
Journal of Statistical Physics, Vol. 63, Nos. 3/4, 1991 

Stability of Incoherence in a Population of 
Coupled Oscillators 

Steven H. Strogatz 1 and Renato E. Mirollo 2 

Received June 26, 1990; final January 8, 1991 

We analyze a mean-field model of coupled oscillators with randomly distributed 
frequencies. This system is known to exhibit a transition to collective oscilla- 
tions: for small coupling, the system is incoherent, with all the oscillators 
running at their natural frequencies, but when the coupling exceeds a certain 
threshold, the system spontaneously synchronizes. We obtain the first rigorous 
stability results for this model by linearizing the Fokker-Planck equation about 
the incoherent state. An unexpected result is that the system has pathological 
stability properties: the incoherent state is unstable above threshold, but 
neutrally stable below threshold. We also show that the system is singular in the 
sense that its stability properties are radically altered by infinitesimal noise. 

KEY WORDS: Nonlinear oscillator; synchronization; phase transition; 
mean-field model; bifurcation; collective phenomena; phase locking. 

1. I N T R O D U C T I O N  

Collective synchroniza t ion  is a remarkable  p h e n o m e n o n  which occurs at 
practically every level of biological organizat ion.  (1'2) Examples range from 

epileptic seizures in the bra in  (g) and  electrical synchrony among  cardiac 
pacemaker  cells (4) to synchronous  flashing in swarms of fireflies, (5~ the 
chirping of crickets in unison,  (6) and the mutua l  synchroniza t ion  of 
mens t rua l  cycles in groups of women. (7) 

Winfree (1) was the first to emphasize the ubiqui ty  of collective syn- 
chronizat ion,  and  also to reduce the problem to its mathemat ical  essence. 
He modeled each member  of the popula t ion  as a nonl inear  oscillator with 
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a globally attracting limit cycle. The oscillators were assumed to be weakly 
coupled and their natural frequencies were assumed to be randomly dis- 
tributed across the population. Winfree discovered that synchronization 
occurs cooperatively, in a manner strikingly reminiscent of a thermo- 
dynamic phase transition. In the absence of coupling, the population 
behaves incoherently, with each oscillator running at its natural frequency. 
As the coupling is increased, the population continues to be incoherent 
until a critical coupling is exceeded--then the system spontaneously "con- 
denses" into a partially synchronized state. 

Kuramoto (8'9) provided the next major advance in the study of 
populations of coupled oscillators, He proposed an analytically tractable 
model which elucidated the connection between collective synchronization 
and phase transitions. The governing equation of the model is 

K N 
0 i = (D  i "~ ~j21= sin(Oj - 0 ~ ) ,  i = l , . . . , N  (1.1) 

Here Oi is the phase of the ith oscillator, co i is its natural frequency, and 
K~> 0 is the coupling strength. The frequencies are chosen at random from 
a symmetric, one-humped distribution with density g(co). By going into a 
rotating frame if necessary, we may assume that g(co) has mean zero. 

In the model (1.1), each oscillator is coupled equally to all the others. 
This is a crucial simplifying assumption, corresponding to the mean-field 
approximation in statistical mechanics. Kuramoto (8'9) showed that (1.1) 
could be solved formally in the infinite-N limit, as follows. Consider a 
complex order parameter defined by 

1 N 
re iO = ~ ~ e i~ (1.2) 

j = t  

Here r(t)>~O measures the phase coherence of the oscillators, and O(t) 
measures the average phase. Then, because of a trigonometric identity, the 
governing equations may be rewritten as 

0 i = co s + Kr sin(~b - 0,) (1.3) 

for i =  1 ..... N. Equation (1.3) shows that the oscillators are coupled only 
through the mean-field quantities r and 0. The coupling tends to syn- 
chronize the osc i l la tors~ach phase 0i is pulled toward the average phase 

by a restoring force of strength Kr. 
The key insight is that in the infinite-N limit, there are steady solutions 

in which all fluctuations vanish. In particular, there are self-consistent 
solutions of (1.3) in which r(t)  and O(t) are constant. For example, one 
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such solution is the completely "incoherent" solution with all the oscillators 
distributed uniformly around the circle and rotating at their natural fre- 
quencies. The incoherent solution has r ( t ) -  0 and exists for all values of 
the coupling strength K. Kuramoto (8'9~ showed that a second family of 
solutions branches off the incoherent solution at a critical coupling strength 

2 
Kc = (1.4) 

=g(O) 

These new solutions have coherence r > 0 and are "partially synchronized," 
in the sense that the population of oscillators splits into a mutually syn- 
chronized group with to01 ~< Kr and a drifting group with I~ol > Kr. In other 
words, the oscillators lying near the center of the frequency distribution 
become locked, whereas the outlying oscillators remain desynchronized. 
Just above the transition, the coherence r grows continuously as 
(K-Kc )  1/2. This result suggests that the onset of synchronization is similar 
to a second-order phase transition. 

Although Kuramoto's analysis (8'9) of the infinite-N limit is elegant and 
successful in many respects, it fails to address two very important sets of 
questions. The first set of questions concerns the differences between infinite 
and large but finite N. For any finite number of oscillators, there are 
inevitable fluctuations in r(t). Daido (1~ has shown that these fluctuations 
are typically of size O(N 1/2), but they can be amplified close to the onset 
of synchronization, i.e., for K close to Kc. There have been several recent 
attempts (~~ to develop a theory of the fluctuations near the onset of 
synchronization, but the matter remains controversial. 

There is also the possibility of much larger fluctuations, as pointed out 
by Nancy Kopell (personal communication). For example, in the absence 
of coupling (K--0),  the system (1.1) is known to exhibit Poincar6 
recurrence, (15) leading to fluctuations of size O(1) for all N. Although these 
large fluctuations are extremely rare, they are guaranteed to occur even- 
tually. It is unknown whether the coupled system also exhibits Poincar6 
recurrence. A rigorous treatment of these fluctuations would be a major 
theoretical contribution. 

The second class of open questions concerns the stability of the formal 
solutions obtained by Kuramoto in the infinite-N limit. Kuramoto (9) con- 
jectured that the incoherent solution is stable for K <  K,, and unstable for 
K >  Kc, but mentioned that, "surprisingly enough, this seemingly obvious 
fact seems difficult to prove." The first steps have been taken by Kuramoto 
and Nishikawa, (~3'~4) who recently presented two different analyses of the 
stability of the incoherent solution. Both of these analyses involve some 
approximations whose validity is uncertain. The first analysis (13~ is based 
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on an approximate evolution equation for the coherence r(t), while the 
revised analysis (14) is based on an approximate linear integral equation for 
the growth of fluctuations in r(t). According to Kuramoto and 
Nishikawa, (141 the incoherent solution goes from linearly stable to linearly 
unstable as K increases through K c. 

In this paper we present the first rigorous stability analysis of the 
incoherent solution for the infinite-N system. One of our main results is an 
exact formula for the eigenvalue characterizing the growth rate of 
coherence for K >  Kc. By finding where this eigenvalue vanishes, we also 
obtain a new derivation of the critical coupling Kc given by (1.4). 

The analysis reveals that the infinite-N system has pathological 
stability properties: the incoherent solution is unstable for K>Kc, but 
neutrally stable for all K<Kc. This result is unusual; in an ordinary 
second-order phase transition, the disordered state is stable on one side of 
the transition and unstable on the other. Furthermore, from the point of 
view of dynamical systems theory, one usually expects neutral stability to 
hold only at a special parameter value, rather than for a whole interval of 
parameters. 

We also find that the infinite-N system is singular with respect to the 
addition of infinitesimal amounts of noise: for K<K~, and any noise 
strength greater than zero, the incoherent solution changes from neutrally 
stable to linearly stable. The singular limit of zero noise is also associated 
with a breakdown of uniqueness: whereas in the noisy case there is a 
unique solution with r(t)=-O for all t, in the noise-free case there is an 
infinite number of such solutions. Thus if we study the problem for small 
noise, and then look at the limiting behavior as the noise tends to zero, the 
results are completely different from those obtained for zero noise. This 
singular behavior is similar to that seen in fluid mechanics in the limit of 
zero viscosity--in both cases the highest order derivative is lost from the 
governing (Navier-Stokes or Fokker-Planck) equation. 

The paper is organized as follows. In Section 2 we present the 
governing equations for the system, using the Fokker-Planck formalism. 
After defining the incoherent solution, we obtain the linear equations 
governing the growth of small perturbations about the incoherent state. 
Fourier methods are then used to show that the first harmonic of the per- 
turbation plays a special role; in Section 3 we study the evolution of the 
fundamental mode, and thereby obtain a formula for the growth rate of the 
coherence r(t). The results are illustrated with analytical, graphical, and 
numerical examples. We also stress the pathological stability properties of 
the noise-free system. Section 4 deals with the evolution of the higher har- 
monics of the perturbation. These higher harmonics decay exponentially 
fast in the presence of noise, but can persist forever in the absence of noise. 
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Finally, in Section 5 we discuss some open problems and compare our 
approach to the self-consistent method of Kuramoto. (8'9) We point out 
that our techniques can be used to analyze problems with nonsinusoidal 
coupling, for which the self-consistent method breaks down. 

2. G O V E R N I N G  EQUATIONS 

The first problem is to decide what we mean by the infinite-N limit of 
(1.1). One approach is to replace Oi(t), i= 1 ..... N, with a function O(t, co), 
where co ranges over the support of g(co). We will not follow this seemingly 
reasonable approach, for two reasons. First, we are interested in adding 
noise to (1.1); in this case it is more natural to describe the system in terms 
of a density p(O, t, co), as discussed below. Second, we want to allow for the 
possibility that two or more oscillators have the same frequency, as in the 
case when there are delta functions in g(co). In this case 0 could not 
possibly be a single-valued function of co. 

Even if g(co) does not contain delta functions, it is still more natural 
to describe the infinite system in terms of a density p(O, t, co) rather than 
a function O(t, co). For example, consider what one means by a random 
initial condition for the large-N system. For i = 1,..., N, we pick a frequency 
cog at random from g(co), and then we pick a random phase 0i from a 
uniform distribution on the circle. For  simplicity suppose that g(co) is the 
uniform density on the interval I =  [ - 7 ,  7]- Then the pair (co~, 0i) is a 
point on the cylinder I x  S 1. For large N, the points are essentially 
uniformly distributed on the cylinder. Thus, as N ~ 0% the density becomes 
increasingly well behaved, whereas the function O(t, co) becomes 
increasingly irregular. 

We now discuss the density approach in more detail. 

2.1. Densities and the Fokker-Planck Equation 

The infinite system should be visualized as follows: for each frequency 
co, there is a continuum of oscillators distributed along the circle. Suppose 
that this distribution is characterized by a density p(O, t, co). Here 
p(O, t, co) dO gives the fraction of oscillators of natural frequency co which 
lie between 0 and 0 + dO at time r Then the appropriate normalization 
condition is 

2re 

fo p(O,t, co)dO=l  (2.1) 

for all co and all r Furthermore, the density p is required to be 2~-periodic 
in 0. 
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As mentioned above, we are interested in adding noise to (1.1). 
Consider the following generalization of (1.1), considered previously by 
Sakaguchi(16): 

K N 

Oi ~- COl "~- ~ i  "~- ~jEI,= sin(0j - 0 , ) ,  i=  1,..., N (2.2) 

where the variables r are independent white noise processes that satisfy 

( r  =0  (2.3a) 

( ~, (s) ~j (t) ) = 2D6~6(s  - t) (2.3b) 

In (2.3), the noise strength D is nonnegative and the angular brackets 
denote an average over realizations of the noise. In the context of biologi- 
cal oscillators, the noise terms can be interpreted as rapid fluctuations in 
the intrinsic frequency of the oscillators. In the context of thermodynamic 
systems, the noise terms represent thermal fluctuations at a temperature 
proportional to the parameter D. 

Since (2.2) is a system of coupled Langevin equations, the evolution of 
p(O, t, co) is governed by the following Fokker-Planck equation(16'17): 

8p 82p 8 
8 t - P  802 80 (pv) (2.4) 

where the velocity v(O, t, co) is given by 

v(O, t, co) = co + Kr sin(t~ - 0) (2.5) 

and the order parameter amplitude r(t)  and phase q/(t) are now defined by 

re g~' = d~ t, co) g(co) dco dO (2.6) 
--o3 

Note that the interaction between oscillators of different frequencies occurs 
solely through the order parameter (2.6). 

2.2. Incoherent  Solut ion  

Equations (2.4)-(2.6) govern the evolution of the density p(O, t, co). 
Our goal is to analyze the evolution of p(O, t, co) in the neighborhood of 
the incoherent solution, defined as follows. 
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D e f i n i t i o n .  The incoherent solution of (2.4) is given by 

1 
po(O, t, co)= 2--~ (2.7) 

for all 0, t, and co. 
The incoherent solution P0 corresponds to a state in which, for each 

co, all the oscillators are uniformly distributed around the circle. It is easy 
to verify that Po is a static solution of the Fokker-Planck equation (2.4): 
substitution of Po into (2.6) shows that the corresponding r(t) vanishes 
identically and hence the velocity (2.5) reduces to v(O,t, co)=co. In 
particular, v is independent of 0 and therefore 

•Po 02p0 (~ 
D - -  - (per) = 0 ~t c~02 ~30 

Thus (2.4) is satisfied. 

2.3. Linearized System 

Now consider the evolution of a small perturbation away from the 
incoherent state: let 

1 
p(O, t, c o ) = ~ +  et/(0, t, co) (2.8) 

where 841 .  The normalization condition (2.1) implies that tl(O,t, co) 
satisfies 

2zr 
fo tl(O' t, co) dO = 0 (2.9) 

for all co and t, and the Fokker-Planck equation (2.4) implies 

0 1 
8 ~ t = 8  D (302(32q ~0 I(2-~ + 8r/)v]  (2.10) 

Consider (2.10) at lowest order in e. To find the 0(8) contribution 
from the bracketed term in (2.10), we observe that r(t) is O(e), and hence 
v = co + 0(8). More specifically, we find 

r(t) = 8r l ( / )  + 0 ( 8  2) 
where 

r~e iO ei~ t, co) g(co) dco dO (2.11) 

822/63/3 -4-13 
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Thus, (2.5) implies that d v / 8 0 = - e K  G c o s ( 0 - 0 ) ,  and so at O(e) the 
evolution equation (2.10) becomes 

&/ 821/ 8r/ K 
?7 = D g g -  co 50 + r, cos( , - 0) (2.12) 

To analyze (2.12) it is convenient to use Fourier methods. Since the 
function 7(0, t, co) is real and 2re-periodic in 0, we seek solutions of (2.12) 
of the form 

tl(O,t, co)=c(t ,  co) ei~ co)e - :~177  co) (2.13) 

where the star denotes complex conjugation and r/a(0, t, co) contains the 
second and higher harmonics of ~/. [Note that r/ automatically has zero 
mean, by (2.9).] 

The particular form of (2.13) is motivated by the observation that the 
f irst  harmonic of t/is distinguished. For example, the first harmonic is the 
only term that contributes to the coherence r(t). Consequently, r/makes no 
contribution to the final term in (2.12) except through c(t, co) and its 
complex conjugate. To see this, note that r~ c o s ( g , - O ) = R e [ q e i O e  ~o]. 
Now substituting (2.13) into (2.11) yields 

f 
o o  

r 1 e io = 2rt c*(t, co) g(co) do) 
oO 

and so 

(2.14) 

where c.c. denotes the complex conjugate of the preceding term. Thus the 
final term in (2.12) depends only on c(t, o)) and its conjugate, as claimed. 

When (2.13) and (2.14) are substituted into (2.12), we obtain two 
qualitatively different evolution equations, one for the fundamental 
amplitude c(t, co) and another for r/• t, co). The next section is concerned 
with the amplitude equation for the fundamental mode c(t,o)), and 
Section 4 deals with the evolution of r/• t, co). 
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3. EVOLUTION OF THE F U N D A M E N T A L  M O D E  

The amplitude equation for c(t, co) is obtained by inserting (2.13) and 
(2.14) into (2.12) and then equating the coefficients of e i~ on both sides of 
the resulting equation. We find 

Oc=ot - ( D + i ~ o ) c + K I L  c( t ,v)g(v)dv (3.1) 

The linear equation (3.1) has an interesting structure. For any given 
frequency co, the evolution of c(t, co) depends on all the other frequencies 
through the terms c(t, v) in the integral. However, the dependence is the 
same for all frequencies, because the integral is independent of co! This 
convenient property stems from the mean-field character of the original 
model (2.2). 

Before analyzing the spectrum of (3.1), we make a few remarks. There 
is no need to write the evolution equation for c*, since it is just the 
conjugate of (3.1). Note also that the coherence r(t) is determined at this 
order by c(t, co), via (2.14). In particular, if c(t, co) grows exponentially, so 
does r(t). 

3.1. Discrete Spectrum 

Equation (3.1) has both a discrete and a continuous spectrum. To find 
the discrete spectrum, we seek solutions of (3.1) of the form 

c(t, co) = b(co) e;" (3.2) 

where the eigenvalue 2 is independent of co. Substituting (3.2) into (3.1) 
yields 

2b = - ( D  + ico)b + ~ b(v) g(v) dv (3.3) 

This equation is easy to solve, because the integral in (3.3) is just some 
unknown constant to be determined self-consistently. Thus, let 

K f ~ A =-~ - ~  b(v) g(v) dv (3.4) 

Solving (3.3) for b(co), we find 

A 
b(co)  - ( 3 .5 )  

2 + D + i c o  
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Now we invoke self-consistency: (3.5) must be consistent with (3.4). 
Substitution of (3.5) into (3.4) yields either A = 0 or 

1 = - -  K f ~ 1 7 6  g(v) dv (3.6) 
2 o~ 2 + D + i v  

The solution A = 0  is not allowed, because (3.2) and (3.5) would then 
imply that c(t, co) ==_ 0 for all co, and this is not considered an eigenfunction. 
Thus, (3.6) is the equation for the discrete spectrum of the linear system 
(3.1). 

From now on, we suppose that g(co) is an even function, i.e., 
g(co) = g( -co)  for all co. We also assume that g(co) is "nonincreasing" on 
[0, oe), in the sense that g(~o)<<,g(v) for all co~>v. These two properties 
hold for the Gaussian, Lorentzian, and uniform distributions, as well as 
many others of practical interest. Under these two assumptions one can 
prove that (3.6) has at most one solution for  2, and i f  such a solution exists, 
it is necessarily real (see the proof of Theorem 2 in ref. 18). Then (3.6) 
becomes 

K oo 2 + D  g(v)dv  (3.7) 
l = ~ f  ~ ( Z + D ) 2 + v  2 

Equation (3.7) is the one of the main results of this paper. It shows 
how the eigenvalue 2 depends on the noise strength D, the coupling 
strength K, and the frequency density g(co). This eigenvalue governs the 
linear stability of the fundamental mode: when 2 > 0, the fundamental 
mode is unstable, and the coherence grows like r ( t ) ~  ro e~'. 

It is very important to recognize that any solution 2 of (3.7) must 
satisfy the inequality 

2 > - D  (3.8) 

since otherwise the right-hand side of (3.7) is ~<0. In particular, for the 
noise-free case (D = 0), there can never be any negative eigenvalues! Hence, 
the fundamental  mode is never linearly stable for  D = O. 

On the other hand, the fundamental mode can be stable if D > 0 .  
Equation (3.7) allows us to find the critical coupling Kc. at which stability 
is lost. The critical condition is 2 = 0, which implies 

K~. = 2 D2 + v2 g(v) dv (3.9) 

The critical coupling given by (3.9) was obtained previously by 
Sakaguchi (16) via an extension of Kuramoto's (8'9) self-consistency argument. 
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He first found self-consistent static solutions of the Fokker-Planck equa- 
tion (2.4), and then showed that solutions with coherence r > 0 bifurcate 
from the incoherent solution along the locus defined by (3.9). We stress 
that, in contrast to the analysis given here, the analysis of Sakaguchi (16) 
does not provide any information about stability. 

Our analysis provides the first proof that for the noise-free case, the 
incoherent solution goes unstable for K >  Kc= 2/[~g(0)],  as conjectured 
by Kuramoto.  (9~ To see this, let D = 0  in (3.7) and let 2--* 0 +. The kernel 
function 2/(22+ v 2) becomes more and more sharply peaked about v = 0, 
yet its integral over the real line equals ~ for all positive 2. Thus the kernel 
function approaches ~6(v) as 2--* 0 +, and so the right-hand side of (3.7) 
tends to (K/2)7cg(0). Hence 2 > 0 for K >  2/[~g(0)],  as required. 

In Section 3.4 these results will be illustrated for particular densities 
g(co) for which the eigenvalue 2 can be found explicitly. But first we 
compute the remaining part of the spectrum of (3.1). 

3.2. Cont inuous Spectrum 

The linear operator L associated with the right-hand side of (3.1) is 
given by 

Lb = - ( D  + ico)b + ~ _ ~ b(v) g(v) dv (3.10) 

Recall that the continuous spectrum of L is defined as the set of complex 
numbers 2 such that the operator L -  2I is not surjective. Thus we are led 
to consider the equation 

K ~ 
- ( 2  + D + ico)b +-~ f_~  b(v) g(v) dv= f (3.11) 

for fixed 2 and for an arbitrary function f(co). If (3.11) can always be 
solved for b(co), then 2 is not in the continuous spectrum. 

Notice that the integral in (3.11) is independent of co. As in (3.4), we 
denote this integral by A. If 2 + D + ico = 0 for some co in the support of g, 
then (3.11) is not solvable in general, l i t  is solvable only for constant 
functions f ( c o ) -  A.] Hence the continuous spectrum contains the set 

{ - -D - ico: co ~ Support(g)} (3.12) 

In fact, (3.12) is all of the continuous spectrum, for suppose that 2 is 
not in (3.12). Then (3.11) is solvable: from (3.11), 

A - f(co) 
b(co) 2 + O + ice (3.13) 
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All we have to do now is show that A can be determined self-consistently. 
Substituting (3.13) into (3.4) yields 

g(v) - 2  -o~ 2 + D + iv A 1 -  _ 2 + D + i v d V  = (3.14) 

By assumption, 2 is not in the discrete spectrum, and so the coefficient of 
A is nonzero, by (3.6). Thus (3.14) can be solved for A. 

Hence the set (3.12) is the continuous spectrum. Note that it lies on 
the imaginary axis if D = 0, but in the left half-plane if D > 0. 

3.3. Graphs of the Spectrum 

Now we sketch the discrete and continuous spectra for the case of an 
even, nonincreasing g(co) with support [--7,  7], where 7 > 0. The aim is to 
give a more concrete picture of the spectrum, and also to highlight the 
pathological features of the noise-free case D = 0. 

continuous 
spectrum 

/ 
Re),. = - D 

Im X (a) 

discrete 
]t / spectrum 

Re X 
- y  

(b) 

(c) (d)  

Fig. 1. The continuous and discrete spectra for the linear operator (3.10), for the noisy case 
D >0.  (a) K >  K c. The fundamental mode is unstable since the discrete spectrum 2 > 0. (b) 
K =  K c. The fundamental mode is neutrally stable. (c) K * <  K <  K,.. The fundamental mode 
is stable. (d) K<~K*. The discrete spectrum is absorbed by the continuous spectrum and 
disappears. 
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First consider the noisy case D > 0, and suppose that D is fixed. Then 
the location of the spectrum depends only on the coupling strength K. 
Figure 1 shows that the discrete spectrum is either a single point (for 
K>K*, in Figs. l a - l c )  or empty (for K<<.K*, in Fig. ld). Here K* is 
defined by the condition 2 = - D ,  at which the discrete spectrum is born, 
as indicated by (3.8). The other distinguished value of K is that defined by 
2 = 0 ;  as before, we call this value Kc, corresponding to the onset of 
instability. 

Figure 1 shows that for D >0 ,  the continuous spectrum (3.12) is a 
vertical line segment in the left half-plane, irrespective of the value of K. 
Thus, the modes corresponding to the continuous spectrum never cause 
instability. In contrast, the discrete spectrum depends strongly on K. When 
K>Kc (Fig. la) the fundamental mode is unstable since 2 > 0 .  As K 
decreases, the eigenvalue moves to the left--the fundamental mode 
becomes neutrally stable (Fig. lb)  and then linearly stable (Fig. lc). 
Finally, in Fig. ld, the discrete spectrum is absorbed by the continuous 
spectrum and disappears. 

Figure 2 shows that the pictures are dramatically different when D = 0. 
Now the continuous spectrum lies exactly on the imaginary axis. Further- 
more, there are only two pictures instead of four as in Fig. 1, because K* 
and Kc coincide when D = 0! Note that the fundamental mode is unstable 
when K>K,. (Fig. 2a), but neutrally stable when K<<,K~ (Fig. 2b). As 
mentioned earlier, the fundamental mode is never linearly stable when 
D = 0 .  

3.4. Exact Solut ions for the Eigenvalue 

We now study some particular densities g(co) for which the eigenvalue 
determined by (3.7) can be found exactly. 

Im ~ (a) (b) 
continuous 
spectrum , ~  y discrete 

spectrum 

Re X 

- 7  

Fig. 2. The continuous and discrete spectra for (3.10), for the noise-free case D = 0. Compare 
Fig. 1. (a) K> K,,. The fundamental mode is unstable. (b) K~< K~. The fundamental mode is 
neutrally stable. 
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(a) Identical Oscillators. Suppose that g((o)= 6(co), so that all the 
oscillators have the same natural frequency. Then the model (2.2) is 
equivalent to the mean-field theory for a magnetic spin system known 
as the classical X Y  model. The noise strength D is interpreted as the 
temperature and K is the ferromagnetic coupling strength. Equation (3.7) 
yields 

K 2=~--D (3.15a) 

which recovers the well-known result that the incoherent or 
"paramagnetic" state loses stability at a critical temperature D~=K/2. 
Below this temperature, the system undergoes spontaneous magnetization 
(or synchronization, in our context). 

(b) Uniform Distribution, Suppose that g(o9)=(27) -1 for Icol<~7 
and g(co)--0 otherwise. Then integration of (3.7) yields 

2 = --D + 7 cot(2?/K) (3.15b) 

This result is valid only for 2 > -D ,  as explained above in (3.8). The same 
is true for the next two results. 

Figure 3 shows a graph of Equation (3.15b). The eigenvalue 2 is 
plotted vs. K, while D and 7 are held fixed. To show the relation between 
2 and the continuous spectrum, we also plot the real part of the continuous 
spectrum. In Fig. 3a, the discrete spectrum 2 emerges from the continuous 
spectrum at K=K*=47/rc.  The onset of instability occurs later at K =  
Kc=27/[tan-~(7/D)]. Figure 3b shows that once again the case D = 0  is 
peculiar; the points K* and Kc coincide. Thus, the onset of instability 
occurs exactly when the discrete spectrum is born. 

(c) Lorentzian or Cauchy Distribution. If g((o)= (~//Tc)('y2--Fco 2) -i, 
then (3.7) becomes 

K 
, ~ = ~ - D - 7  (3.15c) 

(d) Gaussian Distribution. 
deviation a, we find that 2 satisfies the implicit equation 

1 =(8)~ /2Kexp  ((2+D)2~-a~- j er/c ~ ) - /2+D\  

where erfc denotes the complementary error function. 

For a normal distribution with standard 

(3.15d) 
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Fig. 3. Graph of (3.15b). The eigenvalue 2 is plotted vs. K, for fixed D and 7. The real part 
of the continuous spectrum is also shown. (a) The noisy case D > 0. The discrete spectrum )~ 
emerges from the continuous spectrum at K=K*. The onset of instability occurs later at 
K= K c. (b) For the noise-free case D = 0, the points K* and K C coincide. Hence the onset of 
instability occurs just as the discrete spectrum is born. 

3.5. Numer ica l  Exper iments  

As a brief check of  the analytical results above, we performed the 
following numerical  experiments. These experiments are for the sake of 
illustration and are certainly not  comprehensive. 

The system (1.1) was studied for the case of N = 4 8 0  oscillators, with 
coupling strength K =  1. The frequencies were uniformly distributed on 
[ - 7 , 7 ] ,  where 7=0 .2 .  There was no noise, i.e., D = 0 .  The goal was to 
simulate the evolution of the system starting near the incoherent  solution. 
For  these parameters,  equat ion (3.15b) predicts that  the coherence r(t) 
should initially grow exponentially at a rate 2 ~ 0.47304. 

Strictly speaking, the incoherent  solution (2.7) exists only for infinite 
N. To approximate  the incoherent  state for finite N, we chose M evenly 
spaced frequencies on the interval [ - 7 ,  7], and assigned N/M oscillators 
to each frequency. For  instance, in the case shown in Fig. 4, the popula t ion 
was part i t ioned into 40 frequencies, with 12 oscillators at each frequency. 
Then, for each frequency, the oscillators were evenly spaced a round  the 
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circle. For  a computer  with infinite-precision arithmetic, this initial 
condit ion would have coherence r - 0 .  Furthermore,  r(t)  would remain 
zero for all time. To break the symmetry,  we added a r andom number  of 
size O(10 - l~  to each of the initial phases 0i, resulting in a nonzero initial 
coherence. 

Figure 4 shows that  the coherence initially grows exponentially fast: 

r(t)  ~ r o exp(2M, N t) 

where )oM, N~0.47164.  The exponential growth of r(t)  breaks down when 
r ~ 0.1 because the system is no longer close to the incoherent solution. The 
measured value of 2M, N is within 1% of the 2 predicted by the theory for 
infinite N. 

Figure 5 indicates that the deviation of •M,N from )~ is a finite-size 
effect. To demonstrate  this, we repeated the simulations for different 
numbers  of frequencies M while holding the total populat ion fixed at 
N - 4 8 0  oscillators. Figure 5 shows that 

2M, N - -  2 ~ O ( 1 / M )  

as M increases. 
This is precisely the dependence on M that one would have expected. 

By choosing the frequencies to be evenly spaced, we have essentially 

.47164 

0 

-5 

-10 

-15 

-20 

-25 

-30 
0 

In r 

20 40 60 80 

t i m e  

Fig. 4. Linear growth of In r, corresponding to exponential initial growth of the coherence 
r, for K> K c. The measured exponential growth rate is "~m,u ~'0.47164. Equation (1.1) was 
integrated numerically using the fourth-order Runge-Kutta method. Parameters: K=I ;  
N = 480; uniform g(~o) with 7 = 0.2; M = 40 distinct frequencies; D = 0. See text for description 
of simulation and choice of nearly incoherent initial condition. 
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M 
Fig. 5. Log-log plot of 2--,~M, N a s  a function of number of distinct frequencies M. 
Parameters and simulation method as in Fig. 4, except that M varies (M values: 10, 20, 30, 
40, 60, 80, 120, shown as solid dots). A dashed line of slope - 1 is shown for comparison. 

replaced g(~o) with a comb of M delta functions. This means that the 
integral in (3.7) is replaced by a Riemann sum--but  the deviation between 
a Riemann sum and its limit is O(1/M). This deviation in the integral in 
(3.7) leads to a deviation of the same order in 2. 

In contrast, the dependence of 2M, N on N (with M held fixed) was 
found to be much weaker. In other words, for the simulation protocol used 
here, it is more important to sample the frequencies densely than it is to 
have many oscillators per frequency. 

4. EVOLUTION OF HIGHER H A R M O N I C S  

Now we complete the linear stability analysis of the incoherent solu- 
tion. Near the end of Section 2 we derived the evolution equation (2.12) 
governing the growth of a small perturbation r/(0, t, co) about the 
incoherent solution. It was convenient to express t/ in terms of two func- 
tions, c(t, co) and r/• t, co), as in (2.13). The evolution of c(t, co) was dis- 
cussed in the last section, and is closely related to changes in the coherence 
r(t); now we study the evolution of the higher harmonics contained in 
~/• t, co). Perturbations corresponding to these higher harmonics do not 
lead to changes in r(t). 

The main result is that the noise-free case again has pathological 
stability properties: for D > 0 the higher harmonics decay exponentially 
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fast, whereas for D = 0  they persist forever as neutrally-stable rotating 
waves. Furthermore, there is a breakdown of uniqueness when D = 0: it 
turns out that any function of the form ~i• t, co )=r iO-co t ,  co) is a solu- 
tion of the relevant evolution equation. These rotating wave solutions also 
occur in the full system, and are not just an artifact of the linearization. 

4.1. Linear Stabi l i ty Analysis 

To derive the evolution equation for r/~(0, t, co), we substitute (2.13) 
and (2.14) into (2.12) and collect terms involving ~/• The result is 

G~/• 02~+ (~/~ (4.1) 0t =D -co 

Equation (4.1) is much simpler than the evolution equation (3.1) studied in 
the last section, because there is no coupling between oscillators of different 
frequencies in (4.1). 

We solve (4.1) using Fourier methods. Recall that t/• has zero mean, 
by (2.9), and zero first harmonic, by (2.13). Hence the Fourier series for ~/• 
starts with the second harmonic: 

tl'(O, t, co) = L ak(t, o9) eik~ (4.2) 
Ikl >/2 

where ak = (a_k)*, since ~/• is real. Substitution of (4.2) into (4.1) yields 
the amplitude equation 

~a---3~ = ( - k2 D - ikco ) a~ 
Ot 

which has the general solution 

ak( t, o9) = ak( O, co) e (-k2D- ik~ 

Hence 

~I• t, co)= ~ ak(O, co) e k2~176 (4.3) 
IM >~ 2 

The solution (4.3) shows that r/• t, co) decays to zero exponentially 
fast for any D > 0. Because the higher harmonics die out so rapidly, the 
evolution of the total perturbation t/ is essentially controlled by its 
fundamental mode. 

In contrast, when D = 0 ,  Eq. (4.3) shows that t/• is an undamped 
rotating wave, i.e., a function of 0 -  cot alone. Of course, this result follows 
directly from (4.1), since any function of the form q• t, co)= f ( O -  cot, co) 
solves (4.1) when D = 0. The fact that any function of 0 -  cot is acceptable 
means that these rotating waves are neutrally stable to perturbations 
involving only higher harmonics. 
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4.2. Neutral Stability for the Full System 

If D = 0 ,  neutrally-stable rotating waves occur even in the original 
nonlinear system (2.4)-(2.6). Moreover, this form of neutral stability holds 
for all values of K. This neutral stability is therefore completely different 
and much stronger than that associated with the fundamental mode, which 
is based on a linear analysis, and which occurs only for K <  K c. 

We first explain the neutral stability physically, and then mathemati- 
cally. Suppose that D = 0 and consider a family of densities p(O, t, r that 
satisfies 

2~ 

0 = fo ei~ t, ~o) dO (4.4) 

for all 09, at some fixed time t. Physically, this means that for each 
frequency c,, the oscillators of that frequency make zero contribution to the 
order parameter (2.6). Then the coherence r = 0, and so v(O, t, co) = co. In 
other words, each oscillator moves with instantaneous velocity ~, inde- 
pendent of its position on the circle. Hence for each 09, the associated 
p(O, t, ~o) will simply rotate rigidly around the circle at frequency ~o. But 
this means that (4.4) will continue to be satisfied at all later times! 
[A rotated version of p still satisfies (4.4).] Note that the density for each 
~o is oblivious to all the others-- they rotate around and around with no 
interaction between them. Since the densities are effectively uncoupled, the 
system is neutrally stable to perturbations involving only higher harmonics; 
changing the shape of one or all of the densities will lead to no restoring 
forces--as long as no first harmonics are introduced. 

To put it more mathematically, fix o3 and t and let 

S= {p(O, t, co): (4.4) is satisfied} (4.5) 

Then S is invariant under the flow (2.4), as is easily checked: 

O-~f2~ei~ ~ e i ~  o ~7 dO 

=- f~e i~  

= I~ ~ ie~~ dO 

27z 

= ia~ ~0 ei~ dO 

= 0  



632 Strogatz and Mirollo 

In this chain of equations we have used (2.4); integration by parts; v = co 
since r = 0 at time t; and finally (4.4). 

The invariance of S is important because it implies the type of neutral 
stability claimed above. The fact that S is invariant means that v = co for 
all t. Then the solutions of (2.4) are rotating waves of the form 
p(O-cot, co), where p is arbitrary. This is the strongest possible form of 
neutral stability: the dynamics restricted to S are effectively uncoupled. 

A noteworthy consequence of these results is that when D- -0 ,  there 
are infinitely many different solutions with r = 0 for all time. In contrast, 
when D > 0, all the higher harmonics decay as t ~ oo, and so the only 
solution with r = 0 for all time is the incoherent solution (2.7). 

5. D I S C U S S I O N  

5.1. Open Problems 

In this paper we have analyzed the linear stability of the incoherent 
solution (2.7). One important conclusion is that, in the absence of noise, 
the incoherent solution is unstable for K >  Kc, but neutrally stable for all 
K <  Kc. It would be desirable to extend this linear stability analysis to 
include higher-order terms. For  K <  Kc, do the nonlinear terms stabilize or 
destabilize the incoherent solution, or leave it neutrally stable? 

A related question concerns the long-term behavior of r(t) for K <  Kc. 
Although the incoherent solution is linearly neutrally stable, it is still 
possible that r(t)--* 0 as t ~ o% as predicted by Kuramoto and 
Nishikawa. (t41 To give a simple example (kindly pointed out by 
Y. Kuramoto),  suppose K =  0, so that the oscillators are uncoupled. In this 
case our neutral stability results hold trivially. At the same time, it is true 
that r(t) --* 0 as t ~ oo because of the Riemann-Lebesgue Lemma. Unfor- 
tunately, the extension of this simple idea to the case K > 0  remains 
problematical. 

Another question concerns the stability of the partially synchronized 
state (9'13'14) which branches off the incoherent solution at K =  Kc. Can one 
show that this solution is locally stable for K>Kc? [-The partially syn- 
chronized state cannot be globally stable, because the subspace S defined 
by (4.5) is invariant for all K.] 

As mentioned in the Introduction, there is a whole class of unsolved 
problems concerning fluctuations in the finite-N system (1.1). Promising 
starts have been made by Daido(~O ~2) and by Kuramoto and 
Nishikawa, (~3'j4~ but many difficult questions remain. For example, 
Daido (~l'x2) has shown that the fluctuations are characterized by two dif- 
ferent critical exponents on either side of the phase transition at K =  Kc. Is 
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this peculiar behavior related to the unusual properties of the bifurcation 
at Kc, in which the incoherent state changes from unstable to neutrally 
stable? 

5.2. S e l f - C o n s i s t e n t  M e t h o d  vs. F o k k e r - P l a n c k  M e t h o d  

Finally, we would like to comment on some of the novel features of 
the analysis used in this paper. We have introduced a method for studying 
the onset of synchronization in mean-field models of coupled oscillators. 
The strategy is to linearize the relevant Fokker-Planck equation about the 
incoherent state, and then analyze the resulting linear stability problem. 
Until now, the only tool available for analyzing mean-field systems of 
coupled oscillators has been the self-consistency approach pioneered by 
Kuramoto. (8'9) That approach has the advantage that it allows one to 
study both incoherent and partially synchronized solutions in one 
stroke--in a sense, the self-consistent method is global, whereas our 
method is local. 

On the other hand, the self-consistent method has some important 
limitations. First, it is concerned only with steady-state behavior and it 
therefore provides no information about stability. Second, it depends cru- 
cially on the sinusoidal form of the coupling in the model (1.1). Because of 
a convenient trigonometric identity, the order parameter (1.2) appears in 
the governing equation (1.3)--it is this coincidence which allows the order 
parameter to be determined self-consistently. 

In contrast, our method can be applied to systems with more general 
coupling than (1.1) or (2.2). For example, consider the system 

K N 
Oi=coi+~j~ i= l,...,S (5.1) 

where f(q~) is an arbitrary 27r-periodic function. Equation (5.1) shares an 
important qualitative feature with the sinusoidal model (1.1): both systems 
are coupled only through phase differences. This sort of coupling arises 
naturally from averaging theory applied to a system of weakly coupled 
limit cycle oscillators. (9) 

Using the notation of Section 2, we see that the appropriate infinite-N 
limit of (5.1) is 

Op 8 
(pv) (5.2) 

Ct 30 
where the velocity is given by 

; J v(O,t,o))=~o+X f(qS-O) p(~,t,v)dO g(v) dv (5.3) 
- - 0 : 3  
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This system will be analyzed in detail elsewhere, (19~ so we just sketch 
some of the results. The system is tractable because the term in square 
brackets is a convolution. [The convolution is due to the phase-difference 
coupling in (5.1).] As in Section 2, we consider the evolution of a small 
perturbation t/(0, t, ~)  about the incoherent solution. A miracle occurs 
when we Fourier analyze the system and calculate the resulting amplitude 
equations for the different modes of t/: the amplitude equations turn out to 
be uncoupled! 

This decoupting occurs because of the convolution form of (5.3) and 
because the system is being linearized around the incoherent state 
po(O, t, co) = 1/2re. A simple case of this decoupling phenomenon occurs in 
the present paper; the evolution of the fundamental mode (Section 3) is 
separate from that of the higher harmonics (Section 4) precisely because 
the coupling function f(~b)= sin ~b contains no higher harmonics. 

For more general f(~b), the amplitude equations for each mode are 
very similar to (3.1), and can be analyzed by the methods of Section 3. We 
find that there is a different critical coupling for each mode. One of the 
simplest cases occurs if g(co) is even and nonincreasing, and f(q~) is odd, 
say 

f(~b)= ~ bm sin(rn~b) 
m = l  

Then the critical coupling for mode m is given by 

which generalizes the classical result (1.4). If bm>O, then mode m is 
unstable for K >  Kc(rn) and neutrally stable for K <  Kc(rn). 

A detailed analysis of (5.1) (5.3), as well as more general problems 
including noise terms, will be presented in ref. 19. 
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