Jana Reifegerste^{1,2}, João Veríssimo³, Michael D. Rugg⁴, Mariel Y. Pullman⁵, Laura Babcock⁶, Dana A. Glei⁷, Maxine Weinstein⁷, Noreen Goldman⁸, and Michael T. Ullman¹ ¹Department of Neuroscience, Georgetown University, USA; ²Institute for Multilingualism, University of Potsdam, Germany; ⁴University of Texas Southwestern Medical Center, USA; ⁵New York-Presbyterian/Columbia University Medical Center, USA; ⁶Karolinska Institutet, Sweden; ⁷Center for Population and Health, Georgetown University, USA; ⁸Office of Population Research, Princeton University, USA

Introduction

Declarative Memory (DM):

- = key learning system rooted in the medial temporal lobe (MTL), including the hippocampus¹⁻⁵
- underlies host of diverse tasks involving the learning of various types of information about events (episodic knowledge) and facts (semantic knowledge)
- declines in healthy aging in various tasks⁶⁻¹⁸, beginning as early as one's 20s¹⁹⁻²¹ (longitudinally: starting in middle adulthood²²)

Gaps & Weaknesses in previous research on DM in aging:

(1) Different types of information

- very few studies on DM in aging tested with nonverbal material (and tested without verbal responses)²³⁻²⁵
- different types of nonverbal information might yield different patterns for DM in aging: information linked to established knowledge may yield better performance²⁶⁻³⁴

(2) Role of sex

- Female advantage in verbal DM tasks across lifespan⁽³⁵⁻⁴²⁾; but unclear whether and how advantage changes in aging^{25,31,36,38,43}
- Unclear whether there are sex differences for nonverbal DM tasks, and how it changes in aging^{23,25}

(3) Role of education

- Education associated with better DM performance
- Unclear whether role of education changes with **age**^{44,45} or is different for the two **sexes**³⁹ or dependent on types of information

(4) Task-related gaps and confounds

- assessed DM after explicit encoding; but incidental encoding is *more natural* and may yield smaller aging declines⁴⁶⁻⁴⁸ and smaller sex differences⁴⁹ tested in list-learning, which depends heavily on working memory⁵⁰, which itself is affected by age,
- Explicit vs. incidental encoding: most studies have - Working memory confounds: DM most commonly sex, and education^{51,52}
- Focus on Western societies: almost no studies on DM in aging in non-Western samples, although cognitive abilities may show dramatic interpopulation variability⁵³⁻⁵⁵

Present study

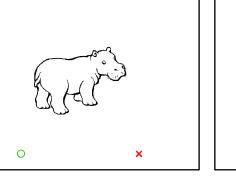
- Study of **nonverbal DM** in representative sample of older Taiwanese participants (**balanced sex** ratio, wide range of education: 0 to 17+ years)
- DM assessed with a **recognition memory** task following **incidental encoding** - Design: Age (continuous) x Sex (female/male) x Education (continuous) x Object type (real/novel)

Participants

704 cognitively and neurologically healthy older adults, assessed in the 2011 wave of the the Social **Environment and Biomarkers of** Aging Study (SEBAS)⁵⁶:

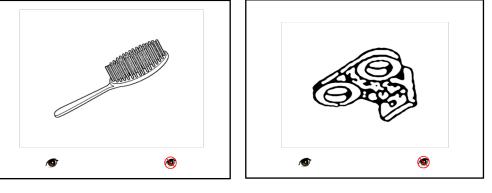
Demographic information

[means (SDs)]:


L	<u> </u>	J	
	N	Age (in years)	Education (in years)
Female	327	66.99 (8.38)	6.22 (4.61)
Male	377	68.82 (8.99)	8.84 (4.31)
Total	704	67.99 (8.72)	7.62 (4.64)

Methods

Tasks and Materials^{57,58}

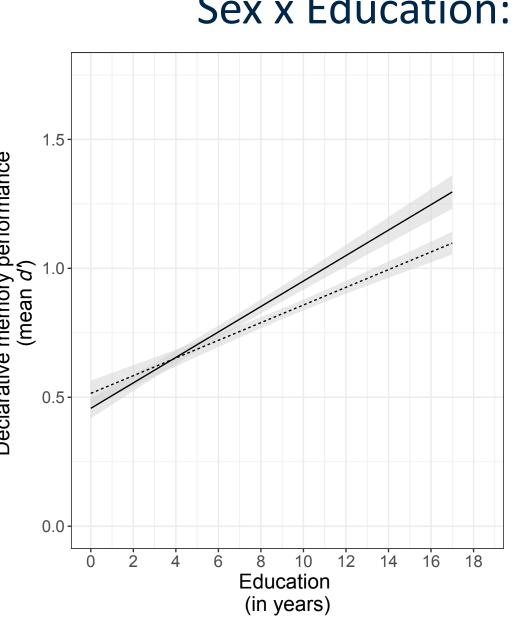

- 1) Incidental Encoding
- 64 black and white line drawings: - 32 images depicting real objects
- ('real')
- 32 images depicting made-up objects ('novel')

Task: Decide if depicted object is real or not.

2) Recognition

- 128 drawings:
- 64 images presented during encoding
- encoding (50% real objects, 50% novel objects) Task: Decide if image was presented during encoding.

Nonverbal declarative memory in older adults: effects of age, sex, and education


- 64 foils not presented during

Performance in recognition task [d' means (SDs)]:

	Females	Males	All participants
Real objects	1.03	1.13	1.08
	(0.70)	(0.72)	(0.71)
Novel objects	0.50	0.49	0.50
	(0.41)	(0.38)	(0.39)
All objects	0.76	0.81	0.79
	(0.76)	(0.66)	(0.65)

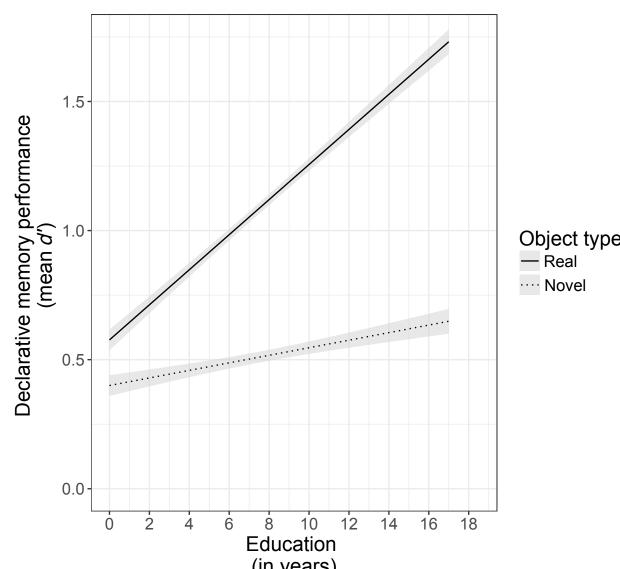
Main effects:

- Age: decreasing performance with increasing age (*b* = -0.014, *SE* = 0.002, *t* = -6.87, *p* < .001)
- <u>Sex:</u> marginally better performance in women than men (b = 0.057, SE = 0.034, t = 1.65, p = .099)
- **Education:** increasing performance with increasing education (*b* = 0.042, *SE* = 0.004, *t* = 11.46, *p* <
- .001) **Object type:** better performance with real objects
- than novel objects (b = -0.584, SE = 0.026, t = -22.75, p < .001

Greater positive effect of education for males than females (b = 0.015, SE = 0.007, t = 2.07, p = .039). - females: b = 0.049, SE = 0.005, t = 9.21, p < .001- males: b = 0.034, SE = 0.005, t = 6.92, p < .001Significant female advantage emerging after 9 years of schooling.

Main effects:

- Age: in line with previous studies
- Likely related to age-related declines in hippocampal/MTL structures⁵⁹⁻⁷⁰
- **Education:** in line with previous studies
- Education -> DM: cognitive stimulation may promote development of neural substrates underlying cognitive abilities⁷¹
- DM -> Education: better DM abilities may yield greater educational outcomes
- **Object type:** in line with previous studies - Real objects' existing semantic associations may benefit creation of new episodic memories^{72,73}
- employment⁵⁵)


Implications & Conclusions

- Nonverbal declarative memory weakens with age, even when tested following **incidental encoding**.
- Early education is crucial for later cognitive functioning, perhaps particularly for girls.
- Males: each additional year of education = 2 years of aging
- Females: each additional year of education = 5 years of aging
- The greater one's existing knowledge, the better one's declarative memory (cf. *Matthew Principle*).
- Studying non-Western populations helps advance our understanding of cognition by including heterogenous samples.

Sex x Education:

Results

Education x Object type:

Greater positive effect of education for real objects than novel objects (b = -0.053, SE = 0.005, t = -9.74, p < .001).

- real: b = 0.068, SE = 0.005, t = 15.01, p < .0001- novel: *b* = 0.015, *SE* = 0.005, *t* = 3.37, *p* < .0001 Significant advantage for real objects at all levels of schooling.

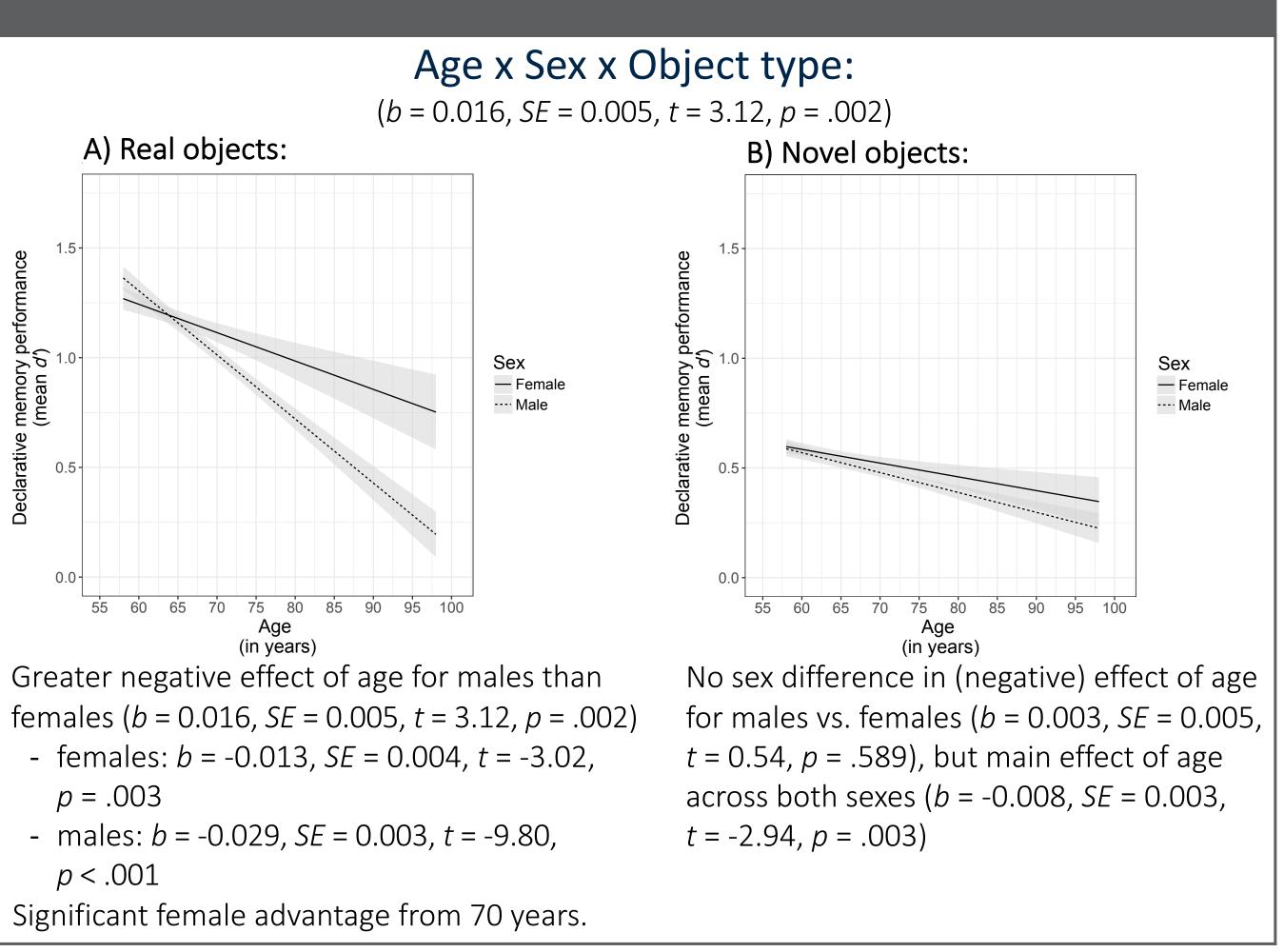
Discussion

Education x Object type:

- 1) More education = more knowledge (incl. labels for objects) and richer semantic networks, which real objects are more dependent on
- 2) More education = hippocampal volume increases⁷¹
- hippocampus more engaged in the recognition memory of known than novel stimuli⁷⁶⁻⁷⁸

 \rightarrow education-moderated hippocampal increases may benefit real more than novel objects

References


Cabeza & Moscovitch (2013) Perspect Psychol Sci, 8, 49; ²Davachi (2006) Curr Opin Neurobiol, 16, 693; ³Henke (2010) Nature Rev Neurosci, 11, 523; ⁴Ullman & Pullman (2015) Neurosci 15, 210; ⁶Berenbaum et al (1997) Neuropsychology, 11, 585; ⁷Craik & McDowd (1987) J Exp Psychol Learn Mem Cogn, 13, 474; ⁸Danckert & Craik (2013) Psychol Aging, 28, 902; ⁹De Cha (2016) Neurobiol Aging, 42, 163; ¹¹Mattson et al (2014) Cereb Cortex, 24, 3322; ¹²Murphy et al (1997) Neuropsychol, 11, 126; ¹³Naveh-Benjamin (2000) J Exp Psychol Learn Mem Cogn, ¹⁵Ratcliff & McKoon (2015) *Psychol Aging, 30,* 669; ¹⁶Verhaeghen et al (1993) *J Gerontol B Psychol Sci, 48,* 157; ¹⁷Wang et al (2016) *Cereb Cortex, 26,* 1698; ¹⁸Zelinski et al (1997) *Psychol J* (1996) Psychol Aging, 11, 621; ²¹Verhaeghen & Salthouse (1997) Psychol Bull, 122, 231; ²²Nyberg et al (2012) Trends Cogn Sci, 16, 292; ²³Gale et al (2007) J Clin Exp Neuropsychol, 29, 56 Memory, 21, 857; ²⁶Duñabeitia et al (2008) Psychon Bull Rev, 15, 1072; ²⁷Duñabeitia et al (2009) Neuropsychology, 23, 759; ²⁸Grondin et al (2009) J Mem Lang, 60, 1; ²⁹Kounios et al (200 161; ³¹Pexman et al (2003) Mem Cogn, 31, 842; ³²Pexman et al (2002) Psychon Bull Rev, 9, 542; ³³Rabovsky et al (2016) Cognition, 146, 240; ³⁴Springer et al (2005) Neuropsychology, 19 (2015) JAMA Neurol, 72, 511; ³⁷Kimura & Seal (2003) Psychol Rep, 93, 263; ³⁸Maitland et al (2004) Mem Cogn, 32, 1160; ³⁹Portin et al (1995) Psychol Med, 25, 1295; ⁴⁰Weiss et al (2003) Neuropsychol, 6, 287; ⁴²Zelinski et al (1993) Psychol Aging, 8, 176; ⁴³De Frias et al (2006) Aging Neuropsychol Cogn, 13, 574; ⁴⁴Magalhães et al (2010) Psychol Neurosci, 3, 85; ⁴⁵Hassing et Neuron, 33, 827; ⁴⁷Troyer et al (2006) J Gerontol B Psychol Sci, 61B, P67; ⁴⁸Craik et al (2012) Neurosci Biobehav Rev, 36, 1729; ⁴⁹Cherney & Ryalls (1999) J Exp Child Psychol, 72, 305; ⁵⁰Lum Gerontol B Psychol Sci; ⁵²Pliatsikas et al (in press) Q J Exp Psychol; ⁵³Allaire & Whitfield (2004) Aging Neuropsychol Cogn, 11, 443; ⁵⁴Henrich et al (2010) Behav Brain Sci, 33, 61; ⁵⁵Bonsang *Epidemiol, 45, 54; ⁵⁷Hedenius et al (2013) PLoS ONE, 8, e63998; ⁵⁸Lukács et al (2017) PLoS ONE, 12, e0169474; ⁵⁹Diana et al (2007) Trends Cogn Sci, 11, 379; ⁶⁰Douet & Chang (2015) Fro* 1389; ⁶²Hackert et al (2002) NeuroImage, 17, 1365; ⁶³Koen & Yonelinas (2014) Neuropsychol Rev, 24, 332; ⁶⁴Metzler-Baddeley et al (2011) J Neurosci, 31, 13236; ⁶⁵Reiman et al (1998) A ⁶⁷Troyer et al (2012) Neuropsychologia, 50, 3721; ⁶⁸Wolk et al (2011) Hippocampus, 21, 461; ⁶⁹Yasmin et al (2009) Neuroradiology, 51, 831; ⁷⁰Yonelinas et al (2007) Hippocampus, 17, 11 Oxford University Press; ⁷³Tulving (1995) In Gazzaniga (Ed), pp. 839ff. MIT Press; ⁷⁴Thornton et al (1984) Demography, 21, 475; ⁷⁵Tsai et al (1994) Sociol Educ, 67, 243; ⁷⁶Barense et al (201 878; ⁷⁸Liu et al (2017) Cereb Cortex, 27, 1991; ⁷⁹Blatter et al (1995) Am J Neuroradiol, 16, 241; ⁸⁰Christiansen et al (1994) Acto Rudiuiugicu, 35, 117; ⁸¹Golomb et al (1993) JAMA Neurol, 5 (2004) Neurobiol Aging, 25, 377; ⁸⁴Leveroni et al (2000) J Neurosci, 20, 87; ⁸⁵Liu et al (2017) Cereb Cortex, 27, 1991; ⁸⁶Protopopescu et al (2008) Hippocampus, 18, 985; ⁸⁷Schofield et al (2004) 956; ⁸⁹Bowles et al (2007) PNAS, 104, 16382; ⁹⁰Brown & Aggleton (2001) Nature Rev Neurosci, 2, 51 2001; ⁹¹Eichenbaum et al (2007) Ann Rev Neurosci, 30, 123; ⁹²Raz et al (2004) Neuro

Sex x Education:

- Female advantage in line with previous studies on nonverbal DM (especially in countries with high levels of female education and

- All else being equal, females show advantage at DM, but at low education female advantage may be countered by factors that elevate males' but not females' performance (e.g., participation in workforce outside the home 74,75)

 \rightarrow Less cognitive and social stimulation for women than men at lower levels of education

Age x Sex x Object type:

- Hippocampal volumes decrease during aging more in males than females^{36,79-83} (especially after age 60^{36})
- Hippocampus particularly important for memory of known stimuli (vs. novel stimuli)^{76,84,85}
- But: exact relationship between hippocampal volumes and DM unclear (correlations exist^{59,62,65,67,86-88}, but young and middle-aged females do not seem to have larger hippocampi than males, despite their DM advantages)
- Novel objects less likely to depend on hippocampus
- Perhaps novel objects retrieved via perirhinal-based 'familiarity' (cf. 'recollection')^{2,89-91}
- Age-related declines in perirhinal volume less reliable than for hippocampus^{63,88,92}
- No steeper perirhinal volume declines for males than females^{83,93}

<i>Biobehav Rev, 51,</i> 205; ⁵ Wixted & Squire (2011) <i>Trends Cogn Sci,</i> astelaine et al (2015) <i>Brain Res, 1612,</i> 16; ¹⁰ De Chastelaine et al 26, 1170; ¹⁴ Old & Naveh-Benjamin (2008) <i>Psychol Aging, 23,</i> 104; <i>Aging, 12,</i> 509; ¹⁹ Li et al (2004) <i>Psychol Sci, 15,</i> 155; ²⁰ Park et al 1; ²⁴ Park et al (2002) <i>Psychol Aging, 17,</i> 299; ²⁵ Pauls et al (2013) 09) <i>Brain Res, 1282,</i> 95; ³⁰ Pexman et al (2008) <i>Psychon Bull Rev, 15,</i> 181; ³⁵ Pleacker et al (1988) <i>J Clin Psychol, 44,</i> 402; ³⁶ Pack et al
181; ³⁵ Bleecker et al (1988) <i>J Clin Psychol</i> , 44, 403; ³⁶ Jack et al
<i>Pers Indiv Differ, 35,</i> 863; ⁴¹ Youngjohn et al (1991) <i>Arch Clin</i>
al (1998) <i>Arch Gerontol Geriatr, 27,</i> 75; ⁴⁶ Logan et al (2002)
n et al (2015) <i>Brain Lang, 142,</i> 76; ⁵¹ Bopp & Verhaeghen (2018)
et al (2017) <i>Psychol Sci, 28,</i> 1201; ⁵⁶ Cornman et al (2016) <i>Int J</i>
ontiers Aging Neurosci, 7, 1; ⁶¹ Fletcher et al (2013) JAMA Neurol, 70,
nn Neurol, 44, 288; ⁶⁶ Stadlbauer et al (2008) Eur Radiol, 18, 130;
34; ⁷¹ Draganski et al (2006) <i>J Neurosci, 26,</i> 6314; ⁷² Tulving (1983)
.1) <i>J Cogn Neurosci, 23,</i> 3052; ⁷⁷ Leveroni et al (2000) <i>J Neurosci, 20,</i>
<i>:0,</i> 967; ⁸² Pruessner et al (2001) <i>J Neurosci, 21,</i> 194; ⁸³ Raz et al
2009) <i>Biol Psychol, 80,</i> 176; ⁸⁸ Rodrigue & Raz (2004) <i>J Neurosci, 24,</i>
ology, 62, 433; ⁹³ Insausti et al (1998) <i>Am J Neuroradiol, 19,</i> 659.

Acknowledgements Contact:

This work was supported by NIH R01 AG016790 (Princeton), NIH R01 AG016661 (Georgetown), NIH R01 AG016661 (Georgetown), NSF BCS 1439290 (Georgetown), a Georgetown University Medical Center Partners in Research grant and the Graduate School of Arts and Sciences, Georgetown University. We thank the Health Promotion Administration at the Ministry of Health in Taiwan for their support

jr1754@georgetown.edu michael@georgetown.edu

Scan here for the PDF:

