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expanded to include unitary operators (termed “quantum strate-
gies”), or (iii) both of the above occur. These quantum mechanical 
applications in games produce various novel and interesting re-
sults. In this review, the term “novel” refers to a result in quantum 
game theory that is favorable and could not be realized in classical 
game theory. Quantum game theory literature focuses on a number 
of such results to establish the topic’s significance.

Pareto efficiency refers to an outcome in a game such that 
there are no other possible outcomes that give higher payoffs to a 
non-zero number of players without decreasing any player’s pay-
off. Conversely, Pareto inefficiency is observed when the Nash 
equilibrium of the game – an outcome where all players of a game 
do not have an incentive to change their strategies – does not ex-
hibit Pareto efficiency (Nash, 1951). Games that are Pareto inef-
ficient under the classical paradigm can be made efficient through 
the use of quantization, which is a novel result beneficial to the 
players (Eisert, Wilkens, and Lewenstein, 1999). Another key re-
sult is higher payoffs for players in the game, which directly indi-
cates that they have benefitted from quantization (Meyer, 1999). 
Quantization can also lead to new coalitions among players in 
the game that gives higher payoffs to a greater number of play-
ers (Chen, Hogg, and Beausoleil, 2002). These results, obtained 
uniquely in quantum games, are significant as they expose a deep 
and rich econophysical connection wherein quantization is con-
ducive to strategic coordination. Although the current lack of 
quantum technology imposes significant limitations on immediate 
practical applications of the theory, the accuracy of a few simple 
quantum games has been supported with experimental evidence 
through computer science, suggesting the potential relevance of 
the theory once necessary technological advances are made (Du et 
al., 2002; Prevedel et al., 2007; Schmid et al., 2010).

Research conducted on quantum game theory may be clas-
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Over the past two decades, the quantum mechanical concepts of superposition and entanglement have been applied in game theory to pro-
duce novel and interesting results. Quantization offers significant improvements to classical games that cannot be realized using purely 
classical strategy spaces. Because quantum game theory is a recent development with both merits and limitations, this review attempts to 
critically evaluate existing research as well as gaps in the literature requiring further research. The literature is classified into four categories 
of games based on differences in quantization schemes and results: quantum simultaneous non-zero-sum games, quantum simultaneous 
zero-sum games, quantum coalitional games and quantum sequential games. The first two categories exhibit the results of Pareto efficiency 
and improved payoffs, but the literature reviewed does not sufficiently analyze the role of strategic coordination in bringing about such im-
provements. Quantum coalitional games also have improvements over their classical counterparts, often leading to cores that yield higher 
payoffs to a greater number of players, given a quantization scheme that encompasses all players’ strategy spaces. However, the mecha-
nism through which these improvements are realized is generally unclear. Finally, quantum sequential games exhibit cooperative behavior 
among players that is absent in the corresponding classical games. This review concludes that quantum games have significant advantages 
over their classical counterparts and suggests the role of strategic coordination in quantum games as a fruitful direction for future research.

INTRODUCTION
It is perhaps not a coincidence that the mathematician John von 
Neumann was a significant contributor in both economic game 
theory and quantum mechanics (von Neumann, 1953; von Neu-
mann, 1955). Although classified as two discrete subjects of mod-
ern science, game theory and quantum mechanics exhibit deep, 
interesting connections (Meyer, 1999). At a glance, the two topics 
seem completely unrelated indeed: game theory is an analytical 
tool used to model and study the decision-making process of ra-
tional economic entities, whereas quantum mechanics is a branch 
of physics describing the nature of motion at the smallest scales of 
physical quantities. However, over the past two decades, numer-
ous surprising connections have been found linking the fields after 
two key concepts from quantum mechanics – superposition and 
entanglement – were applied in classical game theory. Superposi-
tion refers to the property that a physical state can be a sum of mul-
tiple distinct states, each of which has a probability of being ob-
served; entanglement is a phenomenon in which multiple particles 
are related, such that each of their quantum states is dependent on 
each other, regardless of physical distance (Nielsen and Chuang, 
2000). A classical game is quantized when (i) the outcomes of the 
game are entangled and superposed, (ii) players’ strategy sets are 
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sified into four categories: quantum simultaneous non-zero-sum 
games, quantum simultaneous zero-sum games, quantum coali-
tional games, and quantum sequential games. These games are fun-
damentally different, as simultaneous games have players choose 
their strategies independently, whereas players compete as groups 
in coalitional games and players take turns choosing their strate-
gies in sequential games (with at least some information on oth-
ers’ strategies in previous turns). This review attempts to examine 
research from the four major categories described and discuss the 
significances of their results, as well as gaps and limitations in the 
current theory. Based on comparisons between classical and quan-
tum games, this review asserts that quantization is significant in 
allowing for strategic coordination between players that improve 
payoffs, leading to novel results favorable for the game’s players.

QUANTIZATION SCHEME FOR SIMULTANEOUS NON-
ZERO-SUM STRATEGIC GAMES
The quantization scheme used prevalently in simultaneous non-
zero-sum strategic games was proposed by Eisert et al. (1999). It is 
widely researched using the Quantum Prisoner’s Dilemma (QPD) 
as well as the Quantum Battle of Sexes (QBoS). Eisert et al.’s pre-
sentation of the quantization scheme through the QPD is outlined 
below and shows a remarkable example of quantum game theory 
– namely, the emergence of a Pareto efficient Nash equilibrium 
benefitting both players. However, further research is needed to 
investigate the role of strategic coordination in the emergence of 
this favorable outcome.

Classical Prisoner’s Dilemma (PD) is a standard game that 
reveals how two rational players, Alice (player i = 1) and Bob 
(player i = 2), may choose strategies that lead to an outcome that is 
not in their best interest – a Pareto inefficient outcome. In the PD, 
Alice and Bob are accused of a crime, and both players can adopt 
one of two possible strategies – confessing to the crime or defect-
ing from doing so. Each possible pair of strategies chosen by Alice 
and Bob lead to a particular payoff for each player, enlisted in the 
matrix of Table 1. It is clear from this payoff matrix that “defect” is 
the dominant strategy for both players, hence the Nash equilibrium 
(D̂,D̂). However, because both players can improve their respec-
tive payoffs by shifting to “confess” in (Ĉ, Ĉ), the equilibrium is 
a Pareto inefficient outcome. Thus, the players are placed in a “di-
lemma”.

The QPD builds on the classical PD by using quantization to 
produce an efficient outcome. Firstly, the strategy space for both 

players is expanded so that it is quantized:
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where θ d [0, π] and φ d [0, π/2] (Eisert et al., 1999). This uni-
tary strategy space encompasses classical strategies: “confess” 
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1
0
0
1

b l  and “defect” by D̂ =           
0
1
1
0-

b l .
Another feature is introduced in the QPD: the final state of the 

game determines the payoff. The initial state is defined as 

		             | J | CCi =} t 			   (2)

and the final state of the game, determined according to the two 
players’ strategies Ai=1 and Ai=2, is

						              		
		  ( )| J A A J | CCi 1 2f i,=} = =t t 		  (3)

where |
1
0

C = b l  and |
0
1

D = b l ; the unitary operator Ĵ deter-

mines the extent of entanglement present in the state before Alice and 
Bob apply their strategies. Mathematically, an entanglement of two 
states “0” and “1”, represented by vectors | 0 and | 1 , is denoted 
by |01 , which is the tensor product | 0 | 1, , indicating that 
the two states are observed together. In the case of maximal entan-
glement that is examined, 

2
1| |CC i | DDi = +} ^ h . Since 

the strategy space is unitary, the final state has the magni-
tude of 1 as | i} and is a superposition of the entangled or-
thonormal basis |CC , |DC , |CD , and |DD , each of 
which represents one of the classical outcomes of the game (i.e. 

2
1| |CC | CDf = +} ^ h  gives payoff 2

1 (3,3) + 2
1 (0,5) = 

(1.5,4) as it represents the case where Alice confesses and Bob 
confesses with probability 1/2, while Alice confesses and Bob 
defects with probability 2

1 ). Note that |C  and |D  represent 

“confess” and “defect” within the context of the final state, but 
are not actual strategies open to players – these vectors have been 
introduced simply as a way of determining players’ payoffs using 
the outcomes of the classical PD.

The case of maximal entanglement caused by the opera-
tor Ĵ is significant due to its unique property of containing a Pa-
reto efficient Nash equilibrium when both players choose the 

strategy ( , / ) ( )Q A
i

i
0 2

0

0
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-
t  (Eisert et al., 1999). In other 

words, the “dilemma” present in PD of an inefficient equilib-

Bob

 Ct Dt

Alice
 Ct 3, 3 0, 5

Dt 5, 0 0, 0

Table 1. The playoff matrix for Classical Prisoner’s Dilemma (PD; 
Eisert et al., 1999). The players face a “dilemma” as the Nash equilibrium 
ofO is Pareto inefficient.
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considering the context of the original game, it is unclear what 
entity could play the role of Ĵ, allowing for the prisoners’ strate-
gic coordination through entanglement. A possibility might be the 
prisoners’ interrogator or attorney, but such a scenario is unrealis-
tic because neither have any incentive to help the prisoners (Enk 
and Pike, 2002). Enk and Pike’s article suggests that it is necessary 
to carefully define the entity playing the role of Ĵ in a way consis-
tent with the original context and that further research is required.

One may follow Enk and Pike’s line of reasoning and question 
the significance of the strategy space given in Equation 1, given its 
arbitrary appearance. It is hard to find a meaningful interpretation 
to defining the strategy space in this particular way (Benjamin and 
Hayden, 2001). On the other hand, a more physically “natural” 
way of defining the strategy space would include all possible uni-
tary operators that do not affect entanglement, reflecting an inter-
pretation in which the players can adopt anything that is possible 
within quantum mechanics (Benjamin and Hayden, 2001). In fact, 
Benjamin and Hayden (2001) found that no equilibrium of pure 
strategies exists using this strategy space for the QPD. However, 
despite this limitation, Eisert et al.’s restriction in strategy space as 
given in Equation 1 is significant and necessary precisely because 
it can produce an efficient equilibrium in all two-player simultane-
ous games, not just for the QPD (Du et al., 2000). Thus, although 
Benjamin and Hayden (2001) correctly point out that Eisert et al.’s 
quantization scheme restricts the strategy space without a realistic 
physical interpretation, this restriction is necessary in order to ob-
tain the desired result of an efficient equilibrium in any two-player 
simultaneous game (Du et al., 2000).

Another example of a quantum non-zero-sum simultaneous 
strategic game is the QBoS, first proposed and studied by Mari-
natto and Weber (2000). The payoff matrix for the Classical Battle 
of Sexes (BoS) is shown in Table 3. The game is played between 
Alice (player i = 1) and Bob (player i = 2), who both have two 
strategies Ô – going to the opera – and T̂ – watching television. 
Both (Ô, Ô) and (T̂, T̂) are Nash equilibria in this game and give 
payoffs of α to one player and β to another. However, if they fail 
to choose the same strategy – that is, if they choose either (Ô, T̂) 
or (T̂, Ô) – the players will receive the worst possible payoff of 
(γ, γ). Thus, the classical BoS is a game of coordination for the 
players to choose the same strategy. The QBoS is also played by 
Alice (player i = 1) and Bob (player i = 2), and the same quantiza-
tion scheme developed by Eisert et al. is used (Benjamin, 2000; 

rium has been solved as Q̂ gives rise to an efficient equilibrium 
(Eisert et al., 1999). As shown in the matrix of Table 2, the equi-
librium (Q̂, Q̂) gives payoffs of (3, 3) equivalent to that of (Ĉ, 
Ĉ) in the classical game, which was previously seen to be Pare-
to efficient but not an equilibrium in PD. Thus, the creation of 
an efficient equilibrium following quantization is a novel result. 
Note that Table 2 does not contain the entire set of strategies and 
payoffs, which are continuous and would result in a multidimen-
sional graph rather than the simple and discrete matrix present-
ed; this method of presentation is motivated by Grabbe (2005).

The question then arises: how has the quantization of the PD 
resulted in this efficiency? Considering the final state interpretation 
of the game, it is clear that quantization of the game has allowed 
for coordination between Alice and Bob’s classical strategies of 
|C  and |D , as they were entangled. In fact, it is because of this 
strategic coordination in the final state that Alice and Bob attain an 
efficient equilibrium equivalent to both players confessing. How-
ever, one cannot conclude from this strategic coordination that 
the QPD is not a simultaneous game, which by definition requires 
independence in players’ choice of strategies, because the quan-
tum strategies themselves are indeed chosen independently from 
A(θ,φ) – the final state interpretation is simply a way of determin-
ing the players’ payoff using the outcomes of the classical game. 
This aspect of strategic coordination due to quantization is signifi-
cant in analyzing quantum games but has not been discussed in the 
literature reviewed regarding simultaneous non-zero-sum strate-
gic games. Research on this area of strategic coordination would 
further understanding of how quantization leads to improvements 
over classical games. Although Eisert et al. (1999) established that 
quantization of games does lead to certain favorable outcomes of 
cooperation, the mechanism through which quantization leads to 
improvements is unclear. There is evidence that strategic coordina-
tion due to quantization is involved in this cooperation, so inves-
tigating the mechanisms through which quantization causes stra-
tegic coordination is likely to offer insight into this mechanism.

Another aspect of the QPD that could benefit from further 
research is the role of the operator Ĵ in the quantization scheme 
outlined above. It seems that Ĵ is inconsistent with the original 
context of the PD, which involves two players suspected of a crime 
strategically trying to benefit themselves (Enk and Pike, 2002). In 
the QPD, Ĵ is helpful to the players, who are prisoners, as it cre-
ates entanglement, leading to an efficient equilibrium. However, 

Bob

Ct Dt Qt

Alice

Ct 3, 3 0, 5 1, 1

Dt 5, 0 0, 0 0, 5

Qt 1, 1 5, 0 3, 3

Table 2. The payoff matrix for Quantum Prisoner’s Dilemma (QPD; 
Grabbe, 2005). The “dilemma” of PD is solved as Q,Qt t^ h  is a Nash 
equilibrium exhibiting Pareto efficiency.

Table 3. The payoff matrix for Classical Battle of Sexes (BoS; Mari-
natto & Weber, 2000). There exists a problem of coordination of both 
O,Ot t^ h and T,Tt t^ h are Nash equilibria. 

Bob

Ot Tt

Alice

Ot 3, 3 0, 5

Tt 5, 0 0, 0

> >a b c
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Marinatto and Weber, 2000), but the strategy space is extended to 
the set of all two-by-two unitary matrices. The classical strategies 

in the strategy set are represented by the operators (i) Ô = 
1
0
0
1

b l
and (ii) T̂ = 

0
1
1
0-

b l . The final state is therefore a superposition 

of the orthonormal basis |OO , |OT , |TO , and |TT  such 

that |O = 
1
0
b l  and |T  = 

0
1
b l . Marinatto and Weber (2000) 

proved through algebraic reasoning that there exists a certain pair-
ing of mixed quantum strategies between Alice and Bob such that 

2
1 ( )| | OO | TTf = +} . Consequently, the expected payoff 

to both players is (α + β)/2, which can be interpreted as the aver-
age payoff of the two Nash equilibria (Ô, Ô) and (T̂, T̂) (Marinatto 
and Weber, 2000). This is observed to be an improvement over the 
classical BoS (Marinatto and Weber, 2000). Similar to the QPD, 
this improvement seems to be the result of strategic coordination 
between Alice and Bob due to quantization. Because the two play-
ers’ strategies are entangled, they can readily be coordinated to 
obtain the desirable outcomes of either |OO  or |TT , where the 
players choose the same strategies.

As noted by Benjamin (2000), one limitation of the QBoS is 
that the game requires mixed quantum strategies to obtain the de-
sired equilibrium, yielding yet another uncertainty in strategies. 
Mixed strategies, whether quantum or classical, are probabilisti-
cally determined, so both desirable and undesirable outcomes can 
arise – the expected payoff simply gives the average of the differ-
ent possible outcomes weighted according to their probabilities. 
In fact, a similar result of an equilibrium can be obtained even in 
the classical version if mixed classical strategies are used (Grabbe, 
2005). When using mixed classical strategies in the BoS, the play-
ers can decide on a probability distribution between the two strate-
gies Ô and T̂ that will maximize their respective expected payoffs. 
Defining p * as the probability of Alice choosing Ô and q * as the 
probability of Bob choosing Ô, the expected payoffs for Alice and 
Bob can be optimized using calculus. This computation yields an 

expected payoff of 2

2

= + -
-

r
a b c
ab c

 to both players, which is 

lower than the expected payoff of 2
+a b

for the QBoS (Mari-

natto and Weber, 2000). Thus, although the QBoS does result in 
higher expected payoffs than the BoS due to coordination through 
quantization, since the QBoS requires mixed strategies to obtain 
its equilibrium, which is possible even in the classical version, the 
advantage of the QBoS over the BoS does seem to be undermined.

QUANTIZATION SCHEME FOR ZERO-SUM SIMULTA-
NEOUS STRATEGIC GAMES
Because Eisert et al.’s quantization scheme uses both quantum 
strategies and entanglement to quantize a game, considering the 

effects of using only quantum strategies without entanglement 
may offer insight into their unique advantages (Du et al., 2000). 
Meyer’s scheme, which does not use the operator Ĵ, exposes the 
advantages of quantum strategies by comparing them with clas-
sical strategies without entanglement (Meyer, 1999; Du et al., 
2000). Despite the absence of entanglement in Meyer’s scheme, 
the results of the zero-sum quantum game are highly analo-
gous to those of Eisert et al.’s scheme in which payoffs are im-
proved through quantization. Meyer’s scheme is outlined below.

Meyer’s quantum game is equivalent to the classical “Match-
ing Pennies” game in all respects other than its strategy set, which 
has been expanded into the entire set of unitary two-by-two opera-
tors. A penny is placed head up initially. Then, without looking 
at the penny each time, player i = 1, player i = 2, and player i = 
1 (once again) apply strategies of their choice to the penny in the 
order listed. If the penny appears as “head” in the end, player i = 1 
and i = 2 receive payoffs of +1 and -1 respectively, and vice versa in 
the case of “tail”. Thus, the game is classified as zero-sum. Though 
the game is played in sequence, it is still a simultaneous game 
because neither players receives any information about his oppo-
nent’s strategy nor the state of the penny throughout the game. In 
the classical game, both players are restricted to the strategy set of 

“flip” and “not flip,” represented by F̂ = 
0
1
1
0

b l  and N̂ = 
1
0
0
1

b l
respectively, which may be mixed probabilistically. Howev-
er, in Meyer’s quantum game, player i = 1 alone has access to 
quantum strategies in the form of the unitary operator A(a, b) 

= 
a
b
b
a-r r

b l . The state of the game, which is a superposition of 

“head” and “tail,” is represented by a linear combination of 

|H  = 
1
0
b l  and |T  = 

0
1
b l . Quantum strategies induce 

the final state of the game to be in the form | a | H b | Tf = +}
, which is superposed, but not entangled. In general, the initial state 
of the game is |H , and ultimately

                       | A pF (1 p)N A | Hf 2 1= + -} " , 		  (4)

where A1 and A2 are player i = 1’s strategies in chronological order, 
and p is the probability at which player i = 2 will choose “flip” as 
his strategy. Meyer (1999) computed the final state density ma-
trix – a matrix showing the respective probability amplitudes of 
each of the possible states a superposed state may be in – to assert 

that if A1 = A2 = A
2
1 ,

2
1c m , the final state will be “head”, 

independent of player i = 2’s choice of p. The Nash equilibrium 
thus gives payoffs of +1 to the quantum player and -1 to the clas-
sical player. This contrasts with the classical equilibrium of the 
Matching Pennies game, which gives an expected payoff of zero 
to both players (Meyer, 1999). This analysis of Matching Pennies 
game therefore suggests that a simultaneous zero-sum game be-
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tween a quantum player and a classical player will be advanta-
geous for the former. Meyer (1999) generalized this observation 
to prove that (i) all simultaneous zero-sum games do have a Nash 
equilibrium when played between a quantum player and classi-
cal player, and (ii) the expected payoff for the quantum player in 
this equilibrium is at least as great as the expected payoff when 
he plays mixed classical strategies like the other player (Meyer, 
1999). In other words, the observation that the quantum player 
has an advantage over the classical player holds in general for si-
multaneous zero-sum games. Using quantization in this way is an-
other novel result that can be utilized to improve players’ payoffs.

The observation above has been verified through other games 
as well. The quantized “Card Game “presented by Du et al. (2000) 
is an interesting example: the initial zero-sum game is between a 
quantum player and a classical player using mixed strategies, each 
with zero expected payoff. However, consistent with the theorem 
above, when the quantum player is reverted into a classical player by 
restricting his initially quantum strategy space to simply mixed clas-
sical strategies, he actually receives less payoff than his opponent. 
It is evident from the quantized Card Game that the quantum player 
did possess an advantage when allowed to use quantum strategies.

This result of Meyer’s quantization scheme implies that quan-
tum strategies have properties absent in classical ones that can 
make the quantization of a classical game an advantageous choice. 
The invariance of the final state suggests that quantum strate-
gies create strategic links between the players. When player i = 2 
chooses to flip the penny, his opponent also ends up flipping the 
penny. However, when he chooses not to flip, his opponent also 
ends up not flipping the penny. This dependency between strate-
gies from the perspective of the final state is a consequence of the 
extension of the strategy space to the quantum domain. The player 
capable of playing with the quantum strategies is at an advantage 
because he can manipulate the strategic link to benefit himself. 
Consequently, quantum strategies without entanglement can create 
strategic links in accordance with the final state between players 
in ways analogous to the QPD. This is a significant observation 
regarding the impact quantization of strategies has on a classical 
game without entanglement.
Quantum Coalitional Games
The effects of quantization observed in various simultaneous 
games can be readily applied in coalitional games. Some methods 
illustrated in this section that are used to quantize coalitional games 
include sharing entangled states, using quantum strategies, and en-
tangling players’ states with others. The appropriate quantization 
of coalitional games yields novel, significant results of effective 
cooperation between players resulting from strategic coordination, 
often leading to win-win situations, as explored in games such as 
the Public Goods Game and the Minority Game. A wider variety of 
quantum coalitional games must nonetheless be researched using 
a greater number of methods to determine the general mechanism 
through which quantization leads to these improved outcomes.

An illuminating example, motivated by the idea of multi-
player entanglement, is Mermin’s Multiplayer Pseudo-Telepathy 

Game between n players (Brassard et al., 2004; Mermin, 1990). A 
review of pseudo-telepathy games in general is provided by Bras-
sard, Broadbent, and Tapp (2005). In the formulation of Mermin’s 
Multiplayer Pseudo-Telepathy Game by Brassard et al. (2004), a 
single state xi is given to each player who is then allowed to ap-
ply a transformation Ti to get Ti: xi → yi. Given that ∑ixi is even, 
all players receive a total payoff of +1 if and only if the following 
condition is satisfied:
							     
			   2

1 x yi i
ii

=|| 			   (5)

In all other cases, all players receive a payoff of -1. The key aspect 
of this coalitional game is strategic coordination and cooperation 
among players, which is unachievable in the classical context as 
each player does not have perfect information about the strategies 
of all other players, preventing coordination. However, Brassard 
et al. (2004) present a proof for the existence of a set of trans-
formations that results in the group certainly receiving a payoff 
of +1. The desired set of transformations involves the sharing of 
an n-qubit, which is an entanglement of n states of either | 0 , 
| 1 , or both (i.e. 03  = | 0 ,  | 0 , | 0  is an example of a 
3-qubit). The players first agree to share an entangled n-qubit state 

2
1 (| 0 | 1 )n n+ and to apply different operators on their parts of 

the shared n-qubit in accordance with the parity of their own given 
state xi. This gives rise to a transformation that makes yi a super-
position of only odd or only even states that satisfies Equation 5. 
In other words, quantization is used in these transformations to (i) 
create coordination between players’ strategies through a shared 
entangled state and (ii) exploit quantum strategies to create a su-
perposition of states with the same parity. In effect, superposition 
and the sharing of the n-qubit has led to the novel result of a win-
win cooperation between the players, which was previously im-
possible in the classical context. Grabbe (2005) commented that 
the remarkable feature of this coalitional game is that, as a conse-
quence of quantization, the core is achieved only when full coop-
eration occurs in the form of a grand coalition involving all play-
ers. Mermin’s “Multiplayer Pseudo-Telepathy Game” suggests 
that the appropriate application of quantum mechanical concepts 
in coalitional games can result in the emergence of a core that is 
beneficial to a greater number of players by creating cooperation 
between players.

The “Public Goods Game” is a well-established game in stan-
dard economic theory and is also amenable to quantization. Chen 
et al. (2002) investigated a variation of the “Public Goods Game” 
in which there are n players each indexed as k = 1,…, n. Player k 
has an initial personal endowment of yk and contributes the amount 
ck to the public good. It is assumed that 1y kk 6= . Then, accord-
ing to the production function ( )g C aC/n= , where C ckk=| , the 
amount of public goods produced x is determined. The utility of 
player k is then determined through the function ( )Q x,y x yk = +
, where y y ck k= - is the amount of private wealth remaining af-
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ter contributing to the public good. In this classical version, play-
ers will contribute nothing when a < 1 and everything when n < 
a, which are both Pareto efficient equilibria (Chen et al., 2002). 
However, when 1 < a < n, the equilibrium is for players to con-
tribute nothing, which is an inefficient outcome; a coalition be-
tween all players to contribute everything would be Pareto effi-
cient, but players have an incentive to cheat and contribute nothing 
for personal gains (Chen et al., 2002). The quantum version, also 

proposed by Chen et al. (2002), assigns the vector | 0
1
0

= b l  to 

“cooperation” 1c yk k= =^ hand | 1
0
1

= b l  to “defection” 

0ck =^ h . Each player may choose a superposition of these vec-
tors as their strategy. Chen et al. (2002) investigated three cases of 
entangling the players’ strategies: (i) full entanglement between 
all players, (ii) entanglement between all possible pairs of play-
ers, and (iii) entanglement between neighboring pairs of play-
ers. All three cases are shown to have an equilibrium in which 
all players contribute between 0 and 1 in the equilibrium under 
1 < a < n, which is not yet Pareto efficient, but still an improve-
ment over the classical version (Chen et al., 2002). Once again, 
quantization of a classical game has created strategic coordina-
tion, which for the “Public Goods Game” resulted in a set of 
payoffs beneficial for all players. The “Quantum Public Goods 
Game” further demonstrates that coalitional games can exhibit 
cooperative behavior in the interest of all players through ap-
propriate quantization. Furthermore, the quantization scheme 
presented seems to produce a valid version of the classical game 
that retains its coalitional nature – in both versions, players have 
a choice between cooperating with and defecting the coalition, 
with quantization as an effective reinforcement of the coalition.

More quantum coalitional games need to be quantized, as 
there is yet a limited number of quantized versions of such games, 
hindering the advancement of more accurate and general observa-
tions on these games. Various patterns and schemes of quantiza-
tion are observed throughout the literature on this topic; in fact, 
the Public Goods Game has three different quantization schemes 
that each produces a different result (Chen et al., 2002). Addition-
ally, some classical games such as the “Minority Game” produce 
unexpected results under quantization: while the classical Minor-
ity Game (players choose between two options, and those in the 
minority win) is primarily studied using an odd number of players 
to avoid balance of players, the quantum version can be designed 
to avoid the balance as much as possible, resulting in the same 
set of payoffs as the classical game for an odd number of play-
ers and higher payoffs for an even number of players (Benjamin 
and Hayden, 2001). The roles quantization and strategic coordina-
tion have in such a result is interesting but also bizarre. As with 
the “Public Goods Game,” there are multiple ways to quantize the 
“Minority Game,” but another bizarre result is that entanglement 
between pairs does not improve the payoffs in the Minority Game, 
which is inconsistent with the “Quantum Public Goods Game” 

(Flitney and Hollenberg, 2008). More coalitional games must be 
quantized with various schemes and methodologies in order to fur-
ther investigate the precise rules and mechanisms through which 
strategic coordination occurs and novel results are produced.

QUANTUM SEQUENTIAL GAMES
Sequential games also seem similarly affected by quantization. 
One such example is the quantum version of the quantity leadership 
model of a duopoly, also known as the Stackelberg model (Iqbal 
and Toor, 2002). The Stackelberg duopoly is a classical sequential 
game that attributes more profit to the leader firm, but profits are 
shared more equally in the form of a Cournot equilibrium – where 
no firm is the leader – when the game is quantized appropriately 
(Iqbal and Toor, 2002). Iqbal and Toor (2002) transformed the 
classical game into a quantum one by (i) using the quantization 
scheme equivalent to the QBoS, but with a sequential structure 
and (ii) defining a function (Equation 6) that assigns each choice 
of quantity q in the classical model to a unique value x in the range 
(0, -1] that describes the probabilistic distribution of the play-
er’s mixed quantum strategy. Iqbal and Toor (2002) then proved 
that their quantization scheme for the Stackelberg model leads 
to an outcome equivalent to that of a Cournot equilibrium, such 
that the leader firm has lost its dominance through quantization.

		                  x = 1
1

q+ 			   (6)

Although Iqbal and Toor (2002) concluded that the result is 
“counter-intuitive,” the results seem reasonable and consistent 
with the effects of quantization observed throughout this review. 
In the classical version, the strategic link between the two firms 
works to the advantage of the leader firm, which has more mar-
ket power over the other firm, whose strategy is in turn limited to 
“following” the leader. Quantization, on the other hand, strength-
ens the mutual strategic link between the two firms and allows 
the follower firm to have a greater and more direct impact on its 
competitor. Because the classical Cournot equilibrium does not 
contain a leader firm, the quantized Stackelberg equilibrium ob-
tains an equivalent outcome as a result of this mutual and hence 
“fair” strategic link between the firms. This “fair” distribution of 
the firms’ profits in the quantum Stackelberg equilibrium has not 
been observed in the classical version of the game, and is hence 
another example of a novel outcome induced through quantization.

As additional evidence, Li et al. (2002) followed Iqbal and 
Toor’s investigation and found that the quantum version of the 
Cournot equilibrium – which is not a sequential game, but still 
an illustrative example – also exhibits more cooperative behav-
ior than the classical version, in which firms act selfishly for their 
respective profits. The firms of the quantum Cournot duopoly ex-
hibit a greater degree of cooperation than those in the classical 
Cournot duopoly in the sense that they choose strategies that ef-
fectively maximize their combined profits rather than their indi-
vidual profits (Li et al., 2002). This behavior was observed to be 
increasingly strong for higher degrees of entanglement (Li et al., 
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2002). The cooperative behavior between firms in a Cournot duo-
poly following the entanglement of their strategies is another nov-
el result that is not observed in the classical version of the game, 
where firms simply maximize individual profits without regard for 
combined profits. The overall application of quantum mechanical 
concepts in sequential games seems to create strategic links that 
lead to novel outcomes of cooperative behavior and “fair” results.

DISCUSSION
This review demonstrates that the quantum mechanical concepts 
of entanglement and superposition are readily applicable to game 
theory, producing novel results that can be employed to better 
players’ payoffs in a wide range of games. These results are not 
only absent in the original classical games, but also interesting 
because they pose a solution to the problems of these classical 
games, ultimately leading to beneficial results for players. For in-
stance, the classical PD highlights the issue of an inefficient equi-
librium dominating the efficient outcome; this problem is solved 
by quantization as superposition and entanglement lead to strate-
gic links conducive to cooperation (Eisert et al., 1999). Similarly, 
the problem of coordination between players is solved in the BoS 
as quantization leads to a payoff where the two players choose the 
same strategy simultaneously (Marinatto and Weber, 2000). These 
solutions to the problems highlighted in classical games are found 
in zero-sum games, coalitional games and sequential games (Bras-
sard et al., 2004; Chen et al., 2002; Iqbal and Toor, 2000; Meyer, 
1999). Using quantization in these ways to solve issues of coop-
eration and coordination is the key idea of quantum game theory.

A fruitful direction for future research in quantum game 
theory is the role of strategic coordination in quantum simulta-
neous games. It was observed through the QPD and the QBoS 
that the final outcome of the quantum game suggests the exis-
tence of strategic coordination through quantization. Whereas 
the original classical games exhibited inefficient outcomes due 
to the failure of coordination among players, the quantum games 
exhibited outcomes in which players were better off due to suc-
cessive coordination. A deeper investigation could elucidate the 
details of how the quantization schemes lead to this successful 
strategic coordination. Further research could also be conducted 
on the precise mechanisms through which quantization leads to 
novel results. It was noted in the section on quantum coalition-
al games that different quantization schemes produce varied re-
sults in different games, exemplified by the differences between 
the quantum version of the “Minority Game” and “Public Goods 
Game.” The current literature does not provide an explanation 
for this inconsistency in the effects of particular quantization 
schemes across games. Researching the specific mechanisms that 
are behind quantization schemes could shed light on why these 
quantization schemes lead to varied results in different games. 
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