An In Depth Look at VOLK
The Vector-Optimized Library of Kernels

Nathan West

U.S. Naval Research Laboratory

26 August 2015

(V) 26 August 2015 1/19

A brief look at VOLK organization

@ VOLK is a sub-project of GNU Radio

e http://libvolk.org

@ Sub-maintainer: Nathan West (that's me!)

@ Code (©) Free Software Foundation licensed under GPLv3

@ Submit issues and pull requests through
http://github.com/gnuradio/volk

(V) 26 August 2015 2/19

What’s a VOLK?

VOLK: Vector-Optimized Library of Kernels
Collaboration, compatibility, and speed (in that order)

A library of functions optimized for various CPU
architectures— usually this means SIMD

An API (and dispatcher) for calling the fastest code for your
machine

A build system for code targetting specific instruction
sets/architectures

(V) 26 August 2015 3/19

QOutline

We will cover the priorities of VOLK in reverse order:
@ Speed
@ Compatibility
© Collaboration
Goals:
@ Become fluent in VOLK
@ Know how to add a protokernel
@ Know how to add a kernel
@ Know how to make VOLK work for your project
°

Know where to look to support new hardware

(V) 26 August 2015 4/ 19

Motivation: a NEON register view of
32fc_32f _dot_prod_32fc

complex Input
real(a0)
Imag(a0)

.v\

 F—— via2q 32
real(a1)

S ntartemving quadwora
! N\ osdof 2 anes
— N foat taps
ez N
prewees 3 L
A tapes viatq 132
eaias) I [— toad quadword
! [
imagia3)
imag(a3) | imag(a2) | imag(al) | imag(a0)

laps} lapSZ laps] lapsﬂ

muttiply vector|
and accumulate)
In to quadword

Repeat with realane

im(accum3)fim(accumz)lim(accum)|im(accumo

in clean-up stage add the quad accumulator (currently done in standard C

(V)

26 August 2015 5/ 19

Motivation: Disassembled C Complex Dot

Product excerpt

Code can be inefficient even when hardware features are used

1| .loopl
mov rll, r8 @ copy new address — aVec
3 mov rl10, r4 © copy new address — bVec
vld4 .32 {d16,d18,d20,d22}, [r11]!
5 add r9, r9, #1 ©@ number +=1
cmp r9, rl2 © number < half_points?
7 add r8, r8, #64 @ calculate next aVec address
add r4, r4, #64 ©@ calculate next bVec address
9 vld4 .32 {d24,d26,d28,d30}, [r10]!
vid4 .32 {d17,d19,d21,d23}, [ri1]
11 vld4 .32 {d25,d27,d29,d31}, [r10]
13 <snipped NEON dot product ops>
15 bcc .loopl © repeat half_points times

(V)

26 August 2015 6 /19

Problem: Architecture-optimized code is not portable

@ Historical solution is #ifdef fences
@ Meta-compilers exist (ORC, Spiral, PEACHPy)

This brings us to VOLK's second concern: compatibility

(V) 26 August 2015 7/ 19

Compatibility

" All problems in computer science can be solved by another layer
of indirection.” —David Wheeler

VOLK abstractions:
@ arch (gen/archs.xml)

@ machines (gen/machines.xml)

(V) 26 August 2015 8 /19

Compatibility: the arch abstraction

Architectures are hardware features, described in an xml file with
@ Arch name
o Compiler flags
@ Alignment restrictions
°

check name (defined in tmpl/volk_cpu.tmpl.c)

(V) 26 August 2015 9 /19

Compatibility: the machine abstraction

Machines are a collection of architectures that are found together
in real hardware.

Example ("neon”):
@ generic
@ neon
e softfp OR hardfp
@ ORC is optional

(V) 26 August 2015 10 / 19

Compatibility: kernels and protokernels

Kernel: the body of a vectorized loop (kernels/volk/*.h)
Proto-kernel: a specific implementation of a kernel (func-
tions in kernels/volk/*.h or .S files in kernels/volk /asm/<arch>/)

input signature output signature proto-kernel tag
volk 32fc_ _32f _u_neon_fancy_sweet
volk namespace alignment

API: from your application call the dispatcher
volk_32fc magnitude 32f(...)

(V) 26 August 2015 11 /19

From: Tom Rondeau
Subject: Re: [Discuss-gnuradio] Talking about DSP and SDR [Was: On tunnel.py]
Date: Sat, 30 Mar 2013 15:09:09 -0400

I love the idea of taking those tutorials you pointed to and making
GNU Radio applications that showcase them. I suggested a similar
concept of using the "DSP Tips and Tricks" section of IEEE Sig. Proc.
Magazine a while ago:
http://www.trondeau.com/blog/2011/5/16/dsp-tips-and-tricks.html. They
are small, 2-page papers that show off some small DSP tip or trick (as
the name would imply) that is simple to express and therefore work up
in GNU Radio.

Students learning comms theory and DSP could benefit a lot from either
developing these or having them available for study.

Now the question is: who wants to start working on this concept?

I'd suggest that Brian start formatting the page based on the list he
put above, but I think we might be better served by having someone
come up with a full page for something, like the OFDM model you
mentioned, so we can get a feel for how this will go and how the pages
will eventually look.

Tom

(V) 26 August 2015 12 /19

Compatibility: the profiler and dispatcher

@ volk profile will run and time all proto-kernels for your
machine

@ Fastest proto-kernels per kernel are stored in
$HOME/ .volk/volk _config

@ At run-time dispatcher loads volk_config and runs what
volk_profile reported as fastest (lib/volk_rank_archs.c)

@ Dispatcher handles selecting alignment and valid
proto-kernels

(V) 26 August 2015 13 /19

Compatibility: putting it all together

user

dsp engineer build system

kernels/volk/volk_32f x2_dot_prod_32fh

#ifdef LV_HAVE_NEON
volk_32f x2_dot_prod_32f_neon(...) NEON machine

#endif volk_32f_x2_dot_prod_32f(
#ifdef LV_HAVE_AVX
volk_32f x2_dot_prod_32f avx(...)
volk_32fc_x2_multiply_32fc(
#endif
neon arch
kernels/volk/volk_32fc_x2_multiply_32fc.h i
avx arch et mutioly . libvolk.s0 <«—|
#ifdef LV_HAVE_NEON AVX machine
volk_32fc_x2_multiply_32fc_neon(...)

volk_32f_x2_dot_prod_32f(...)
sse arch #endif _321_x2_dot_prod_.
#ifdef LV_HAVE_AVX
volk_32f¢_x2_multiply_32fc_avx(...) —
volk_32fc_x2_multiply_32fc(..
#endif
#ifdef LV_HAVE_SSE

volk_32f¢_x2_multiply_32fc_sse(...)

#endif

(V) 26 August 2015 14 /19

A final note on compatibility: QA and
Puppets

VOLK QA reads function signatures to generate buffers and
random input data

@ Arch-specific proto-kernels are compared to generic for
correctness

o If VOLK QA cannot generate buffers for your signature you
need a puppet

@ Puppets wrap your kernel in a VOLK QA-friendly form. See
the rotatorpuppet for examples

(V) 26 August 2015 15 /19

Collaboration

VOLK is a repository for efficient code that people actually wrote
(not the code we wish they wrote)

32f_x2_dot_prod_32f 1 1 3 31 2 40
32f x2_fm_detectpuppet_32f 10 010000
32f x2_interleave_32fc 10 010010
32f_x2_max_32f 1 0 01 00 1 0
32f_x2_min_32f 1 0 01 00 1 0
32f_x2_multiply_32f 1 1 111 1 1 0
32f_x2_pow_32f 1 0 11 00 0O
32f_x2_s32f_interleave_16ic 1 0 0 2 00 0O
32f_x2_subtract_32f 1 0 01 00 1 0
32f_x3_sum_of_poly_32f 1 o o111 11
32fc_32f_dot_prod_32fc 1 0 111 1 00
32fc_32f_multiply_32fc 1 0 0101 10
32fc_conjugate_32fc 11 1.1 1 1 0 1

(V) 26 August 2015 16 / 19

Collaboration: VOLK for you

@ volk_modtool: like gr_modtool, but for VOLK
@ experiment with new archs
o Add kernels (new header files)

@ Hopefully contribute upstream

(V) 26 August 2015

17 /19

Parting Thoughts

VOLK is a necessity caused by vectorization being very
difficult for compilers

DSP designers write code specific to hardware and wrap it
inside VOLK

Users call VOLK kernels when they are available

After profiling your code, create a VOLK kernel where it is
needed

Contribute VOLK kernels upstream for collaboration

(V) 26 August 2015 18 /19

Working Group

Thursday at 3:00 PM

e Missing kernels/proto-kernels

@ Arch-specific helper sub-libraries
@ Build issues
o

General feedback

(V) 26 August 2015 19 /19

