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Appendix	2:	Newton	schools	Leibniz	on	power	series	in	the	“Epistola	Posterior”	
	
	
Newton	wrote	two	long	letters	to	Leibniz.	(Actually,	they	were	addressed	to	an	
intermediary,	Henry	Oldenburg,	the	secretary	of	the	Royal	Society	of	London,	for	
transmission	to	Leibniz.)	Historians	of	mathematics	call	these	famous	letters	the	Epistola	
Prior	and	the	Epistola	Posterior.	Newton’s	mood	feels	very	different	in	them.	In	the	first	
he’s	cagey	and	guarded,	taking	pains	not	to	reveal	too	much.	By	turns	condescending	and	
intimidating,	his	tone	seems	designed	to	push	Leibniz	away,	to	show	him	who's	boss,	to	
convince	him	he’s	out	of	his	depth.	Newton	barrages	Leibniz	with	results	so	impressive,	so	
dazzling,	and	so	opaque,	that	his	intent	must	have	been	to	shock	and	awe.	He	doesn’t	want	
Leibniz	to	understand.	He	wants	him	to	cower.	
	
But	in	the	second	letter,	written	a	few	months	later,	Newton	softens	up.	He	tells	a	story	
from	his	student	days,	when	he	was	just	beginning	to	learn	mathematics.	Sounding	almost	
nostalgic,	he	recounts	how	he	discovered	the	binomial	series	by	a	process	of	guessing	and	
checking.	Here	I’d	like	to	show	you	his	reasoning	in	some	detail,	because	it	is	so	charming	
and	accessible.	It	reminds	me	of	games	little	kids	like	to	play:	guess	the	next	number,	find	
the	pattern,	what	do	you	think	comes	next?	
	
As	we	discussed	in	Chapter	7,	young	Newton’s	inspiration	for	developing	power	series	
came	from	reading	Wallis’s	Arithmetica	Infinitorum.		Mimicking	Wallis’s	inductive	method	
of	finding	pi,	he	considered	the	problem	of	finding	the	area	of	a	“circular	segment”	of	
adjustable	width	𝑥.	This	is	the	region	under	the	circle	𝑦 = √1 − 𝑥'	that	lies	above	the	
portion	of	the	horizontal	axis	from	0	to	𝑥.	Here	𝑥	could	be	any	number	from	0	to	1,	and	1	is	
the	radius	of	the	circle.	When	𝑥 = 1,	the	area	boils	down	to	that	of	a	quarter	of	the	unit	
circle,	namely	𝜋/4.	For	other	values	of	𝑥,	nothing	was	known.		
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Newton’s	first	step	was	to	reason	by	analogy.	Instead	of	aiming	directly	for	the	area	of	the	
circular	segment,	he	investigated	the	areas	of	analogous	segments	bounded	by	the	
following	curves:	
	
𝑦 = (1 − 𝑥')./',	
𝑦 = (1 − 𝑥')//',		
𝑦 = (1 − 𝑥')'/',		
𝑦 = (1 − 𝑥')0/',		
𝑦 = (1 − 𝑥')1/',		
𝑦 = (1 − 𝑥')2/',	
𝑦 = (1 − 𝑥')3/'.		
		
Notice	that	all	of	them	involve	half-number	powers	of	the	expression	1 − 𝑥'.	Newton	was	
most	interested	in	the	second	curve,	𝑦 = (1 − 𝑥')//',	because	it	is	equivalent	to	the	upper	
half	of	the	perfect	circle	given	by	the	equation	𝑥' + 𝑦' = 1.	Since	that	circle	has	a	radius	of	
1,	its	area	is	pi,	as	Newton	well	knew.	So	if	he	could	find	a	way	to	determine	the	area	under	
the	curve	𝑦 = (1 − 𝑥')//',	that	might	give	him	an	unprecedented	means	of	approximating	
pi.	That	was	originally	the	grand	plan.	But	along	the	way	he	found	something	even	better:	a	
method	for	replacing	complicated	curves	by	infinite	sums	of	simpler	building	blocks	in	the	
form	of	powers	of	𝑥.		
	
Newton	began	with	a	crafty	sidestep.	He	knew	that	the	areas	under	the	first,	third,	fifth,	and	
seventh	curves	in	the	list	(the	ones	with	whole-number	powers	like	0/2	=	0	and	2/2	=	1	
and	4/2	=	2)	would	be	easy	to	calculate,	because	they	simplify	algebraically.	For	example,	
	
𝑦 = (1 − 𝑥')./' = (1 − 𝑥'). = 1.	
	
Similarly,		
	
𝑦 = (1 − 𝑥')'/' = (1 − 𝑥')/ = 1 − 𝑥'		
	
and		
	
𝑦 = (1 − 𝑥')1/' = (1 − 𝑥')' = 	1 − 2𝑥' + 𝑥1.		
	
But	no	such	simplification	is	available	for	the	circle	or	the	other	curves	with	the	half	
powers	in	them.	The	circle	involves	a	nasty	square	root	(a	1/2	power)	and	the	others	
involve	odd	powers	of	square	roots	(3/2	and	5/2).	At	the	time,	no	one	knew	how	to	find	the	
area	under	any	of	them.	
	
Fortunately,	the	areas	under	the	curves	with	whole-number	powers	were	straightforward.		
Take	the	curve	𝑦 = (1 − 𝑥')1/' = (1 − 𝑥')' = 	1 − 2𝑥' + 𝑥1.	Newton	knew	that	the	area	of	
the	corresponding	segment	is	𝑥 − 2𝑥0/3 + 𝑥2/5.	This	followed	from	repeated	application	
of	a	well-known	rule	for	power	functions:		For	any	whole-number	power	𝑛 ≥ 0,	the	area	
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under	the	curve	𝑦 = 𝑥=	over	the	interval	from	0	to	𝑥	is	given	by	𝑥=>//(𝑛 + 1).	Wallis	had	
guessed	this	rule	with	his	inductive	method,	and	Fermat	had	proven	it	by	the	brilliant	
method	we	discussed	in	Appendix	1.	Other	mathematicians	were	aware	of	this	rule	as	well.	
So	it	was	an	absolutely	standard	piece	of	knowledge	for	Newton	as	a	student.		
	
It	allowed	him	to	find	the	area	of	the	first,	third,	fifth,	and	seventh	curves	in	the	list	above.	
Let’s	write	𝐴=	for	the	area	under	the	curve	𝑦 = (1 − 𝑥')=/',	where	𝑛 = 0, 1, 2, …	.	Then		
	
𝐴. = 𝑥	
𝐴/ =	?	
𝐴' = 𝑥 − /

0
	𝑥0	

𝐴0 =	?	
𝐴1 = 𝑥 − '

0
	𝑥0 + /

2
	𝑥2	

𝐴2 =	?	
𝐴3 = 𝑥 − 0

0
	𝑥0 + 0

2
	𝑥2 − /

B
	𝑥B	

	
and	so	on.	Newton’s	idea	was	to	fill	in	the	gaps.	His	ultimate	goal	was	to	guess	𝐴/	based	on	
what	he	could	see	in	the	other	series.	One	thing	was	immediately	clear:	all	the	𝐴=	began	
simply	with	𝑥.	That	suggested	amending	the	table	like	so:	
	
𝐴. = 𝑥	
𝐴/ = 𝑥	−	?	
𝐴' = 𝑥 − /

0
	𝑥0	

𝐴0 = 𝑥	−	?	
𝐴1 = 𝑥 − '

0
	𝑥0 + /

2
	𝑥2	

𝐴2 = 𝑥	−	?	
𝐴3 = 𝑥 − 0

0
	𝑥0 + 0

2
	𝑥2 − /

B
	𝑥B.	

	
Then,	to	replace	the	next	batch	of	question	marks,	Newton	looked	at	the	𝑥0	terms.	As	he	
pointed	out	to	Leibniz,	he	observed	“that	the	second	terms	.

0
𝑥0, /

0
𝑥0, '

0
𝑥0, 0

0
𝑥0,	etc.,	were	

in	arithmetical	progression”	(he	was	referring	to	the	0,	1,	2,	3	in	the	numerators	of	the	
𝑥0	terms)	“and	hence	that	the	first	two	terms	of	the	series	to	be	intercalated”	(the	unknown	
𝐴/, 	𝐴0	,	and	𝐴2)	“ought	to	be	𝑥 −

/
0
C	/
'
𝑥0D , 𝑥 − /

0
C	0
'
𝑥0D , 𝑥 − /

0
C	2
'
𝑥0D,	etc.”		

	
Thus,	at	this	stage	the	patterns	suggested	to	Newton	that	𝐴/	should	begin	as		
	
𝐴/ = 𝑥 − /

0
C	/
'
	𝑥0D + ⋯	.	

	
As	his	roving	eye	hunted	for	other	patterns,	Newton	noticed	that	the	denominators	in	the	
𝐴=	always	contained	odd	numbers	in	increasing	order.	For	instance,	look	at	𝐴3.	It	has	1,	3,	
5,	and	7	in	its	denominators.	That	same	pattern	worked	for	𝐴1	and	𝐴'.		Simple	enough.	That	
pattern	took	care	of	all	the	denominators.		



	 4	

	
What	remained	was	to	find	a	pattern	in	the	numerators.	Newton	examined	𝐴', 𝐴1,	and	
𝐴3	again	and	spotted	something	he	recognized	immediately.	In	𝐴' = 𝑥 − /

0
𝑥0	he	saw	a	1	

multiplying	the	𝑥	and	another	1	in	the	term	/
0
𝑥0	(he	ignored	its	negative	sign	for	the	time	

being).	In	𝐴1 = 𝑥 − '
0
𝑥0 + /

2
𝑥2,	he	saw	numerators	of	1,	2,	1.	And	in	𝐴3 = 𝑥 − 0

0
𝑥0 + 0

2
𝑥2 −

/
B
𝑥B,	he	saw	numerators	1,	3,	3,	1.	These	numbers	are	the	familiar	rows	of	Pascal’s	triangle!	
But	Newton	didn’t	refer	to	Pascal.	Instead	he	referred	to	“powers	of	the	number	11.”	For	
example,	11' = 121, and	110 = 1331.	Nowadays	these	numbers	are	called	binomial	
coefficients.	They	arise	when	expanding	a	binomial	like	(𝑎 + 𝑏)0 = 1𝑎0 + 3𝑎'𝑏 + 3𝑎𝑏' +
1𝑏0.		
	
Next,	to	extrapolate	his	results	to	half-powers,	Newton	needed	to	extend	Pascal’s	triangle	
to	a	fantastic	new	regime,	halfway	in	between	the	rows.	To	perform	the	extrapolation,	he	
derived	a	general	formula	for	the	binomial	coefficients	in	row	𝑚	of	Pascal’s	triangle	and	
then	audaciously	plugged	in	𝑚	 = 	1/2.	That	gave	him	the	numerators	in	the	series	he	was	
seeking	for	𝐴/.			
	
Here,	in	Newton’s	own	words,	is	his	summary	to	Leibniz	of	the	patterns	he	noticed	
inductively,	up	to	this	stage	in	the	argument:	
	
“I	began	to	reflect	that	the	denominators	1,	3,	5,	7,	etc.	were	in	arithmetical	progression,	so	
that	the	numerical	coefficients	of	the	numerators	only	were	still	in	need	of	investigation.	
But	in	the	alternately	given	areas	these	were	the	figures	of	powers	of	the	number	11,	
namely	of	these,	that	is,	first	1;	then	1,	1;	thirdly,	1,	2,	1;	fourthly	1,	3,	3,	1;	fifthly	1,	4,	6,	4,	1,	
etc.	and	so	I	began	to	inquire	how	the	remaining	figures	in	the	series	could	be	derived	from	
the	first	two	given	figures,	and	I	found	that	on	putting	𝑚	for	the	second	figure,	the	rest	
would	be	produced	by	continual	multiplication	of	the	terms	of	this	series,	
	
𝑚 − 0
1 ×

𝑚 − 1
2 ×

𝑚 − 2
3 ×

𝑚 − 3
4 ×

𝑚 − 4
5 	,	etc.	

	
[…]	Accordingly	I	applied	this	rule	for	interposing	series	among	series,	and	since,	for	the	
circle,	the	second	term	was	/

0
C/
'
𝑥0D,	I	put	𝑚 = 1/2,	and	the	terms	arising	were		

	
/
'
	×	

P
QR/

'
			or			 − /

U
	,											− /

U
	× 	

P
QR'

0
				or			 + /

/3
	,											 /

/3
	×	

P
QR0

1
			or		 − 2

/'U
	,	

	
so	to	infinity.	Whence	I	came	to	understand	that	the	area	of	the	circular	segment	which	I	
wanted	was	
	

𝑥 −
/
'	𝑥

0

3 −
/
U	𝑥

2

5 −
/
/3	𝑥

B

7 −
2
/'U	𝑥

W

9 		etc. ”	
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Then	he	quickly	realized	that	the	circle	𝑦 = (1 − 𝑥')//'	itself	(not	merely	the	area	
underneath	it)	could	also	be	represented	by	a	power	series.	All	he	needed	to	do	was	“omit	
the	denominators”	and	reduce	the	powers	by	1.	Thus	he	was	led	to	guess	that	
	
(1 − 𝑥')//' = 1 − /

'
	𝑥' − /

U
	𝑥1 − /

/3
	𝑥3 − 2

/'U
	𝑥U − ⋯	.	

	
To	test	whether	this	made	sense,	Newton	checked	his	formula	by	multiplying	it	by	itself	
“and	it	became	1 − 𝑥',	the	remaining	terms	vanishing	by	the	continuation	of	the	series	to	
infinity.”	
	
Stepping	back	a	bit	from	the	details,	we	see	several	lessons	here	about	problem	solving.	If	a	
problem	is	too	hard,	change	it.	If	it	seems	too	specific,	generalize	it.	Newton	used	both	of	
those	tactics	in	the	analysis	above.	They	gave	him	results	more	important	and	more	
powerful	than	those	he	originally	sought.		
	
In	particular,	Newton	didn’t	stubbornly	fixate	on	a	quarter	of	a	circle.	He	looked	at	a	much	
more	general	shape,	any	circular	segment	of	width	𝑥.	Rather	than	sticking	to	𝑥 = 1,	he	
allowed	𝑥	to	run	freely	from	0	to	1.	That	revealed	the	binomial	character	of	the	coefficients	
in	his	series	–	the	unexpected	appearance	of	numbers	in	Pascal’s	triangle	and	their	
generalizations	–	which	let	Newton	see	patterns	that	Wallis	and	others	had	missed.	Seeing	
those	patterns	then	gave	Newton	the	insights	he	needed	to	develop	the	theory	of	power	
series	much	more	widely	and	generally.		
	
The	moral	is:	Changing	a	problem	is	not	cheating.	It’s	creative.	And	it	may	be	the	key	to	
something	greater.	
	
	


