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and tumor-targeting peptides that bind to the receptors on 
cancer cells (Marqus et al., 2017). 

Currently, there are only ten anticancer peptides that are 
currently being developed as drugs (Shoombuatong et al., 
2018). More research is needed in this field, as explained 
by Yin et al. (2019). Furthermore, current in vitro methods of 
discovery are both time-consuming and expensive (Manav-
alan et al., 2017), demonstrating an unmet need for more 
effective ways to create anticancer peptide candidates be-
fore proceeding into in vitro testing. Machine learning has 
the potential to fill this role. Given enough data, machine 
learning models can learn patterns in ACPs and have the 
potential to generate new peptides from them. This study 
aims to use machine learning models to generate new can-
didates to be synthesized. Additionally, because different 
machine learning classifier models are better for tasks with 
varying levels of complexity, a goal of this study is to test a 
wide array of common machine learning predictor models to 
predict ACPs.

Many machine learning applications in this field are 
focused on creating predictors that classify whether given 
peptides are ACPs. These classifiers are able to predict pep-
tides successively, but they lack the ability to generate new 
ACP candidates. Generative machine learning is a type of 
machine learning that analyzes existing datasets to gener-
ate new instances of data. One type of generative model is 
the long short-term memory recurrent neural network, which 
generates new sequences of data. This type of model has 
been used in the successful generation of antimicrobial pep-
tides (Youmans, 2019). For this reason, an LSTM recurrent 
neural network can likely be applied to anticancer peptides. 

INTRODUCTION
Cancer-related diseases continue to affect millions of individ-
uals around the world every year, and thus, it is important to 
explore new alternative treatments. Drugs are used for can-
cer treatments, and although they are beneficial, they can 
also cause harmful side effects. Anticancer peptides (ACPs) 
have the potential to be a form of alternative treatment that 
avoids those harmful side effects. In fact, they have many 
comparative advantages over conventional cancer drugs 
such as higher levels of activity, more specificity and affin-
ity, and they are less immunogenic and have better deliv-
ery control (Gholibeikian et al., 2019). ACPs typically range 
from 10-30 residues in length. There are three main types of 
ACPs: pore-forming peptides that target the cell membrane 
of cancer cells; cell penetration peptides that enter the cell, 
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A second goal of this study was to test the ability for LSTM 
recurrent neural networks to construct new anticancer pep-
tide candidates. 

In this study, there are two central aims. The first is to 
train a variety of different predictive models to determine 
when a random peptide is an ACP, and the second is to cre-
ate a generative model to predict new ACP candidates. To 
achieve these two goals, machine learning classifiers and 
generative models can be trained, and with further develop-
ment, these tools can help facilitate the discovery of new 
ACP’s as an alternative treatment to cancer

METHODS

Classification Models
Classification models of varying model complexity were ex-
plored to determine the optimal model type for classifying 
ACP and non-ACPs. The four following classification models 
were used and are described in order of model complexity. 
The first model is the K-nearest neighbor (KNN) classifier, 
which predicts a class based on the similarity of the fea-
tures of a sample to its neighbors (Peterson et al., 2009). 
The second model is Support Vector Machine, a model that 
finds the hyperplane which maximizes the margins between 
two classes (Suykens et al., 1999). The third model is Ran-
dom Forest (RF), which is an ensemble learning method that 
utilizes a group of weak predictors known as decision trees 
(Liaw et al., 2002). The fourth model is a multi-layer percep-
tron (MLP), which is a feedforward artificial neural network 
containing multiple layers of artificial neurons that use a non-
linear activation function to propagate information from input 
to output (Pal et al., 1992).

Generative Models
To generate new and realistic sequences of anti-cancer 
peptides, a long short-term memory model (Hochreiter and 
Schmidhuber, 1997), which is a type of recurrent neural net-
work, was used to generate new sequences from a training 
set of established ACPs. LSTM is composed of a cell, an 
input gate, an output gate, and a forget gate, and it is used to 
retain long-term information in sequential data to use in con-
junction with short term data to make predictions. The gen-
erative models use nonlinear activation functions such as 
hyperbolic tangent or sigmoid functions to allow the model 
to “remember” or “forget” the previous input data in the se-
quence. The output of the LSTM layer is fed to linear layers, 
a dropout layer, and a softmax activation layer. Linear layers 
contain a series of interconnected nodes and nonlinear acti-
vation functions to transform the data. Dropout layers allow 
the model to adaptively select relevant features to include. 
The softmax layer allows the model to transform the output 
to a probability value for each possible amino acid class. The 
amino acid class that has the highest predicted probability 
is determined to be the most probable amino acid to follow. 

This process is repeated by shifting the prediction one unit 
to the right until the model has predicted the full peptide se-
quence. 

The LSTM models generate new anticancer peptides 
by sampling the first L amino acids of known ACP’s where 
L is the size of the window the model was trained on. In 
addition to possible amino acid classes, an additional “se-
quence end” class was added, which allows the model to 
learn to terminate sequence generation. During prediction, 
the LSTM model generates each amino acid until the “se-
quence end” class is predicted.

Data Collection and Processing
Datasets of verified anticancer peptides were collected from 
three databases. The first is the Data Repository of Antimi-
crobial Peptides (DRAMP) database (Fan et al., 2016; Liu 
et al., 2017; Liu et al., 2018; Kang et al., 2019), consisting 
of 74 tested ACPs. The second is the Antimicrobial Peptide 
Database (APD) (Wang and Wang, 2004; Wang et al., 2016; 
Wang et al., 2009), which includes 219 verified ACPs. The 
third is the Anticancer Peptide and Protein Database (Can-
cerPPD) of 374 experimentally verified ACPs. Sequences 
shorter than 12 residues were removed, and the datasets 
were combined. 

For the non-ACP class, 584 unique anticancer peptide 
sequences were sampled randomly from the Swiss Pro-
tein database (UniProt Consortium, 2019) which contains 
561,568 annotated and reviewed peptide sequences. These 
naturally-occurring sequences were between the lengths of 
10-25 residues. 11 categories of physicochemical features 
were extracted from each peptide sequence with the PydPi 
(Drug-Protein Interaction with Python) library (Cao et al., 
2013). These 11 categories of features contain 2049 total 
features (e.g., amino acid composition, charge, hydropho-
bicity, etc.), and were normalized in the range from 0 to 1 for 
each feature as follows:

where Xi,k represents a feature for ith sample and kth feature. 
Then, two feature selection methods were tested. The 

chi-squared test (Forman et al., 2003) was tested to find the 
features with the least variance for each class. The equation 
is given by:

where Oi is the observed value, and Ei is the expected value. 
The second feature selection method was performed using a 
random forest feature importance ranking of features (Gran-
itto et al., 2006). The choice of feature selection was deter-
mined using cross-validation for each classification model. 

To use the generative model for realistic sequence gen-
eration, several data-processing steps were performed. A 
sliding window technique was used to generate training and 
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test datasets. For example, the first eight amino acids in a 
sequence can be used to predict the following amino acid, 
and this window is shifted to the right to create additional 
samples.

Machine learning models require numerical data as input; 
therefore, peptide sequences have to be transformed from 
an alphabet representation to a numerical representation. 
We used one-hot encoding, which expresses each amino 
acid as a vector the size of the alphabet, with the location of 
the number 1 identifying the letter. For example, if there are 
three letters in the alphabet [“a”, “b”, “c”], then the sequence 
“abca” would be represented as [1, 0, 0], [0, 1, 0], [0, 0, 1], 
[1, 0, 0]. After encoding the sequences into one-hot vectors, 
the input is then formatted for the model. LSTM models use 
a 3-dimensional array as inputs, so the input data were re-
shaped to be (Batch Size, Time Steps, Features). Batch size 
represents the number of data samples created from the 
shifting window, time steps refer to the size of the shifting 
window, and features are the one-hot encoded data.

Metrics for evaluation
Many metrics were used to validate the effectiveness of the 
models. A simple accuracy metric was used to find the per-
centage of test and training samples the model could identify, 
specificity and sensitivity were found, and the F1 score was 
also calculated from a combination of precision and recall to 
balance the influence of false positives and false negatives. 
These four metrics can be defined using true positives (TP), 
true negatives (TN), false positives (FP), and false negatives 
(FN).

 The following metrics are used:

RESULTS
Predictor model final evaluation
To verify the different types of models, the initial dataset 
was split to 60 percent training data and 40 percent test-
ing data. After the models are optimized for their parameters 
and trained, the average training and test accuracies are re-
corded over 25 iterations. Then, the top-performing model’s 

training accuracy, testing accuracy, sensitivity, specificity, 
and F1-score are recorded. The results are shown in Figure 
1.

SVM: The support vector machine achieved the highest 
accuracy over the other tested models. It achieved an aver-
age training and testing accuracy of 93.4 percent and 89.1 
percent respectively, and the top-performing model scored 
a 92.3 percent training accuracy, a 90.4 percent testing ac-
curacy, a sensitivity of 0.87, a specificity of 0.90, and an F1-
score of 0.89.

Random forest: The random forest model achieved an 
average training and testing accuracy of 90.3 percent and 
86.7 percent respectively, and the top-performing model 
scored a 90.4 percent training accuracy, an 89.9 percent 
testing accuracy, a sensitivity of 0.76, a specificity of 0.97, 
and an F1-score of 0.86.

K-nearest neighbors: The k-nearest neighbors algo-
rithm had a training and testing accuracy of 88.0 percent 
and 85.7 percent respectively, and it scored a sensitivity of 
0.81, a specificity of 0.91, and an F1-score of 0.85.

Multilayer perceptron: The multilayer perceptron mod-
el achieved an average training and testing accuracy of 92.5 
percent and 88.9 percent respectively, and the top-perform-
ing model scored a 93.0 percent training accuracy, an 89.5% 
testing accuracy, a sensitivity of 0.85, a specificity of 0.93, 
and an F1-score of 0.89.

Verifying generated peptides
First, the 40 generated peptides were tested against the 
top-performing SVM model, and the predicted probabilities 

Figure 1. Metrics for predictor models. After the models were 
trained, each model was tested 25 times against a test dataset. 
The top-performing model’s training accuracy, testing accuracy, 
sensitivity, specificity, and F1-score is recordedsensitivity, specific-
ity, and F1-score is recorded.
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are shown in Figure 2. Then, the 40 generated were tested 
against the Anticancer Peptide Predictor (ACPPred) (Schad-
uangrat et al., 2019), Anti-Cancer peptide Predictor with 
Feature representation Learning (ACPPred-FL) (Wei et al., 
2019), and Tyagi (Tyagi et al., 2013) webserver predictors. 
The predicted probabilities are shown in Figure 3.

The 40 peptides were then tested against six literature-
based indicators of anticancer peptides shown in Table 1. 
First of all, anticancer peptides are known to exhibit a net 
positive charge and a high hydrophobicity (Shoombuatong 
et al., 2018). The forty preliminary sequences were calcu-
lated to have a +5.08 positive charge and a 41.30 hydro-
phobicity value. The optimal length of an anticancer peptide 
is found to be between the lengths of 21-30 residues long, 
and the average length of the forty sequences is 22.22 res-
idues long. The three most prevalent amino acids in anti-
cancer peptides are Glycine (10.88 percent), Lysine (10.25 
percent), and Leucine (11.23 percent) (Shoombuatong et 
al., 2018). These amino acids are also seen to be common 
amino acids in the generated sequences. Lysine (21.73 per-
cent) and Leucine (12.95 percent) are the most predominant 
with Glycine (7.54 percent) as the fifth most common. Then, 
ACP’s typically begin with a Glycine, Leucine, Alanine, and 
Phenylalanine, and 60 percent of the generated ACP can-
didates follow this pattern. Furthermore, ACP’s usually end 
with a Valine, Cysteine, Leucine, and Lysine, and 53 per-
cent of the generated ACP candidates follow this pattern. 
The presence of these amino acids at the beginning and 
ending of the peptides may be important for the peptides to 
penetrate through tumor cell membranes. The 40 generated 
ACP drug candidates exhibit many known properties of an-
ticancer peptides.

DISCUSSION
Four types of machine learning models were used to cre-
ate predictors of whether a peptide had anticancer peptides. 
The significance of the predictive models was found by cre-
ating a test dataset and calculating metrics like accuracy 
and F1 score. The top-performing SVM model achieved 
a 90.4 percent testing accuracy and an F1 score of 0.89, 
which is comparable to other published predictive models 
(Tyagi et. al., 2013; Manavalan et al., 2017; Schaduangrat et 
al., 2019). Given a random peptide, the models will be able 
to identify whether that peptide is an ACP with a 90 percent 
accuracy. Although the model can predict whether a peptide 
is an ACP with relatively high accuracy, a potential limitation 
of the model is its inability to identify which type of cancer the 
peptides target.  It is also important to validate the models 
by testing the peptides experimentally. To improve the model 
in the future, training on datasets that sort ACP’s by cancer 
type would allow for cancer-specific peptides to be gener-
ated. In addition, training data availability can cause gen-
eralization error and is a limiting factor for model prediction 
performance. As the ACP databases expand, more training 
data would be available to improve the generalizability of the 
machine learning models. 

These predictive models can contribute to future can-
cer research in a few ways. First of all, these models can 
be used to predict favorable mutations for known ACPs to 
design an ACP containing each favourable change. Sec-
ond of all, these models can be used to predict new ACPs 
found in nature. Because ACPs have been found in nature 
in the past, then it is likely that many peptides in nature have 
undiscovered anticancer properties. The TrEMBL dataset 
(UniProt Consortium, 2019) includes over 177 million unre-
viewed peptides found in nature, and these predictors can 
make preliminary predictions for ACP candidates. 

Furthermore, this study generated new anticancer pep-
tides using machine learning. Current literature is focused 
on predicting whether a peptide is an ACP. In this project, a 

Figure 2. The initial SVM predictor’s probabilities for the 40 gener-
ated sequences with a line signifying the 90% confidence thresh-
old.

Figure 3. The ACPPred, ACPPred-FL, and Tyagi web server pre-
dictors’ probabilities for the 40 generated sequences with a line 
signifying the 90% confidence threshold.

Indicators Description Average Tested Values
1 Positive charge +5.08

2 High hydrophobicity 41.30

3 Optimal peptide length = 21 
- 30

22.22 residues

4 G (10.88%), K (10.25%), 
and L (11.23%) are the most 
predominant.

K (21.73%), L 
(12.95%) are the most 
predominant, with G 
(7.54%) in 5th

5 ACP’s starts with G, L, A, F 60% of candidates fol-
low this

6 ACP’s end with V, C, L, K 53% of candidates fol-
low this

Table 1: Indicators for ACP’s
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long short term recurrent neural network was trained on 584 
known anticancer peptides to generate 40 new anticancer 
peptide candidates. These candidates were verified through 
self-created predictors, web server predictors, and known 
properties of ACPs, which have enhanced the accuracy of 
the models. Furthermore, these peptides were tested with 
other published models for ACP’s in the field (Figure 3), 
showing that a majority of the peptides fit to other scientists’ 
models (Tyagi et al., 2013; Schaduangrat et al., 2019; Wei et 
al., 2019). In addition, the properties of these peptides follow 
with the interpretations and knowledge of known anticancer 
peptides (Table 1 and section 3.2). For instance, a major-
ity of this study’s generated candidates exhibit a positive 
charge. However, biological functions of the traits remain to 
be investigated.

The overall application of these predictive and genera-
tive models is to create new candidates for ACPs before 
chemical synthesis and biological screening. The typical 
drug discovery process of scanning through thousands of 
libraries of chemical compounds is both time consuming and 
expensive, so these models can be used to preselect a num-
ber of likely candidates before going into testing. In future 
studies, to verify the models in a lab setting, the peptides 
generated in this study can be synthesized and tested on 
various cancer lines to determine their actual efficacy. Analy-
ses using these models to create candidates can increase 
the likelihood of success for the development of pharma-
ceutical drugs. With further development, these models can 
bring potential positive impacts on the discovery process for 
cancer treatments.
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