Graduate Students’ Teaching Experiences Improve Their Methodological Research Skills

David F. Feldon,1,* James Peugh,2 Briana E. Timmerman,3 Michelle A. Maher,4,5 Melissa Hurst,4 Denise Strickland,4 Joanna A. Gilmore,6 Cindy Stiegelmeier7

Science, technology, engineering, and mathematics (STEM) graduate students are often encouraged to maximize their engagement with supervised research and minimize teaching obligations. However, the process of teaching students engaged in inquiry provides practice in the application of important research skills. Using a performance rubric, we compared the quality of methodological skills demonstrated in written research proposals for two groups of early career graduate students (those with both teaching and research responsibilities and those with only research responsibilities) at the beginning and end of an academic year. After statistically controlling for preexisting differences between groups, students who both taught and conducted research demonstrate significantly greater improvement in their abilities to generate testable hypotheses and design valid experiments. These results indicate that teaching experience can contribute substantially to the improvement of essential research skills.

Academic culture in doctoral research universities’ STEM (science, technology, engineering, mathematics) programs typically values research activity over teaching (1, 2). Faculty commonly believe that research activities enhance teaching quality but disbelieve that teaching similarly enhances research skills (3, 4). These beliefs influence not only the professional priorities of STEM faculty, but also the guidance given to and the expectations of their graduate students (5, 6).

Previous research in educational and cognitive psychology suggests that a beneficial relationship between teaching and research skill development can exist to the extent that they entail an overlap of cognitive processes. When teaching in a context that requires students to effectively conceptualize research and solve problems through inquiry (for example, frame testable hypotheses, design valid experiments, or draw appropriate conclusions based on data), instructors must practice these skills themselves as they reason through these problems in order to provide appropriate guidance to their students. When students are trying to solve different problems, the instructor must likewise consider the discrete goals, structure, and methods of each problem, entailing practice in the relevant cognitive skills (7). In contrast, a research assistantship in a laboratory probably provides fewer, relatively similar projects that are based on the research agenda of the lab or principal investigator. Further, many high-level research design issues are likely to be resolved without requiring the research assistant to make substantive contributions to, for example, specifying research questions or determining methodology. For graduate students new to a lab, it is likely that the funded grant proposal supporting their work was written and submitted before their arrival.

Additionally, when learners are required to articulate their reasoning processes substantial evidence indicates that they develop more elaborate and effective schemas for problem-solving that facilitate performance on both typical and new problems (8, 9). Therefore, when instructors explain their own research processes to guide their students (10) they are further reinforcing their own learning. Research assistantships do not necessarily require extensive self-explanation (11).

Several small, qualitative studies report benefits of teaching for graduate student participants’ research development. One found that 21 of 27 teaching assistants leading undergraduate labs reported positive benefits to their research skills as a result of their teaching experiences (12). Another found that 33% of research advisors supervising participants in a National Science Foundation (NSF) GK–12 program (13) directly attributed improvements in participants’ research performance to their involvement with the program (14). Likewise, a RAND Corporation study found that STEM graduate students participating

Fig. 1. Effect of both research and teaching experiences compared with research experiences alone for STEM graduate students’ improvement in writing testable hypotheses. After statistically controlling for pre-existing differences in the quantity of prior research experience, scientific reasoning ability, and earned scores on the written research proposal at the first time point, the quality of the hypotheses proposed were significantly higher in the teaching-and-research condition (Cohen’s d = 0.58). Error bars represent 95% CIs around the adjusted means.

Acknowledgments: This study and its write-up were supported by grants from the William T. Grant Foundation and the Institute for Education Science (R305A100367). The authors acknowledge C. Hafen for his contribution to the analyses in this study and J. Wasserman and S. Deal for their contribution to the implementation of the intervention. R.C.P. is part owner of the company that disseminates the pre-K version of the Classroom Assessment Scoring System and co-author of the version used in this investigation. Further information regarding the My Teaching Partner–Secondary program is available at mtsecondary.net.

Supporting Online Material
www.sciencemag.org/cgi/content/full/333/6045/1034/DC1
Materials and Methods
SOM Text
Figs. S1 and S2
Tables S1 and S2
References
6 May 2011; accepted 11 July 2011
10.1126/science.1207998

1Department of Curriculum, Instruction, and Special Education and Center for the Advanced Study of Teaching and Learning—Higher Education, University of Virginia, Charlottesville, VA 22904–4261, USA. 2Department of Curriculum, Instruction, and Special Education and Center for the Advanced Study of Teaching and Learning—Higher Education, University of Virginia, Charlottesville, VA 22904–4261, USA. 3Cincinnati Children’s Hospital and Medical Center, Cincinnati, OH 45229, USA. 4Office of Research and Graduate Education, University of South Carolina, Columbia, SC 29208, USA. 5Center for the Advanced Study of Teaching and Learning—Higher Education, University of Virginia, Charlottesville, VA 22904–4261, USA. 6Department of Educational Leadership and Policies, University of South Carolina, Columbia, SC 29208, USA. 7Department of Mathematics, Zayed University, Abu Dhabi, United Arab Emirates.

*To whom correspondence should be addressed. E-mail: dff2j@virginia.edu

Teaching only
Research only
Research & teaching

Group

<table>
<thead>
<tr>
<th>Hypothesis Testability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research only</td>
</tr>
<tr>
<td>Research & teaching</td>
</tr>
</tbody>
</table>

1037
in educational outreach frequently reported that
teaching helped them to reframe their under-
standings of their respective science domains
to explain it to their own students (15). In a larger,
quantitative survey of graduate students at one
university (n = 524 students), participants who
served as both research assistants and teaching
assistants self-reported higher subsequent con-
ference presentation and publication rates than
assistants self-reported higher subsequent con-
served as both research assistants and teaching
assistants (enrolled in the first three years) graduate students
these claims.

Before submission, participants were given de-

cisions as assessments of learning (17, 18) and the
limited inferences about individuals’ skills that
can be drawn from publication records (19) warrant
performance-based assessment of individu-
als’ skill improvement to thoroughly evaluate
these claims.

We compared the quality of 95 early-career
(entered in the first three years) graduate students’
written research proposals solicited at two time
points using a previously validated rubric (20) described in the supporting online material (SOM)
text. Some participants worked as research as-
assistants with no teaching responsibilities, whereas
others held split appointments with both research
and teaching responsibilities as either teaching
assistants in undergraduate courses or as GK-12
(21) participants partnering with middle school
teachers of STEM content (22). We predicted that
those participants who engaged in both teach-
ing and research activities (n = 49 participants)
would exhibit substantially greater improvement in
 certain research skills (setting proposed re-
search in the context of its field, use of primary
literature, testability of hypotheses, research and
experimental design, establishing reliability and
validity of measures, selection of data for analysis,
analysis of data, presentation of results, basing
conclusions on data, and identifying study limi-
tations) than would those engaged solely in re-
search activities (n = 46 participants).

Participants were enrolled as full-time grad-
uate students in research-oriented master’s and
doctoral degree programs in empirical STEM
disciplines at one of three universities in the east-
ern United States (22). One was a large, doctoral
university (undergraduate enrollment ≈ 20,000;
graduate enrollment ≈ 6700), and two selectively
offered research-intensive masters degrees in
STEM fields. Of the two master’s institutions, one
was large (undergraduate enrollment ≈ 14,000;
graduate enrollment ≈ 4000), and one was small
(undergraduate enrollment ≈ 8200; graduate en-
rollment ≈ 500). Data were collected from three
annual cohorts between 2007 and 2010.

Participants submitted research proposals
related to their academic focal areas in early fall.
Before submission, participants were given de-
tailed instructions to include descriptions of the
relevant literature and design for their proposed
research, as well as anticipated results, other po-
tential outcomes, and the importance of these
results. Participants were also given a summary
of the evaluation criteria. They then revised these
proposals over the course of the academic year and
resubmitted them in late spring as part of their part-
icipation in the study. The team con-
ducting the study provided no feedback to the
participants between the fall and spring submis-
sions, although participants were free to seek in-
dependent feedback from other support networks
and their programs at their discretion.

Most participants reported during exit inter-
views that they used their proposals for an addi-
tional purpose beyond the research study, such
as to meet requirements for a class, research lab,
or conference proposal. This information was
interpreted as a positive indicator of both eco-
logical validity and legitimate effort invested in
the task.

The research skills addressed specifically in
this study were setting context for a study, fram-
ing testable hypotheses, attention to validity and
reliability of methods, experimental design, ap-
propriate selection of data for analysis, presenta-
tion of data, data analysis, basing conclusions on
data, identifying limitations, and effective
use of primary literature. These criteria were
selected through a review of relevant literature
and iterative development of criteria with STEM
research faculty (20, 22). At least two raters
scored each proposal, and any discrepant scores
were resolved by discussion until consensus was
reached (23). Raters possessed graduate degrees in
relevant STEM disciplines and attained inter-
rater reliability intraclass correlations of 0.6 to 0.9
when scoring participants’ research proposals
before discussion.

Rubric scores were grouped into three content
areas: introduction (encompassing rubric element
scores for setting the work in context, use of
primary literature, and testability of hypotheses),
results (encompassing rubric element scores for
research and experimental design, establishing
reliability and validity of measures, selection of
data for analysis, analysis of the data, and the
presentation of the results), and discussion (en-
compassing rubric element scores for conclu-
sions based on data and identifying the limitations
of the study). Multivariate analyses of covariance
(MANCOVAs) were conducted in Mplus Version
6.1 (Muthén and Muthén, Los Angeles, CA) to
appropriately model the statistically significant
correlations among the rubric scores within each
of the three content areas (introduction criteria
 correlations, 0.44 to 0.64; results criteria corre-
lations, 0.26 to 0.69; discussion criteria correlation,
0.29). Further, all response variable rubric scores
had 1.1 to 2.0% missing data at the first time
point and 14.7% missing data at the second time
point. A missing values analysis [χ²(17) =
23.20, P = 0.14] showed that the missing data met
the assumption for missing completely at
random (MCAR) (24). However, to preserve the
sample size for analysis the missing data were
handled more conservatively under missing at
random (MAR) (25) assumptions by using a max-
imum likelihood estimation algorithm robust to
nonnormally distributed data (MLR) (26). Because
participants were not randomly selected or as-
signed to conditions, several covariates were used
to statistically control for pre-existing differences
between the groups assessed at the first time point:
quantity of participants’ prior research experience,
scores on two tests of scientific reasoning, and
the rubric scores from their first research proposal
submission (22).

We performed testing for significant mean
differences between the two independent variable
groups in three steps. First, MANCOVA analyses
enabled the direct statistical test of the null hy-
pothesis that a given rubric score element mean
difference (teaching and research group mean mi-
minus the mean for the research-only group) was
zero. Second, the analysis of 5000 bootstrap sam-
ples of size n = 95 participants enabled the com-
putation of 95% confidence intervals (CIs) for
each rubric score mean difference. Third, Cohen’s
d effect sizes were computed for all mean
differences, and Monte Carlo analyses of 5000
generated data sets of size n = 95 participants
enabled the determination of the number of times
in 5000 samples the null hypothesis (H₀) of a zero

![Fig. 2. Effect of both research and
teaching experiences compared with
research experiences alone for STEM
graduate students’ improvement in
experimental design. After statis-
tically controlling for pre-existing
differences in the quantity of prior
research experience, scientific rea-
soning ability, and earned scores on
the written research proposal at the
first time point, the quality of the
experimental designs proposed were
significantly higher in the teaching-
and-research condition (Cohen’s d =
0.63). Error bars represent 95% CIs
around the adjusted means.](image-url)
mean difference for all rubric score elements was rejected. Univariate statistical tests of the observed mean differences between the teaching-and research and research-only conditions indicated significant results for the rubric score elements “testability of hypotheses” [mean difference = 0.272, P = 0.006; CI = (.106, 0.526)] with the null hypothesis rejected in 99.3% of generated data samples (Fig. 1) and “research/experimental design” [mean difference = 0.317, P = 0.002; CI = (.106, 0.522)] with the null hypothesis rejected in 100% of generated data samples (Fig. 2).

These findings indicate a medium effect size for teaching and research experiences’ impact on participants’ abilities to generate testable hypotheses (Cohen’s d = 0.40) and valid research designs (Cohen’s d = 0.478) in the context of written research proposals (27.4 and 32.9% nonoverlap between teaching-and-research and research-only distributions for hypotheses and experimental design, respectively) (27). Differences in overall writing quality cannot account for the observed effects because only specific skills showed differential outcomes as a function of experience type.

These data provide direct, performance-based evidence of improvement on specific research skills associated with teaching experiences that complement traditional graduate research training. As such, they hold substantial implications for both the programmatic graduate training in STEM and the challenges that universities face as they strive to meet increased demand for instruction with fewer resources. The reframing of teaching experience as a value-added component of graduate research training suggests several substantial changes for the culture and practice of graduate education in STEM disciplines. Further, if teaching becomes a more commonly supported facet of STEM graduate education then students’ instructional training and experiences would alleviate persistent concerns that current programs underprepare future STEM faculty to perform their teaching responsibilities (28, 29).

References and Notes
13. The NSF GK-12 program provides funding for graduate students in STEM disciplines so as to gain experiences teaching in K-12 classrooms during their degree programs—often by co-teaching with a full-time credentialed instructor.
15. V. L. Williams, "Merging University Students into K-12 Science Education Reform" (RAND, Santa Monica, CA, 2002).

Mutational Inactivation of STAG2 Causes Aneuploidy in Human Cancer
David A. Solomon,1 Taeyeon Kim,1 Laura A. Diaz-Martinez,1 Josiechan Fair,1 Abdel G. Elkahlioum,1 Brent T. Harris,2 Jeffrey A. Toretsky,3 Steven A. Rosenberg,4 Neerav Shukla,5 Marc Ladanyi,6 Yardena Samuels,3 C. David James,7 Hongtao Yu,2 Jung-Sik Kim,1 Todd Waldman1*

Most cancer cells are characterized by aneuploidy, an abnormal number of chromosomes. We have identified a clue to the mechanistic origins of aneuploidy through integrative genomic analyses of human tumors. A diverse range of tumor types were found to harbor deletions or inactivating mutations of STAG2, a gene encoding a subunit of the cohesin complex, which regulates the separation of sister chromatids during cell division. Because STAG2 is on the X chromosome, its inactivation requires only a single mutational event. Studying a near-diploid human cell line with a stable karyotype, we found that targeted inactivation of STAG2 led to chromatin cohesion defects and aneuploidy, whereas in two aneuploid human glioblastoma cell lines, targeted correction of the endogenous mutant alleles of STAG2 led to enhanced chromosomal stability. Thus, genetic disruption of cohesin is a cause of aneuploidy in human cancer.

One of the hallmarks of cancer is chromosomal instability, which leads to aneuploidy, translocations, loss of heterozygosity, and other chromosomal aberrations (1, 2). Chromosomal instability is an early event in cancer pathogenesis and is thought to generate the large number of genetic lesions required for a cell to undergo malignant transformation (3). It has been hypothesized that this instability is due to inactivating mutations in genes that control the mitotic checkpoint and chromosome segregation (4, 5). However, in the vast majority of human tumors the molecular basis of chromosomal instability and the aneuploidy it produces remains unknown.

To explore this question, we followed up on previous studies in which we used Affymetrix 250K single-nucleotide polymorphism (SNP) arrays to identify novel regions of amplification and deletion in human glioblastoma cell lines (6–8). In U138MG cells, we identified a region

References and Notes
1. Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC 20057, USA.
2. Howard Hughes Medical Institute and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
3. Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
4. Departments of Neurology and Pathology, Georgetown University School of Medicine, Washington, DC 20057, USA.
5. Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
6. Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
7. Department of Neurosurgery, Brain Tumor Research Center, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA.
8. To whom correspondence should be addressed. E-mail: walmdnt@georgetown.edu.