A great deal of overlapping among stain patterns results from impacts of greatly differing forces. For this reason, the classification of spatter based on stain size as "high", "medium" and "low" velocity can be misleading. To illustrate this, the definitions of "high", "medium" and "low" velocity impact spatter are cited (NARPA News, Vol. 5, Issue 2, May 1985) and then discussed with respect to spatter patterns produced under known circumstances. Illustrations are included to demonstrate each point and objection.

The purpose of this paper is to recommend that the stain size be defined and examples be given of types of impacts that produce these stain sizes. These size classifications and their definitions are presented as alternatives to the use of "high", "medium" and "low" velocity impact spatter. While recognizing that the terms "high", "medium" and "low" velocity impact spatter are now in common usage, and that these terms will continue to be used when applied to specific stain patterns, attempting to classify all types of spatter into these categories will be shown to be inappropriate.

"HIGH VELOCITY IMPACT SPATTER (HVIS): BLOODYSTAIN PATTERN CHARACTERIZED BY A WIDE-LINE APPEARANCE, THAT IS CAUSED BY A HIGH VELOCITY FORCE. THIS SPATTER TRAVELS ONLY A SHORT HORIZONTAL DISTANCE IN FLIGHT. A HIGH VELOCITY IMPACT IS CONSIDERED TO BE 100 ft/sec OR GREATER. ALL SHOTGUN WOUNDS ARE CHARACTERIZED AS HIGH VELOCITY."

While it is true that some characteristic spatter produced by "high" velocity impact spatter may be considered a result of high velocity, the HVIS, HVIS, and HVIS figures 2, 3 and 4 are spatter than of "high" velocity impact spatter.
While it is true that spatter resulting from gunshot may exhibit a characteristic mist-like appearance, not all of the spatter produced by gunshot will exhibit this characteristic appearance. Figures 1, 3, and 4 show the spatter resulting from a gunshot exit wound to the head of a victim. Figure 2 shows spatter that is very close to the exit wound. Figure 3 shows spatter approximately 100 cm from the exit wound and figure 4 shows spatter approximately 300 cm from the exit wound. All four spatter patterns were produced by a high velocity impact force. Only the spatter in figure 1 exhibits what may be considered a mist-like appearance, yet all four are the result of high velocity impact - a gunshot. In fact, according to the NIST, NWSI, and LVIS definitions, the spatter patterns shown in figures 2, 3 and 4 are more typical of "medium" velocity impact spatter than of "high" velocity impact spatter.

FIGURE 1 Spatter pattern on a cardboard target in close proximity to gunshot.
The spatter is from a high velocity and was on the impact site. However, mist is on by a high velocity.

The HVIS differs like spatter is the impact source. While high velocity impact from this type of the
FIGURE 4 Bloodstain pattern on a curtain 300 cm from a gunshot exit wound of a victim’s head.

The spatter illustrated in Figure 4 traveled 300 cm from the exit wound and was deposited on a curtain. This shows that spatter from a high velocity impact can travel a considerable distance from the impact site. It is true that mist travels only a short distance, however, mist is only a small fraction of the total spatter produced by a high velocity impact source.

The HVIS definition is misleading because it implies that mist-like spatter is the only type of spatter produced by a high velocity impact source. While mist is a characteristic used to identify a high velocity impact source, it does not define all spatter resulting from this type of force.
"MEDIUM VELOCITY IMPACT SPATTER (MVIS): BLOODSTAIN PATTERN.
CHARACTERIZED BY INDIVIDUAL STAIN SIZE OF APPROXIMATELY 2 mm OR
LESS DIAMETERS, THAT IS CAUSED BY A MEDIUM VELOCITY IMPACT. A
medium velocity force travels at approximately 25 ft/sec. A
shooting typically causes this type of spatter."

Bloodstain patterns consisting of individual stain sizes of
approximately 2 mm or less in diameter are commonly caused by high,
medium and low velocity impact sources. Figures 5, 6, and 7 show
bloodstain patterns produced by high, medium, and low velocity
impacts, respectively. According to the "medium" velocity impact
spatter definition, all three patterns are characteristic of
"medium" velocity impact spatter even though only the spatter
shown in figure 6 was produced by a medium velocity impact source.
FIGURE 6 Bloodstain pattern on a striped bedsheet in close proximity to a victim beaten with an iron bar.

FIGURE 7 Bloodstain pattern resulting when a person stepped in a pool of blood. The pattern was collected on a white cardboard target 10 cm from impact.
Bloodstain patterns consisting of stain sizes of 2 mm or less in diameter may also be encountered that are not the result of impact. Figure 8 shows a blood stain pattern which was the result of blood being expelled through the mouth by coughing. This type of pattern has been observed at several crime scenes and care must be taken not to confuse it with impact spatter.

![Image](image.png)

Figure 8: Bloodstain pattern resulting from blood being expelled through the mouth by coughing. The bloodstain pattern was collected on white cardboard.

Since high, medium and low velocity impacts as well as other sources can produce spatter patterns with individual stain sizes of 2 mm or less, it is misleading to single out VHP as being characterized by spatter of this size.

In this definition range by which to dist the reason that a spatter span range from in size.

Figures 9 and 10 show velocity impact for vertical target placed striking a pool of bi成立 bloodstaining with time according to the HuF. medium velocity impact approximately 10 cm f target. Again, this impact spatter as it produced by a hammer the bloodstain diam produced by impacts o
Bloodstain patterns consisting of stain sizes of 2 mm or less in diameter may also be encountered that are not the result of impact. Figure 8 shows a bloodstain pattern which was the result of blood being expelled through the mouth by coughing. This type of pattern has been observed at several crime scenes and care must be taken not to confuse it with impact spatter.

Since high, medium and low velocity impacts as well as other sources can produce spatter patterns with individual stain sizes of 2 mm or less, it is misleading to single out MVIP as being characterized by spatter of this size.

FIGURE 8 Bloodstain pattern resulting from blood being expelled through the mouth by coughing. The bloodstain pattern was collected on white cardboard.

*Low velocity imp.
by size. That is cases*

example of this force.

In this definition range by which to dist the reason that a size spatter can range from

in size.

Figures 9 and 10 low velocity impact for
vertical target placed
striking a pool of bio
bloodstain with diam
according to the TIV
medium velocity impact
approximately 10 cm f
target. Again, this
impact spatter as it
produced by a hammer
the bloodstain diam
produced by impact o
"LOW VELOCITY IMPACT SPATTER:bloodystain patterns, characterized by size, that is caused by a low velocity force. Spattering is an example of this force."

In this definition "characterized by size" does not give a size range by which to distinguish "low velocity impact spatter". Possibly the reason that a size range is not given is that "low" velocity impact spatter can range from several millimeters to less than a millimeter in size.

Figures 9 and 11 show examples of bloodstain patterns produced by low velocity impact forces. Figure 9 shows spatter collected on a vertical target placed 11 cm from blood droges falling 60 cm and striking a pool of blood. The resulting stain pattern consists of bloodstains with diameters of approximately 2 mm or less, which according to the AFS, NSIS, and LVIS definitions is characteristic of medium velocity impact spatter. Figure 11 is an area of spatter approximately 10 cm from a 3 ml volume of blood striking a cardboard target. Again, this spatter is characteristic of medium velocity impact spatter as it is defined. In contrast, figures 11 and 12 were produced by a heavier blow and gunshot hemmstatter. In both instances the bloodstain dis退出s within each pattern are greater than those produced by impacts of less force.

51
FIGURE 9 Bloodstain pattern resulting from blood drops falling 50 cm into a pool of blood. The pattern was collected on cardboard placed 10 cm from impact.

FIGURE 10 Bloodstain pattern that resulted when 5 ml of blood struck a cardboard target, the pattern is 15 cm from the impact site.

FIGURE 11 Bloodstain pattern is

FIGURE 12 Bloodstain is 10 cm f

52
FIGURE 11 Bloodstain pattern resulting from a beating with a hammer. The pattern is 36 cm from the impact site.

FIGURE 12 Bloodstain pattern resulting from gunshot backspatter. The pattern is 15 cm from the impact site.
As a result of these observations and the difficulties encountered in relating spatter size to velocity of impact, the following classification of bloodstains is proposed.

Size of Spatter

Mist - A bloodstain pattern consisting of finely divided individual stains that are predominately smaller than 0.1 mm in diameter. Spatter is close proximity to a high velocity impact such as from a gunshot is characteristic of this type of spatter. Due to the small size of this spatter, it will travel only a short horizontal distance in flight.

Fine - A bloodstain pattern consisting of individual stains that are predominately 2 mm or smaller in diameter. Spatter resulting from a medium velocity impact such as a beating or spatter which is found a short distance from a high velocity impact such as gunshot is characteristic of spatter of this type.

Medium - A bloodstain pattern consisting of individual stains that are predominately 3 mm to 6 mm in diameter. Cast-off bloodstaining is characteristic of spatter of this type.

Lace - A bloodstain pattern consisting of individual stains that are predominately 6 mm or larger. Blood dripping from objects typically shows spatter in this size range.
In this classification system, the size is defined and charac-
terized by the type of impact, "light", "medium" or "low",
velocity that can produce the type of spatter. This classifica-
tion system allows for the use of the terms "high", "medium", and "low"
velocity impact spatter where appropriate, and eliminates the
problems that result from Alouettein pattern overlap encountered
when attempting to classify all spatter according to impact force.