorhinolaryngology & Craniofacial Surgery, Federal University of Uberlandia, Uberlandia, Brazil
² OTOFACE - Recife, Recife, Brazil
³ University of Brasilia Medical School - UNB, Brasilia, Brazil

Introduction: Several grafts and/or implants have been used for dorsal nasal augmentation. In some cases, the traumatic, non-caucasian, and multi-operated ones, the amount of augmentation is higher than the usually available from septal and auricular conchal autografts.

Objective: To evaluate the safety and efficacy of mastoid bone autograft for dorsal nasal augmentation in rhinoplasty.

Methods: A prospective study of 20 consecutive patients who underwent dorsal nasal augmentation with mastoid bone, during a 4-year period. Main outcome measures were clinically noted complications and patient/surgeon satisfaction.

Results: The grafts ranged from 5 to 12 mm in thickness. Follow-up ranged from 6 months to 4 years. Seventeen (85.0%) patients presented satisfactory results for both the surgeon and the patient. One patient showed a slight excessive augmentation noted only by the surgeon. One patient presented a lack of augmentation that needed a revision surgery. One patient needed a revision surgery due to graft dislocation in the first post-operative month. No case presented infection nor graft absorption.

Conclusions: Mastoid bone presented as an effective autograft material for dorsal nasal augmentation in rhinoplasty. The complication rate is low. Long-term follow-up showed that no absorption occurs.

Conflict of interest: None declared.