What's that word again? The contribution of the hippocampus to word-finding declines in aging

Jana Reifegerste^{1,2}, Lauren E. Russell², Dave A. Balota³, Daniel Lipscomb⁴, George Luta⁵, Marcus Meinzer⁶, Michael D. Rugg⁷, Kyle F. Shattuck^{2,5}, Peter E. Turkeltaub^{5,8}, John W. VanMeter⁹, João Veríssimo¹⁰, & Michael T. Ullman² ¹University of Potsdam, Germany; ²Georgetown University, USA; ³Washington University in St. Louis, USA; ⁴University of Virginia, USA; ⁵Georgetown University Medical Center; ⁶Greifswald Medical School, Germany; ⁷University of Texas at Dallas, USA; ⁸MedStar National Rehabilitation Hospital, USA; ⁹Georgetown University Center for Functional and Molecular Imaging, USA; ¹⁰University of Lisbon, Portugal

Introduction		Results			
 The problem: Word-finding difficulties in aging W - Word-finding difficulties increase as people get older, but not uniformly so: Specific problems when a word is to be recalled from its meaning (e.g., naming an object, recalling someone's name)¹⁻⁴ A - Fewer to no problems during word comprehension or reading⁵⁻⁷ Age-related increases in vocabulary size⁸ → No study has characterized trajectory of performance across the lifespan in different lexical tasks within participants. 	 W - Explanatory accounts for word-finding problems have posited age-related declines in various abilities (e.g., processing speed, executive control, perceptual problems)⁹⁻¹² Y → Existing theories account for some aspects of patterns, but not all. 	MainAnalyses:Generalized linear mixed-effects regression models on a Comprehension, controlling for 'cohort effects' (e.g., edu words not known to participants), and item differencesALexical Production (Picture Naming) \bigcirc Left: - Interaction between Age and Recency ($z = -8.80$,	ucation, sex), participant-specific differences (e.g., (e.g., frequency, length). Lexical Comprehension (Word-Picture Matching) se		
 The Declarative Aging Deficit ('DAD') Hypothes = age-related declines in declarative memory and its neural correlates, in particular the specific pattern of lexical declines in the learning and processing of words. Motivated by two lines of research: 		recency $p < .001)*************$	As a second seco		

H

- Motivated by two lines of research:
- **1) Lexical abilities rely on declarative memory** (rooted in medial temporal lobe, especially hippocampus)
- Medial temporal lobe supports both word learning and retrieval of recently-learned words (before systems consolidation)¹³⁻¹⁷
- Hippocampus: encoding relational (associative) knowledge (e.g., word-meaning pairs)^{16,18} and retrieval via 'recollection' (e.g., recalling a word from its meaning), especially for recently-learned information^{19,20}
- Perirhinal cortex: encoding of 'items' (e.g., objects, word forms) and retrieval via 'familiarity' ^{19,20}
- Recall requires hippocampal-based recollection, recognition can rely on recollection or perirhinal-based familiarity^{19,20}
- 2) Declarative memory (and the hippocampus) decline with age.
- Greater learning declines when tested with recall than recognition²¹⁻²³
- Greater declines for associations than single items^{24,25}
- Striking declines for hippocampal volume^{26,27}
- Less reliable declines for perirhinal cortex²⁸

Predictions:

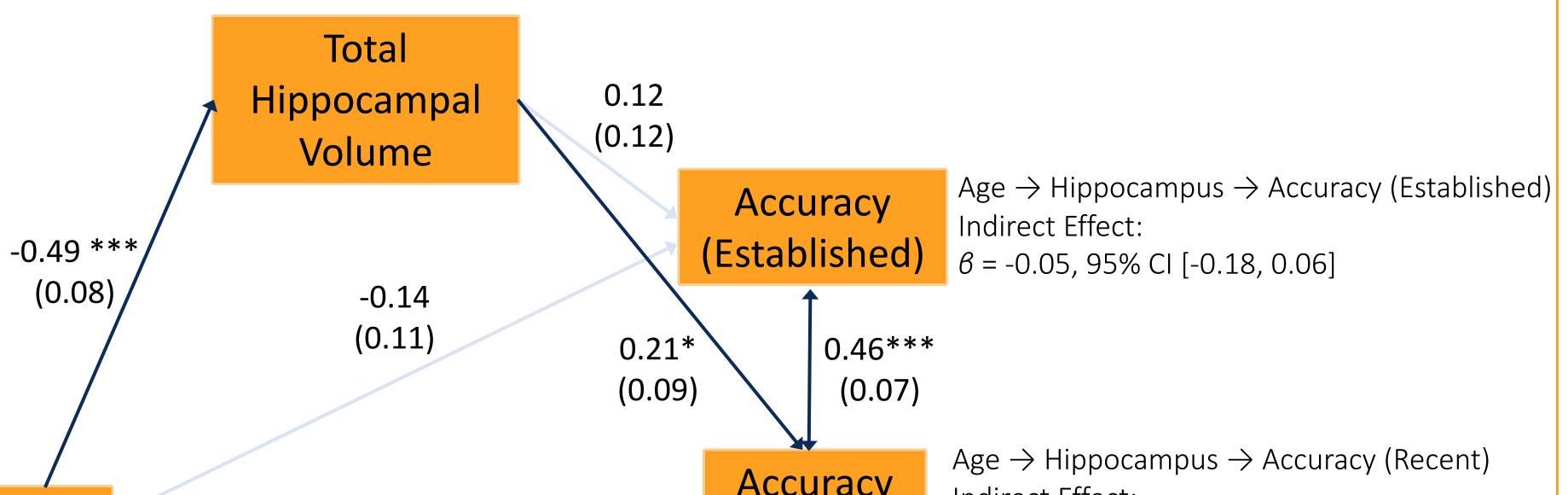
- ₩ Particularly strong age-related declines for
- lexical abilities that rely most strongly on
- A hippocampus:
- newer/recently-acquired words (vs.
- long-established/early-acquired words)
 recall (vs. comprehension)
- Mediation of declines through declarative
 memory abilities and hippocampal
 volume

Methods

Participants: 99 right-handed native U.S. English speakers: Correlation 40s 60s 70s 80s 20s 30s 50s with Age 12 20 17 21 13 F, 12 F, 8 F, 11 F 4 F, 5 F, $\chi^2(6) = 5.13$, ns Sex 4 M 0 M 9 M 3 M 9 M 18.2 17.9 17.4 18.8 17.8 15.8 *r* = -0.21, *p* = .042 Education (years) (2.3) (1.9)(3.0) (2.6) (1.8)(2.0) **Declarative Memory** $0.41 \quad 0.33 \quad 0.18 \quad 0.31 \quad 0.24 \quad 0.24 \quad 0.17 \quad r = 0.38 \quad n < 0.01$ Pocall score

Inclusion criteria:

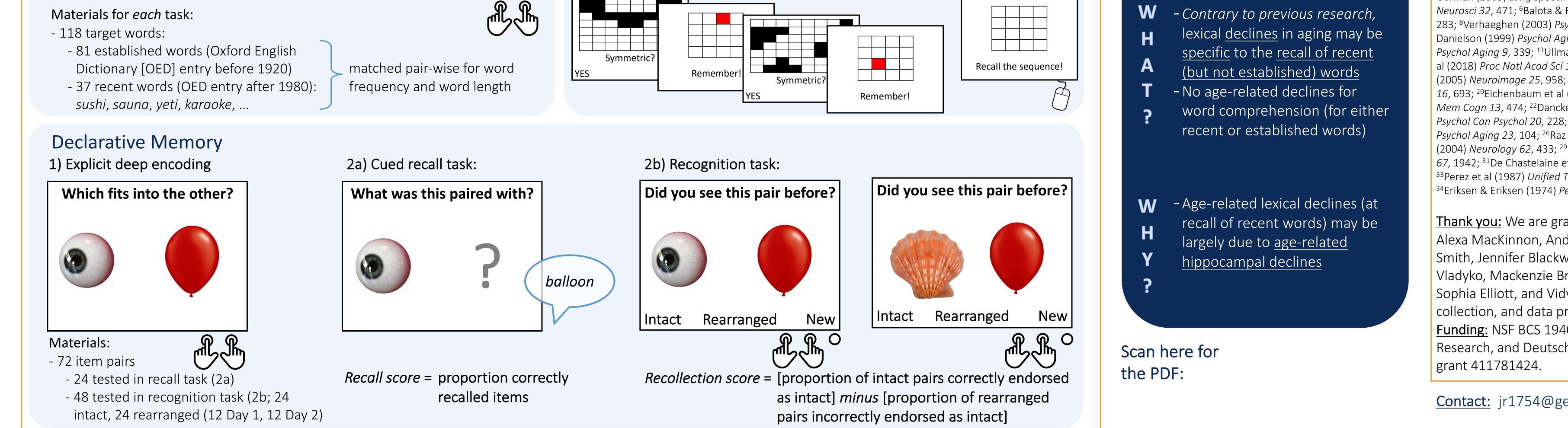
- No fluency in and no/little early exposure to another language (< 5 years)
 Normal performance on MoCA²⁹ and AD8³⁰
- No more than moderate hearing or vision loss, not color-blind
- No (history of) neurological, cognitive, other learning-/language-related disorders
 At least 12 years of education (or GED)


Procedure:

Day 0: - Screening: - Biographical and sociodemographic information - Neuropsychological testing (MoCA²⁹ and AD8³⁰)

- **Analyses:** A standardized structural equation model was run to test the indirect effect of total hippocampal volume mediating the relationship between <u>age</u> and <u>lexical production accuracy</u> for established or recent words.
 - CFI = 1.00, TLI = 1.00, RMSEA = 0.00 (perfect fit since all variable relationships were modeled)
 - Accuracy was transformed into a log-odds scale, with standardized effects being reported for all coefficients.
 - Indirect effects were tested against a bias-corrected distribution of 10,000 bootstrap resamples to see if the 95% confidence interval did not contain zero.

Lexical Production (Picture Naming)



Recall score	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			= -0.38, <i>p</i> < .001	 Perception (vision and hearing) 						
Recollection score	0.71 0.6	6 0.58	0.56	0.58	0.50	0.46 r=	= -0.39, <i>p</i> < .001	Day 1:	Day 2 (one week after Day 1): Age	
Executive Control Working Memory	(0.20) (0.1 66 67 (30) (29 7.0 8.7 (5.6) (6.0	59) (38) 7.3	(0.21) 70 (22) 2.1 (1.8)	(0.16) 70 (30) 3.4 (2.6)	(0.20) 56 (24) 2.3 (2.9)	(47)	= -0.13, <i>ns</i> = -0.48, <i>p</i> < .001		- Declarative Memory: - Long Delay Recall - Long Delay Recognition	Same	pattern was obtaine
Processing Speed	1166 121 (273) (224	5 1433	1579 (343)	1694 (323)	1902 (393)	7221	= 0.63 <i>, p</i> < .001	- Declarative Memory ^{31,32} : - Encoding	- MRI - MPRAGE (morphometry)		
Hippocampal volume* Perirhinal volume*	$\begin{array}{c} (273) & (222) \\ 5.90 & 5.7 \\ (0.94) & (0.3) \\ 2.03 & 1.9 \\ (0.45) & (0.4) \end{array}$	2 5.77 5) (0.35) 1 1.78	(0.39) (0.39) 1.84 (0.38)	(323) 5.53 (0.46) 1.68 (0.36)	(353) 5.02 (0.66) 2.07 (0.42)	4.80 (0.61) r =	= -0.38, <i>p</i> < .001 = -0.24, <i>p</i> = .019	Control tasks:	- HARDI (white matter connectiv - Saliva sample (genetics)	W - Aging 日 - Dec	was associated wit lining accuracy at p not established wo
<i>Notes:</i> Values are mean *Corrected for intracrar <i>Tasks:</i>	s per decade	(standard	deviatio		. ,			 Executive Control³⁴ Working Memory³⁵ 		A - No T (rec P - Res	age-related declines ent or established) ults held while cont word-level factors
Language tas Lexical production Picture Naming What is this	<u>on:</u>				-Pictur	orehensio e Matchie uschetta	ing	Control tasks Processing Speed: Pattern Comparison task	Executive Control: Flanker task	W - Relati	onship between age t words is mediated ne (as well as left an ediation of effect of acing established wo
		pretz	zel					SAME DIFFE SAME DIFFERENT Working Memory: Symmetry Span tas	sk		Conclusion

Accuracy Indirect Effect: (Recent) *β* = -0.09, 95% CI [-0.21, -0.02] -0.53*** (0.08)was obtained with Processing Speed and Executive Control also included as mediators. Discussion Limitations: ociated with *specific lexical declines*: ccuracy at producing relatively recent, - Stringent inclusion/exclusion criteria limit ablished words ecological validity ted declines at the comprehension of - Recent words may have unusual phonotactics stablished) words while controlling for participant-level Next steps: evel factors - Analysis of contribution of hippocampal subfields, perirhinal cortex, white matter, and genetics between age and accuracy at producing - Examination of role of cognitive variables (Declarative is mediated by total hippocampal Memory, Working Memory, etc.) ell as left and right volume) - Reaction time analyses of effect of age on accuracy at - Examination of 'change points' across lifespan ablished words

References & Acknowledgements

¹Morrison et al (2002) *Q J Exp Psychol Sect A 56*, 705; ²Gollan et al (2008) *J Mem Lang 58*, 787; ³Newman & German (2005) *Lang Speech 48*, 123; ⁴Au et al (1995) *Aging Cogn 2*, 300; ⁵Reifegerste et al (2017) *Lang Cogn Neurosci 32*, 471; ⁶Balota & Ferraro (1996) *Neuropsychology 10*, 82; ⁷Balota et al (2004) *J Exp Psychol Gen 133*,

283; ⁸Verhaeghen (2003) *Psychol Aging 18*, 332; ⁹Salthouse (1996) *Psychol Rev 103*, 403; ¹⁰Sommers & Danielson (1999) *Psychol Aging 14*, 458; ¹¹Neumann et al (2018) *Let Hoje 53*, 13; ¹²Lindenberger & Baltes (1994) *Psychol Aging 9*, 339; ¹³Ullman (2001) *Nat Rev Neurosci 2*, 717; ¹⁴Ullman (2004) *Cognition 92*, 231; ¹⁵Hamrick et al (2018) *Proc Natl Acad Sci 115*, 1487; ¹⁶Warren & Duff (2014) *Hippo-campus 24*, 920; ¹⁷Breitenstein et al (2005) *Neuroimage 25*, 958; ¹⁸Greve et al (2014) *Neuropsychologia 60*, 52; ¹⁹Davachi (2006) *Curr Opin Neurobiol 16*, 693; ²⁰Eichenbaum et al (2007) *Annu Rev Neurosci 30*, 123; ²¹Craik & McDowd (1987) *J Exp Psychol Learn Mem Cogn 13*, 474; ²²Danckert & Craik (2013) *Psychol Aging 28*, 902; ²³Schonfield & Robertson (1966) *Can J Psychol Can Psychol 20*, 228; ²⁴Ratcliff & McKoon (2015) *Psychol Aging 30*, 669; ²⁵Old & Naveh-Benjamin (2008) *Psychol Aging 23*, 104; ²⁶Raz et al (2010) *Neuroimage 51*, 501; ²⁷Jack et al (1997) *Neurology 49*, 786; ²⁸Raz et al (2004) *Neurology 62*, 433; ²⁹Nas-reddine et al (2005) *J Am Geriatr Soc 53*, 695; ³⁰Galvin et al (2006) *Neurology 67*, 1942; ³¹De Chastelaine et al (2016) *Neuroimage 138*, 164; ³²De Chastelaine (2016) *Neurobiol Aging 42*, 163; ³³Perez et al (1987) *Unified Tri-Services Cognitive Performance Assessment Battery: Review and methodology*; ³⁴Eriksen & Eriksen (1974) *Percept Psychophys 16*, 143; ³⁵Foster et al (2014) *Mem Cognit 43*, 226

Thank you: We are grateful to Loraine Obler (CUNY) for fruitful discussions. We thank Alexa MacKinnon, Andrew Tiu, Blaine Coyle, Brandon Duran, Denas Kisonas, Jamie Smith, Jennifer Blackwood, Jimin Lee, Laura Bomeny, Katie Woodhouse, Natalya Vladyko, Mackenzie Brown, Madison Chandler, Michelle Cho, Minsol Kim, Nicole Keller, Sophia Elliott, and Vidya Mullangi for their contributions to stimuli selection, data collection, and data pre-processing.

<u>Funding:</u> NSF BCS 1940980, Georgetown University Medical Center Partners in Research, and Deutsche Forschungsgemeinschaft (DFG; 'German Research Council') grant 411781424.

Contact: jr1754@georgetown.edu & michael@georgetown.edu