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Hoping to simplify the classification of pure entangled states of nmtipartite quantum systems, we study
exactly and asymptoticallyin n) reversible transformations amomgh tensor powers of such statée., n
copies of the state shared among the samparties under local quantum operations and classical communi-
cation(LOCC). For exact transformations, we show that two states whose marginal one-party entropies agree
are either locally unitarily equivalent or else LOCC incomparable. In particular we show that two tripartite
Greenberger-Horne-Zeilinger states are LOCC incomparable to three bipartite Einstein-PodolskyERé3en
states symmetrically shared among the three parties. Asymptotic transformations yield a simpler classification
than exact transformations; for example, they allow all pure bipartite states to be characterized by a single
parameter—their partial entropy—which may be interpreted as the number of EPR pairs asymptotically inter-
convertible to the state in question by LOCC transformations. We showntipatrtite pure states having an
mway Schmidt decomposition are similarly parametrizable, with the partial entropy across any nontrivial
partition representing the number of standard quantum superposition or “cat” &85+ |1*™) asymp-
totically interconvertible to the state in question. For generglartite states, partial entropies across different
partitions need not be equal, and since partial entropies are conserved by asymptotically reversible LOCC
operations, a multicomponent entanglement measure is needed, with each scalar component representing a
different kind of entanglement, not asymptotically interconvertible to the other kinds. In particular we show
that them=4 cat state is not isentropic to, and therefore not asymptotically interconvertible to, any combina-
tion of bipartite and tripartite states shared among the four parties. Thus, although-thecat state can be
prepared from bipartite EPR states, the preparation process is necessarily irreversible, and remains so even
asymptotically. For each number of partisswe define a minimal reversible entanglement generating set
(MREGS as a set of states of minimal cardinality sufficient to generatenglhrtite pure states by asymp-
totically reversible LOCC transformations. Partial entropy arguments provide lower bounds on the size of the
MREGS, but form>2 we know no upper bounds. We briefly consider several generalizations of LOCC
transformations, including transformations with some probability of failure, transformations with the catalytic
assistance of states other than the states we are trying to transform, and asymptotic LOCC transformations
supplemented by a negligibj@(n)] amount of quantum communication.
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. INTRODUCTION |00) +|11). 1

Entanglement, first noted by Einstein, Podolsky, and(We omit normalization factors when it will cause no confu-
Rosen[1] and Schrdinger [2], is an essential feature of sion) The canonical tripartite entangled state is the
quantum mechanics. Entangled two-particle states, by thefBreenberger-Horne-Zeilinger-Mermin state
experimentally verified violations of Bell inequalities, have
played an important role in establishing widespread confi- |000) +|111), 2
dence in the correctness of quantum mechanics. Three-
particle entangled states, though more difficult to producevhile the correspondingrpartite state
experimentally, provide even stronger tests of quantum non-

locality. |0€™4]19™) 3
The canonical two-particle entangled state is the Einstein-
Podolsky-Rosen-Bohm pair is called anm-particle cat(m-cap state, in honor of Schob
inger’s cat.
More recently it has been realized that entanglement is a
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[10,11]. In view of its central rold12] in quantum informa- tangled states are further subdivided irdéstillable and

tion theory, it is important to have a qualitative and quanti-bound entangled states, the former being states which are

tative theory of entanglement. pure or from which some pure entanglement can be produced
Entanglement only has meaning in the context of a mulby LOCC, while the latter are mixed states which, though

tipartite quantum system, whose Hilbert space can be viewegseparable, have zero distillable entanglement.

as a product of two or more tensor factors corresponding yithin a class of states having the same kind of entangle-

physically to subsystems of the system. We often think ofnent(e.g., bipartite pure statesne can seek a scalar mea-

subsystems as belonging to different observers, e.g. Alicgyre of entanglement. Five natural desiderata for such a mea-
has subsysterA, Bob has subsystei, and so on. sure(cf. Refs.[17-21)) are the following

Mathematically, anunentangledor separablestate is a (i) It should be zero for separable states.
mixture of product states; operationally it is a state that can i) |t should be invariant under local unitary transforma-
be made from a pure product state by local operations angyns.
classical communicatiofLOCC). Here local operations in- (i) Its expectation should not increase under LOCC.
clude unitary transformations, additions of ancillas., en- (iv) It should be additive for tensor products of indepen-
larging the Hilbert spagemeasurements, and throwing away gent states, shared among the same set of obsdthessif

parts of the system, each performed by one party on his 0§AB 5nq GAB gre are bipartite states shared between Alice
her subsystem. Mathematically, we represent LOCC by ang Bob, and E is an entanglement measure,

multilocal superoperator, i.e. a completely positive |inearEé\I,AB®q)AB) should equaE(WAB) + E(DAB)].

map that'does notincrease thg trace, and can be implemente (v) It should be stabl§22] with respect to transfer of a
locally with classical coordination among the partieSlas- s, psystem from one party to another, so that in any tripartite
sical communication between parties allows local actions by;aiepABC the bipartite entanglement &8 with C should

one party to be conditioned on the outcomes of earlier meagifter from that of A with BC by at most the entropy of
surements performed by other parties. This allows, amonghsystens.

other things, the creation of mixed states that are classically g bipartite pure states it has been shd, 19,27 that
correlated but not entangled. ABG. - asymptotically there is only one kind of entanglement and
Mathematically speaking, a pure stdte">>) is sepa-  parial entropy is a good entanglement meas@efor it. It
rable if and or_lly if it can be exprgssed as a tensor product gf equal, both to the statelntanglement of formatiofthe
states belonging to different parties: number of Einstein-Podolsky-Ros¢BPR) pairs asymptoti-
ABC..\ _| A B C\ o, .. cally required to prepare the state by LO[C@nd the state’s
v )=la)e|p)ely)e:. @ distillable entanglementthe number of EPR pairs asymp-
A mixed statep®BC is separable if and only if it can be totically preparable from the state by LOCCHere partial

expressed as a mixture of separable pure states: entropy is the von Neumann entrof¢p) =tr(p In, p) of the
reduced density matrix obtained by tracing out either of the
two parties.
ABC_ A A B B C C e . . s
P _Ei pilei W ar|® BTN BI® v ) yil® . (5) In Sec. Il, we define exact and asymptotic reducibilities

and equivalences under LOCC alone, and with the help of

where the probabilitiep;=0 and2;p;= 1. States that are not “catalysis,” or asymptotically negligible amounts of quan-
separable are said to latangledor inseparable tum communication. In Sec. Ill we use these concepts to
Besides the gross distinction between entangled and urglevelop a framework for quantifying tripartite and multipar-
entangled states, various inequival&mtds of entanglement tite pure-state entanglement, in terms of a canonical set of
can be distinguished, in recognition of the fact that not allstates which we call a minimal reversible entanglement gen-
entangled states can be interconverted by local operatior@ating sefMREGS. This framework leads to an additive,
and classical communication. For example, bipartite enmulticomponent entanglement measure, based on asymptoti-
cally reversible LOCC transformations among tensor powers
of such states, and having a number of scalar components

qual to the number of states in the MREGS, in other words

1 . .
General quantum .dyn"f‘m'cs can be remesemed.mathemat'calﬁﬁe number of asymptotically inequivalent kinds of entangle-
by completely positive linear maps that do not increase trace ent

[13,14. Such a map say. can be written asC(p)=3;L;pL], . .
whereZ;L/L;<11. The equality holds for trace-preserving super- For generalmpartite states, partial entropy arguments

operators which correspond physically to nonselective dynamicsglve lower bounds on the number of entanglement compo-

e.g., a measurement followed by forgetting which outcome Wa§]ents as a function ofn, and allow us to show that some
produced. In general the superoperators may be trace decreasifipleS: €.0., then=4 cat state, are not exactly, nor even
and correspond to selective operations, e.g., a measurement f@Symptotically, interconvertible into any combination of
lowed by throwing away some outcomes. 4fis a multilocally ~ EPR pairs shared among the parties.

implementable superoperator, it must be a separable superoperator, On the other hand, we show that the subclass of multipar-
i.e., a completely positive trace-preserving map of the form showdite pure states having amway Schmidt decomposition is
above, where thelL;'s are products of local operatord— describable by a single parameter, its partial entropy repre-
=L%@LB.... Note that not all separable superoperators are mulsenting the number of standard cat sta@¥™) +[1*™) as-
tilocally implementabld 15,16]. ymptotically interconvertible to the state in question. Section
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1D treats tripartite pure-state entanglement, showing inceeds some of the time we say it is stochastic, and if the state
particular that, using exact LOCC transformations, twotransformation needs the presence of another state, which is
Greenberger-Horne-ZeilingeiGHZ) states can neither be is recovered after the protocol, it is called catalytic reducibil-
prepared from nor used to prepare the isentropic combinatioity. In this section we define these more precisely. We start
of three EPR pairs shared symmetrically among the threwith exact reducibility.
parties. We say a stat@ is exactly reduciblgo a stateV (written

O<| oV or justd<V) by local operations and classical

Il. REDUCIBILITIES, EQUIVALENCES, communication if and only if
AND LOCAL ENTROPIES
bo=L(V), 3 L (9)

Reducibility formalizes the notion of a transformation of
one state to another being possible under certain condition¥here £ is a multilocally implementable trace preserving
while equivalence formalizes the notion of this transforma-superoperator. Alternatively we may say that the LOCC pro-
tion being reversible—possible in both directions. Whiletocol P, corresponding to the superoperatbtransforms¥
studying entanglement it is useful to discuss state transfoto ® exactly.
mation under LOCC. This is because a good entanglement Intuitively this means that the state transformation frém
measure should not increase under LOCC. So, if two statei® ¢ can be done by LOCC with probability @Vhere it will
are equivalent under LOCC operations, they will have thecause no confusion, for pure states we use a plain Greek
same entanglement. This is the key idea we will use in Sedetter such as¥ to represent both the vect¢¥) and the
Il to quantify entanglement. projector|¥)W|.)

We start by first looking at partial entropies. Partial entro-  The relation of exact LOCC reducibility for bipartite pure
pies have the nice property that for pure states their averagéates has been studied in Reff24] and [25], which give
does not increase under LOCC necessary and sufficient conditions for it in terms of major-

Suppose then parties holding a pure staté are num- ization of the eigenvalues of the reduced density matrix.
bered 1,2...,m. Let X denote a nontrivial subset of the Nielsen[25] used notation reminiscent of a chemical reac-

parties and leiX be the set of remaining parties. Then the liON: where we sayb<V, he says¥ —®. Both notations

reduced density matrix of subséof the parties is defined as Mean that, given one copy df, we can with certainty, by
local operations and classical communication, make one

p(W) =t (| W)( V). (6)  copy of . _ _
Chemical reactions often involve catalysts, molecules
The partial entropyof subsetX is the von Neumann entropy which facilitate a reaction without being used up, so it is
natural to look for analogous quantum-state transformations.
Sx(W) = —tr(px(W)Ing py(V)). (7)  Jonathan and Plenio recently found an example of successful
catalysis for bipartite states, where a catalyst allows a trans-
When X={l} consists of a single partyy, is called the formation to be performed with a certainty which could only
marginal density matriof party I, and S(py,) is themar-  pe done with some chance of failure in the absence of the
ginal entropyof party . Two states are said to gentropic  catalyst[26].
if for each subseX of the partiesSy(¥)=Sx(P). Two We say thatb is catalytically reducible(<|occ) to W if
statesWV and & are said to bemarginally isentropiCif and On|y if there exists a sta¥ such that
Sy (W) =Sy (P) for each partyl.

Now we are ready to show that for any subXeof par- PRY < pcc¥RY. (10
ties, the partial entropysy is nonincreasing under LOCC.
We state this as a lemma. An interesting fact about catalysis is that, because the

Lemma 1 If a multipartite system is initially in a pure catalyst is not consumed, one copy of it is sufficient to trans-
stateW, and is subjected to a sequence of LOCC operationform arbitrarily many copies o into ®:
resulting in a set of final pure statég with probabilitiesp; ,
then for any subseX of the parties PY < occVY=P"Y < occ?W"Y, V n. (11

Another important form of state transformation involves
SK(W)=2 piSx(D)). (8)  probabilistic outcomes, where the procedure for the reduc-
' ibility may fail some of the time as in “entanglement gam-
bling” [17]. We capture this idea in stochastic reducibility.
We say a stat@ is stochastically reducibléo a state¥
under LOCC with yieldp if and only if

Proof. The result follows from the fact that average bipar-
tite entanglementpartial entropy of bipartite pure states
cannot increase under LOCC, cf. RE23].

L(V)

“woen 2 - 12

A. Reducibilities and equivalences: Exact and stochastic [}

We start with a LOCC state transformation involving
single copies of states. If the state transformation is exact, werhere £ is a multilocally implementable superoperator such
say it is an exact reducibility. If the state transformation suc-that tf £(W)]=p.
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This means that a copy df may be obtained from a copy Corollary 2: States that are marginally but not fully isen-
of ¥ with probability p by LOCC operations. Exact reduc- tropic are necessarily LOCC incomparable.

ibility corresponds to the cage= 1. For any reducibility, one  Proof. To prove this it suffices to show that for marginally
may define corresponding notions of equivalence and incomsentropic stated” and®, if <V then they must be local
parability. unitarily equivalent. In light of the nonincrease of partial

Two statesd® and ¥ are said to beexactly equivalent €ntropy under LOCQcf. lemma 1 and the fact that these
(=Locc Or simply =) if ®<W and¥<®. This means that WO states are marginally isentropic, a LOCC protocol that
the two states are exactly interconvertible by classically co€ONVverts one state to the other must conserve the marginal
ordinated local operations. In chemical notation this wouldENtropies at each step. Suppose the LOCC protbomans-
beWw—d. Conversely, state® and¥ are said to bexactly forms W to ® exactly. In general such a protocol consists of

incomparableif neither is exactly reducible to the other. a sequence of local transformations each done by one party

. . ) . .. followed by communication ofsome of the information
Catalytic and stochastic equivalence and incomparability . : . .

. gained to other parties. Without loss of generality assume
may be defined analogously.

. I that Alice performs the first operation of such a protocol
In passing we note that many other reducibilitigsd b b b

hei di al b idered convertingV to ®, which gives the resulting ensembfe

their corresponding equiva engesan be considered, €.9., ={pi,¥;}. Since Alice’s operation cannot change the density

redumbll!tles via I(_)_cal qmtary(LU)_ operatlons[2_7l_<,_u . matrix pBC “seen” by the remaining parties,

stochastic reducibility with catalysis, and reducibilities with-

out communication gr.\_/wth one-way C(_)mmumcatl@S]. B¢ =3 pir (i)
Physically, reducibility via local unitary operations and p = FiTAUEIA -

that via local unitary operations along with a change in the

local support(corresponding to the increase or decrease irAs argued earlier, the average entropy must not change, i.e.,

the local Hilbert space dimensignare the same because we

could think of the extra dlmenspns as belng present from the Spe (W) =Sx(W)= E PiSec. (). (15)

start and extend the local unitary operation to the larger i

space. Thus, from now on, when we say local unitary opera- ) .

tions we mean local unitary operations along with a possibl@®Y the strict concavity of the von Neumann entrof]

change in the local support, i.e., isometric transformations. €ach of the resultant statg/s must have the same reduced
We now look at some conditions for two states to bedensity matrix, from the viewpoint of all the other parties

exactly equivalent. From lemma 1 it is clear that if two statesP€Sides Alice, as the original stafe did:

are equivalent they must be isentropic, but not all isentropic N — ,

states are equivalent. We are now in a position to demon- Al (i) =tra(lW)C¥]), Vi (16)

strate some important facts about exact LOCC redgcﬂﬁ‘lhty. Therefore, the stateg, must be related by isometries acting
Theorem 1If ¥ andq? are two marg|_nally isentropic pure on Alice’s Hilbert space alone:

states, then they are either locally unitarflyU) equivalent

(14

or else LOCC incomparable. |y =ULIBC|w), a7
Corollary 1: Two states are LOCC equivalent if and only
if they are LU equivalent: whereU” are unitary transformations acting on Alice’s Hil-

bert space, which may have more dimensions than the sup-
port of |[¥) in Alice’s space(this would correspond to Alice
V= gccbeV= &, V Vo (13 having unilaterally chosen to enlarge her Hilbert space,
which she is always free to goThus Alice’s measurement
process, which appears on its face to be a stochastic process
2Very recently Dur, Vidal, and Cirac(LANL eprint, quant-ph/ n_ot entirely under_ her cont_rol, could in fac_t be faithfully
0005115 found a tripartite pure state of three qubits which is sto-Simulated by having her simply toss a coin to choose a
chastically incomparable with the GHZ state. They also showed thatMeasurement result'i with probability p;, then perform
if two pure states are chosen randomly in the tensor product Hilberfh€ deterministic operatiot); on her portion of the joint
space of four or more parties, then, with probability 1, they areState, and then finally report the resutob all the other par-
stochastically incomparable: neither state can be produced from tHées. In the next step of the protocol, another party performs
other by LOCC with any chance of success. similar operations and sends classical information as to
SUnitary operations are characterized BbyU=1=UU'. How-  which unitary it performed and so on for each step. Thus the
ever, if we are want general transformations that preserve the norntire protocol consists of local unitary transformations, en-
of vectors, all we need i8"U=1, where theU’s could be rectan- largement of Hilbert space and classical communication,
gular matrices. Such are called isometri¢29]. maintaining at each step the overall state to be pure. The
“These results strengthen Vidal's resuf2l] that LU  protocol ends when the stadehas been obtained. Since this
equivalencesLOCC equivalence for bipartite pure states, andis an exact reducibility of one pure state to another, for each
Kempe’s resulf30] that if two multipartite pure states have iso- possible sequence of local unitaries, the result musthbe
spectral marginal density matrices, then they are either LU equivalhus we can define a new protod@] that consists of choos-
lent or LOCC incomparable. ing just one such sequence of local unitaries and it will take
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¥ to &, showing that the two states are local unitarily F(ﬁ(ﬁ,@ﬂ’)'q)@n)?l_e, V 5>0 €>0, I nn'. L.
equivalent. The first corollary follows from the fact that if

two states are LOCC equivalent, they must be isentropic anfiere £ is a multilocally implementable superoperator that
therefore marginally isentropic. The second follows from theconvertsn’ copies of¥ into a high fidelity approximation to
fact if that the two states were LU equivalent, they would ben copies of®. In chemical notation we can write this as

fully isentropic, not merely marginally so. TP,
_ o _ _ A natural extension of asymptotic LOCC reducibility oc-
B. Asymptotic reducibiliies and equivalence, and their curs if we allow catalysis. Thus we define asymptotic
relation to partial entropies LOCCc reducibility as follows. We sayb is asymptotically

Before we discuss asymptotic reducibilities and equivalOCCc reduciblg<occ.) to W if there exists some stade
lences, let us define a quantitative measure of similarity ofuch that
two states. One such measure, fidelity [31,32 of a mixed
state p relative to a pure statey, is given by F(p,)

=(¢lply). It is the probability thatp will pass a test for \\here we say the statis a catalyst for this reducibility. As

being ¢, conducted by an observer who knows the si@te it exact catalysi§Eq. (11)], asymptotic catalysis allows
For mixed statep ando it is given by the more symmetric 5, arbitrarily large ratio of reactant to catalyst:

expressiorF (p, o) =[tr(\Jop o) Y3
Exact reducibility is too weak a reducibility to give a PY<TY=d"Y<V"Y, V n. (20
simple classification of entanglement—even for bipartite ] ) o
pure states, there are infinitely many incomparasle, Another way qf extending asymptotic LOCC redpmplhty is
equivalence classes, which would lead to infinitely many dis{C allow a sublinear amount of quantum communication dur-
tinct kinds of bipartite entanglement. Linden and Popescind the transformation process. _
[27] have explored the orbits of multipartite states under lo- State® is said to beasymptoticallyLOCCq reducible
cal unitary operations, and shown that the number of LU{=Loccg) o stateW if
invariants increases exponentially with the number of parties (kIn)< &
and with the number of qubits possessed by each party. '
One n_atural way _to strengthen thg notion of redgcibility is FL(T®*@WeN) dM)=1—¢, ¥V &>0,
to make it asymptotic. We first consider “asymptotic LOCC
reducibility” [17,28 which expresses the ability to convert e>0, 3 nk,L.
copies of one pure state into a good approximationnof (21)
copies of another, in the limit of large A possibly stronger
reducibility, which we will call “asymptotic LOC@ reduc-  Wherel” denotes then-cat statg0®™)+[1°").
ibility,” expresses the ability to do the state transformation ~ Them-cat states used here are a convenient way of allow-
with the help of a limited o(n)] amount of quantum com- iNg @ sublinear amound(n) of quantum communication,
munication, in addition to the unlimited classical communi-Since they can be used as described in Sec. IlI D to generate
cation and local operations allowed in ordinary LOCC reduc-EPR pairs between any two parties which in turn can be used
ibility. Another natural way of strengthening asymptotic O teleport quantum data between the parties.d{mg quan-
reduc|b|||ty is to allow Cata'ysis; defining “Cata|ytic tum Commun|ca:t|0n allows the definition to be Slmp|er n
asymptotic LOCC reducibility” (LOC®), in direct analogy ©One respect: a single tensor powesan be used for the input
with the exact case. We show that asymptotic L@G€duc-  State¥ and output state, rather than the separate powars
ibility is at least as strong a.e., can simulateLOCCq and n’_ g_sed in the definition of ordmary asymptotic LOCC
reducibility. reducibility without quantum communication, because any
Ordinary asymptotic LOCC reducibility is enough to sim- 0(n) shortfall in number of copies of the output state can be
plify the classification of all bipartite pure states and someMade up by using cat states to synthesize the extra output
classes ofn_partite StateS, (o) that' for any g|vem a finite Sta]iesde novo Th|S definition is more natural than that for
repertoire of standard staté8PR, GHZ, etd, which we will  ordinary asymptotic LOCC reducibility in that the input and
later call a minimal reversible entanglement generating set gputput states are allowed to differ in any way that can be
MREGS, can be combined to prepare any member of class if¢Paired by am(n) expenditure of quantum communication,
an asymptotically reversible fashion, regardless of the size dfther than only in the specific way of beimgversusn’
the Hilbert spaces of the parties. Whether this classificatio§opies of the desired state where-n’ is o(n).
can be extended to cover genenapartite states fom>2 Clearly < occ implies < pceq @and =< occe, because or-
while maintaining a finite repertoire size is an open questiondinary asymptotic reducibility is a special case of the two
Let us start by defining ordinary asymptotic LOCC reducibil- other kinds of asymptotic reducibility. We can also show that
ity. asymptotic LOCQ reducibility implies asymptotic LOCE
State®d is asymptotically reduciblé<| occ or simply <) reducibility, because anst | occq protocol can be simulated
to state¥ by local operations and classical communication ifby @ < occc protocol with themrcat statel’ as a catalyst,
and only if only a sublinear(and therefore asymptotically negligible
amount of which is consumed. In more detail, &
|(n/n")—1]<$, <Loccg ¥, then from Eq(21), for eache and s, there exisn
(18)
012307-5
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and k such that¥“" can be converted to a-1e faithful tite states. It was very recently shof0] that even< occe
approximation to®“" with the help ofk<<né cat states’ is not coarse enough to connect every isentropic pair of
worth of quantum communication. This implies timtopies  states. [The converse—that asymptotically
of W andk copies ofl" can be converted into a-le faithful  LOCCc-equivalent states must be isentropic—follows from
approximation ton copies ofd without any quantum com- the nonincrease of pure states’ partial entropies under
munication. By supplying extra—k, nonparticipatory cop- LOCC: if ¥ can be efficiently converted int®, even as-

ies of I', which are present both before and after the transymptotically and even with the help of a catalyst, then for
formation, and discarding of the copies of® which the  each subseX of the partiesSy(®) cannot excee®y(V);
transformation has produce@ven if the copies are en- otherwise an increase of partial entropy could be made to
tangled, this cannot decrease the fidglitye obtain that a occur in violation of lemma 1.We collect the relations we
1— e faithful approximation to @®I')®(""¥ can be pre- have proved in this section from the definitions of the vari-
pared from @®I')®". This satisfies the conditiongEq.  ous reducibilities, using Lemma 1 and Theorem 1, and ex-

(18)] for asymptotic reducibility, press them as follows.
Theorem 2 The following implications hold among the
PelI's|occVel, (22 reducibilities, equivalences, and partial entropies of a pair of

multipartite pure states.

or, invoking the definitior{Eq. (9)] of asymptotic catalytic For reducibilities and entropy inequalitiésmitting men-

reducibility, tion of the stated and® where it will create no confusion
O=< occV, (23 W€ have

which was to be demonstrated. While the convérse, that (P=u¥)

asymptotic catalytic reducibility can be simulated by =< oec= < Locc= <

LOCCq transformationsseems plausible, we have not been toc Loc rocea

able to prove it except in special cases. = <Locce=Sx(P)<=Sx(V), VX. (29

Asymptotic reducibilities and equivalences can have non- . N
integer yields. This can be expressed using tensor exponerft®" €quivalences and entropy equalities we have

that take on any non-negative real value, so tHat* . .
<¥®Y denotes (O= V)= occ=~1occ=~1Loce

=~ Locce= Sx(P)=Sx(¥),

VX, (i.e.,,® and ¥ are isentropig=

[(n/n")—=xly|< &8, F(L(P®"),d%M)=1—¢,

V5>0, 3 n,n'. (24

In this case we say/y is the asymptotic efficiency or yield ® and¥ are marginally isentropie
with which ®@ can be obtained fror¥. In chemical notation
this could be expressed by — (x/y)®, keeping in mind
that the coefficienk represents an asymptotic yield or num-
ber of copies of the stat®, not a scalar factor multiplying =
the state vector. Clearly, if a stochastic state transformation
with yield p is possible fronW to ® thenW— p®d because
of the law of large numbers and the central limit theorem.

We are now in a position to define the most important tool As an example of the usefulness of these concepts let us
in quantifying entanglement, namely, asymptotic equivateexpress the bipartite pure state entanglement rgktlin
lence. We say tha¥’ “* and ®®Y, with x,y=0, areasymp- terms of asymptotic equivalence. In this new language, any
totically equivalent(\W ®*~®®Y) if and only if ®*Y is as-  bipartite pure state?”® is asymptotically equivalent to
ymptotically reducible to¥ ®*, and vice versa. Two states S,(W”®) EPR pairs: this is the number of EPR pairs that,
are said to beasymptotically incomparabld neither is as- asymptotically, can be obtained from and are required to
ymptotically reducible to the other. prepareW”B by classically coordinated local operations.

Although we will mainly be concerned with asymptotic  In proving this result, the concepts of entanglement con-
equivalence(~), two possibly stronger reducibilities men- centration and dilutioi17] are central. The process of as-
tioned earlie—asymptotic LOCC reducibility with a catalyst ymptotically reducing a given bipartite pure state to EPR
(<Locce) and asymptotic LOCC reducibility with a small singlet form isentanglement dilutionand that of reducing
amount of quantum communicatiors(occy)—give rise to  EPR singlets to an arbitrary bipartite pure statersangle-
their own corresponding versions of equivalence and incomment concentrationThen the above result means that en-
parability. Since<x| occ. transformations can simulate both tanglement concentration and dilution are reversible in the
<Locgg and < pcc, the =~ e reducibility can be ex- sense of asymptotic equivalence, i.e., they approach unit ef-
pected to give rise to the simplegibarsestclassification of  ficiency and fidelity in the limit of large number of copias
states into equivalence classes, and the simflestest in-  The crucial requirement for these methods to work is the
dependent componentsntanglement measures for multipar- existence of the Schmidt biorthogortabrmal or polay form

(Od=_y¥)or ¥ and ¥ are LOCC incomparable.
(26)

igure 1 illustrates several of these relations.

C. Bipartite entanglement: a reinterpretation
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Not Marginally Isentropic entanglement. Discussions in Sec. Il were valid for pure as
well as mixed states. However from now on we will restrict
Marginally Tsentropic out attention to pure states.

In Sec. Il A we consider the natural generalization of the
bipartite states, namely, the-party states with am-way
Schmidt decomposition which we catt-orthogonal states.
We show that for eachm such states can be characterized by
a scalar entanglement measure, which may be interpreted as
the number ofm-cat states asymptotically equivalent to the
state in question: a single-parameter case. In Sec. llIB we
introduce the concepts of entanglement span, entanglement
coefficients and minimal entanglement generating sets, as el-
ements of a general framework for quantifying multipartite
pure-state entanglement. In Sec. IIC we derive lower
bounds on the cardinality of MREGS's. In Sec. Il D where
we study the question of interconversion betwesnat and
EPR states. In Sec. IllE we show the uniqueness of the
entanglement coefficients for natural MREGS possibilities
for tripartite states.

FIG. 1. Relation of exact and asymptotic equivalences to equal-
ity of local entropies. Two states are exactly equivalent under local
operations and classical communicati®®CC) if and only if they
are equivalent under local unitafiU) operations alone. An ex- We consider Alice, Bob, Claite . . , Matt asm observers
ample(circled J) is the LU interconvertibility of the two Bell states who have one subsystem each ofrapart system in a joint
|00)+|11) and|00)—|11). An exact equivalence of course implies m-partite pure state. Some-partite pure states, but not all,
asymptotic equivalencédotted regioh including (circled 2 the  can be written in arm-orthogonal formanalogous to the
asymptotic equivalence between an EPR pair and an isentropic b@ichmidt biorthogonal form. We call such states
ymptotically equivalent states are necessarily isentropic, but not thBure Statéq,ABC...) is Schmidt decomposabte m orthogo-
converse. For examplécircled 3, the isentropic—and indeed nal if and only if it can be written in a form
isospectral—tripartite 2-GHZ and 3-EPR statege Sec. D
were very recently showf40] to be incomparable with respect
asymptotic LOCC reducibility. This example also illustrates the fact | WABC...My — 2 MA@ [IB(®]i): - 0]iM), (29
(cf. Ref.[30]) that isospectral states of three or more parties need !
not be LU equivalent. A tensor product of circled 2 type states with
circled 3 type states yields isentropic stateiscled 4 that are nei-  where [i?),]i®),]i¢),...|iM) are orthonormal bases for the
ther asymptotically LOCC equivalent nor isospectral. States that areorresponding party. Note that by change of phases of local
marginally but not fully isentropiccircled 5 must be incomparable bases, each of the Schmidt coefficientscan be made real
with respect to exact LOCC reducibility. Finally, at the periphery and non-negative. In anyrorthogonal state, the reduced en-
(circled 6 are states that are not even marginally isentropic. Thesg‘opy seen by any observer, indeed by any nontrivial subset
include incomparable pairs such #8-EPR vsBC-EPR, and  of gbservers, is the same, being given by the Shannon en-
properly reducible pairs such as GHZ vs EPR, but no cases of exagfopy of the squares of the Schmidt coefficients. Already this
or even asymptotic equivalence. makes it obvious that not all tripartite and higher states are

Schmidt decomposable since, for amyg>2, it is clear that
for bipartite pure statg87], that is, the fact that any bipartite there are puren-partite states having unequal partial entro-

Isentropic

A. Schmidt-decomposable om-orthogonal states

pure statg¥*®) can be written in a biorthogonal form, pies for the different observers. Perf@3] gave necessary
and sufficient conditions for a multipartite pure state to be
W pp= 2 NIAY®(iB), (27) Schmidt decomposable. Thapliyj@&4] recently gave another
i

characterization, showing that am-partite pure state is
Schmidt decomposable if and only if each of the-1 par-
where|i®) and|i®) form orthonormal bases in Alice’s and tite mixed states obtained by tracing out one party is sepa-
Bob’s Hilbert space, respectively, where by choice of phasegsble.
of local bases the coefficienis can be made real and non-  For such Schmidt decomposable states, the notions of en-
negative. tanglement concentration and dilution, developed for bipar-
tite states, generalize in a straightforward manner, so that for
an m-partite statel?*BC the local entropy, as seen by any
party, or indeed any nontrivial subset of the parties, gives the
asymptotic number ofm-partite cat states into which it can
In this section we use the tools we developed earlier tdoe asymptotically interconverted. That is, WABC-M is a
propose a framework for quantifying multipartite pure-stateSchmidt decomposable multipartite state, then

lll. TRIPARTITE AND MULTIPARTITE PURE-STATE
ENTANGLEMENT
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cat state, and broadcasts the two-bit classical result to all the

other parties, who then each apply the corresponding Pauli

rotation to their leg of the shared cat state. Finally all the

other parties besides Alice apply Schumacher decompression

to their legs of the rotated cat states, leavingrinparties in

v a high-fidelity approximation to them-partite state
(WABC--Myen which they wished to share.

This entanglement dilution protocol requirek/8 bits of
classical information per coppf the target stabeto be com-
municated from Alice to the other two parties. Lo and Pope-

FIG. 2. Entanglement dilution for Schmidt decomposable tripar-scu_ [39] Shgwed a blpartl.te entanglemeht QIIutlon protoclol
tite states. Alice prepares a local supplyrobipartite statesp”*’ which reqUIreSQ(ll\/ﬁ) bits of 'communlcatllon _per copy,
isospectral to the Schmidt decomposable tripartite steté € she thus, asymptotically, the qlasswal communlcathn cost per
wishes to share, and Schumacher compressesAhdialves(C) to copy goes t_o _zero for their protocol. The quest|o_n t_hen IS
k~nS(p,) qubits. Then, using previously shared GHZ states, she Whether a similar protocol can be found for the dilution of
teleports the compressed qubits to Bob and Charlie simultaneousfj-cat states intan-orthogonal states. It is easy to see that
(Here M denotes a Bell measurement, the thick lineskeb®t clas-  replacing teleportation through EPR states with teleportation
sical message Alice broadcasts to both Bob and Claire,catie  through them-partite cat states in their protocol gives us a
conditional Pauli rotation which completes the teleportation pro-protocol for entanglement dilution of the-cat states into
cess. Finally, Bob and Claire Schumacher decompré@stheirk  mrorthogonal states. This protocol again uses dfy/\/n)
qubits to covem qubits each, in a state closely approximatimng classical communication per copy, an asymptotically vanish-
copies of the diluted Schmidt decomposable tripartite @48  ing amount.
they wished to share.

B. Framework for quantifying entanglement of multipartite

ABC...M
|lI,ABC...M>%0at1-\BC...M>®SA(\If ). (29) pure states

Entanglement concentration on an-orthogonal state Now we apply concepts o_f reducibilities and equivalences
WABC..M “like its bipartite counterpart, can be done by par-” in attempting to quan_tlfymg entang!ement. For g_eneral
allel local actions of the observers, without any communicalTrpartite states, there will be several inequivalent kinds of
tion. Starting with a numben of copies of the state to be €ntanglement under asymptotically reversible LOGE
concentrated, each party makes an incomplete von Neumak?CCd or LOCCe) transformations—at least as many the
measurement, collapsing the system onto a uniform Superp(lgl_umber of independently variable partial entropies for such
sition over an eigenspace of one eigenvalue in the produdiiatés—and perhaps more. However, a good entanglement
Schmidt basis. After enough such states have been accumfilé@sure ought to be defined so as to assign equal entangle-
lated to span a Hilbert space of dimension slightly more thafnent(in the case of a multicomponent measure, equal in all
some powerk of 2™ another measurement suffices, with compor!ent}sto asymptotically equal_ent states. This forms
high probability, to collapse the state onto a maximally en-the basis of our framework for quantifying entanglement.

tangledm-partite state in a Hilbert space of dimensioR*2 We start by looking at the concept of thestanglement
which can then be transformed by local operations into &Pan of a set of states. Given the set of statgs
tensor product ok m-partite cat states. ={¢1,¥2,...., their entanglement spais(3) | is defined

Entanglement dilutior(cf. Fig. 2 proceeds in the same 2aS the sgt of states that. they can reversibly generate under
way as for bipartite states, except that Alice locally prepare@Symptotic LOCC. That is,
a supply of bipartite pure state®””’ having the same K
Schmidt spectrum as the multipartite Schmidt decomposable S(G)={ V|V~ @ |¢;)®, with x;=0{. (30
stateW”B<M which she wishes to share with the other par- i=1
ties. Here the superscrig§,A’ signifies that both parts of
this state are in Alice’s laboratory, whereas her goal is to entNote that thex; give a quantitative amount of entanglement
up with states shared among all the parties. As in bipartitén terms of the spanning states. They are callecetitangle-
entanglement dilution, Alice then Schumacher compressesient coefficientsin general these coefficients may be non-
theA’ part of a tensor product of copies ofd**", resulting  unique, for example, if two states in the set are locally uni-
in approximatelyk compressed qubits, whekén asymptoti-  tarily related. Loosely speaking these coefficients may be
cally approaches$,(®)=S,(¥), the local entropy of the nonunique if the “kinds of entanglement” they correspond
Schmidt decomposable state she wishes to share. She thenare not “independent.”
teleports thes& compressed qubits to the other parties— Let us look at some examples. The entanglement span
Bob, Claire, etc. The teleportation is performed not wkth under LOCC of any bipartite state is the set of all bipartite
EPR pairs, as in ordinary teleportation, but wiktm-partite  states. Another example is provided by the set of
cat states, which she has shared beforehand with the othetorthogonal states. Any such state in general, and in par-
parties. For each of the compressed qubits, Alice performs #icular them-cat state, spans the set of all timeorthogonal
Bell measurement on that qubit and one leg ofnapartite  states.
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Let us now introduce the concept of reversible entangle- TABLE I. Entropy ratior ,; for some multipartite entangled pure
ment generating setREGS’9, which is dual to the concept states.
of entanglement span. A sg&={iq,¥5,...,4,} of states is
said to be areversible entanglement generating get a Parties State Ma1
class of state§ if and only if CCS(G). _ _ 3 Cat(GHZ) 1
Clearly, every REGS for the class o+ 1 partite states is

. - . 3-EPRs state 1
a REGS for each of itsn-partite subsystems. In particular
. 4 Cat 1
any REGS for the full class aih-partite states must be ca-
. . 6-EPRs state 4/3
pable of generating an EPR pair between any two of the
. . 5 Cat 1
parties. One might suspect that the set of allm 10-EPFE stat 3/
—1)/2 EPR pairs would be a sufficient REGS for generating - i b's aZ q 5
all m-partite states, but as we will see in Sec. Ill C, that is not Ive-qubit codewor
the case fom=4. cat 1
15-EPR state 8/5

To quantify entanglement, one would like to know the
fewest kinds of entanglement needed to make all states ina
given class. To this end we define a MREGS as a REGS of
minimal cardinality. Again the sef,={EPR is an example all and only those states which ha&8 entanglement but no
of a MREGS for bipartite entanglement which induces theother entanglement, more precisely states for wtghis
entanglement measure given by the partial entropy in bits. zero if X includes bothA and B or neitherA andB, and has

Thus we have reduced the problem of quantifying en-a constant nonzero value for all othér Therefore, in order
tanglement to the problem of finding the MREGS and theto generate all possible bipartite EPR pairs, the MREGS'’s
corresponding entanglement coefficients. The entanglemef$r generalm-partite pure states must have at leagtm
coefficients give us the gntanglement measure in terms of 1)/2 members, which can be taken without loss of gener-
how many of the states in the MREGS are required t0 reyity 1o be them(m—1)/2 bipartite EPR states themselves.
versibly make the state by asymptotic LOCC However, for allm>3 the partial entropy argument re-

l.f we drop the requirement of r_ever5|b|I|ty, we get the quires the MREGS'’s to include other states as well. Without
notion of anentanglement generating s€&GS, a set of pursuing this exhaustivel{36], we will sketch how local

states which can generate every stat&innder exact or entropy arguments can be used to derive other lower bounds
asymptotic LOCC. An EGS state needs only one member Py arg

since them-partite cat state by itself is sufficient to generateon the size of _the MREGS.S for genemlpartlte states._
all m-partite entangled states, though not reversibly. This can I._et us restr{ct our attention tpartite pure state in
be seen because tecat state can give an EPR pair be- Which the partial entropyB(tr,(|Y)(Y|)) of a subseX de-
tween any two parties by exact LOCC. So Alice can makd”€nds only on the number of membersXfnot on which
the desired multipartite state in her lab and then teleport iParties are members of Two examples of such as state are
using these EPR pairs, thus generating an arbitrary multipathe m-way cat state, and a tensor product af(m
tite state exactly by LOCC, starting from the appropriate—1)/2EPR pairs, one shared between each pair of parties.
number of m-cat states. To see that the transformation isWe shall call the latter an ERRstate. Let ry(Y)
irreversible, note that am-partite cat state can be used to =Spg(Y)/SA(Y) be the ratio of two-party to one-party par-
prepare at most one EPR state, say between Alice and Bobal entropy in statéY. It is easy to see that,;=1 for cat
but m—1 EPR states, say, connecting Alice to every otherstates, independent ah, but r,;=2(m—2)/(m—1) for
party, are needed to prepare the cat state again. ThapliyElPRs states, the numerator of the latter expression being the
[35] showed that a purerpartite state¥ is an EGS state number of edges, in am-partite complete graph, joining a
(can be transformed into a cat state by LOGIGand only if  two-vertex subseX to its complement, while the denomina-
its partial entropiesSy are positive across all nontrivial par- tor is the number of edges incident on any single vertex.
titions X. Thus cat and EPRstates have equak, for m=3, but for
Section Il C exhibits some simple lower bounds on theEPRs states with largen, the ratio exceeds 1, as shown in
cardinality of the MREGS for tripartite and higher entangledTable I. Therefore the 4-cat state, unlike the 4-ERfRate,
pure states. Unfortunately we do not know any correspondeannot be asymptotically equivalent to any combination of
ing upper bounds. We cannot exclude the possibility that fothe six EPR pairs, and the MREGS's fior=4 must have at
tripartite and higher states an infinite number of asympotiti{east seven members.
cally inequivalent kinds of entanglement might exist. For m=5, the table also includes an entry for the maxi-
mally entangled state of five qubit®.g., a codeword in the
well-known five-qubit error-correcting code&8,23)) which
has maximal entropy across any partiti¥nSince this state
has anr,, even greater than the EBRtate, the MREGS's
It is easy to see that the Alice-Bob EPR state EPR for m=5 must have at least 12 states. Similarly, the
(regarded as a special case ofraipartite state in which all MREGS’s form=6 must have at least 31 members, without
the parties besides Alice and Bob are unentangled bystandessnsidering other entropy ratios besides or other states
in a standardO) state is a MREGS for the class containing besides the EPR, 4-cat, and 6-cat states.

C. Lower bounds on the size of MREGS based
on local entropies
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D. Exact reducibilities between GHZ and EPR
At this point it is natural to ask whether three EPR pairs
(shared symmetrically among Alice, Bob, and Clacan be EPR
reversibly interconverted to two GHZ states. Partial entropy EPR / \

arguments do not resolve the question because, for both the
3-EPR state and the 2-GHZ state, the partial entropy of any

nontrivial subset of the parties is two bits. Nevertheless, the

impossibility of performing this conversion follows from the

fact that two states are LOCC equivalent if and only if they A B

are equivalent under local unitary operations. GHZ
To see that 2-GHZ and 3-EPR states are LOCC incompa-

rable, first observe that, since the two states are isentropic,

they must, by theorem 1, either be LOCC incomparable or

LU equivalent. To see that they are not LU equivalent, ob-

serve that the mixed state obtained by tracing out Alice from
the 2-GHZ state, namelyg(2-GHZ), a maximally mixed,
separable state of the two parties Bob and Claire, while the
corresponding mixed state obtained from the 3-EPR states,
pec(3-EPR) is a distillable entangled state, consisting of the

tensor product of an inta@&C EPR pair with another random — X

qubit held by each party. But if the 3-EPR and 2-GHZ states \

were LU equivalent, Bob and Claire, by performing their X

own local unitary transformations without reference to Alice, ISET 2GHZ

could makepB¢(3-EPR) from pB¢(2-GHZ). Since they

cannot do thigotherwise they would be generating entangle- g5 3 Top: Two EPR pairs, together involving three parties,
ment by LOCG, the 3-EPR and 2-GHZ states cannot be LU ;5 pe exactly transformed to one GHZ state. A GHZ state can be
equivalent; therefore, by corollary 1 they must be LOCCyansformed into any one of the three EPR pairs. These transforma-
incomparable. tions are exact and irreversible, involving a loss of entanglement

Figure 3 shows the exact reducibilities that hold amongacross some bipartite boundary. Bottom: The transformations be-
EPR and GHZ states. The protocols for these reducibilitie$ween the symmetric 3-EPR state and the 2-GHZ state, marked by
follow: To obtain an EPR pair say between Bob and Clairean X, cannot be done exactly, even though the partial entropies
Alice performs a measurement in the Hadamard basisagree, by the arguments of this section. Very recently it was shown
namely,{|0+1),|0—1)} and informs Bob and Claire about [40] that these transformation cannot even be done asymptotically.
the outcome. Using this information, Bob and Claire can
perform conditioned rotations that give them an EPR pairdo not know how to show uniqueness in general, but we can
Clearly, this LOCC protocol can be generalized to many parshow this for some cases of interest.
ties, to transform amn-cat state into an EPR pair between  For concreteness let us consider the case of three parties,
any two parties, by having the remaining— 2 parties mea- say Alice, Bob, and Claire. We noted earlier that all EPR
sure in the Hadamard basis, and communicate the result fgirs shared between two parties must be in the MREGS's,
the two parties, who then perform appropriate conditionedso EPRE, EPREC, and EPR” must be in the MREGS's.
local unitary operations. Let us consider the entanglement span of these three EPR

To obtain a GHZ state from two EPR pairs §@PR'®)  pairs. Assume that there exists a stdtan this span such
and |[EPR'B), Alice makes a GHZ state in her lab and thenthat the entanglement coefficients are not unique,(s3yz)
uses the EPR pairs to teleport Bob’s and Charlie’s parts t@nd(a,b,c), wherex, y, andz (a, b, andc) denote the amounts
them. Clearly, this protocol can be generalized to make ®f EPR'E, EPRC, and EPR” in the two decompositions.
m-cat state from a set ah EPR pairs, shared by one party Then using the fact that asymptotically LOCC-equivalent
with all the rest. states must be isentropic, we have

In passing we note that any set of EPR pairs that describe
a connected graph, the nodes representing parties and the

edges representing the shared EPR pairs, is an EGS. Thisjs. . . . .
easy to prove using teleportation, as done above. 'I'%ns implies that §,y,z)=(a,b,c), and thus proves unigue-

ness. Clearly such an argument works for the entanglement
span of EPR pairs of more parties, because there are at most
m(m—1)/2 EPR pairs shared by different parties and the
One key question about this framework for quantifying isentropic condition gives the same number of independent
entanglement is whether entanglement coefficients areonstraints.
unique. Surely this is to be desired if we are to interpret the Now we look at the entanglement span of the above three
values of the coefficients as representing the amounts of diEPR pairs and the GHZ state. If we assume the GHZ state
ferent kinds of entanglement present in the given state. Weelongs to the span of the EBRtate then uniqueness has

X+y=a+b, y+z=b+c, z+x=c+a. (31

E. Uniqueness of entanglement coefficients
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already been proved. Thus let us assume that the GHZ state-orthogonal states. In this paper, however, we focus on
is asymptotically not equivalent to the EPRtate. Let the inequivalent classes of entanglement, leaving many ques-
nonunique entanglement coefficients bey,zw) and tions unanswered.

—6x,Y—96y,2— 6,,W+4,), with the first three coefficients Very recently[40] Linden, et al,, using a relative entropy
representing the amount of the EPRate, and the last rep- argument, strengthened the result of Sec. IlID by showing
resenting the amount of the GHZ state. Without loss of genthat asymptotically reversible transformations are insufficient
erality we can assumé,=246>0. Again using the fact that to interconvert 2-GHZ and 3-EPEndeed the states remain
asymptotically LOCC equivalent states must be isentropicasymptotically incomparable even with the help of a cata-

we have
Su— 8= 8= Oy— 8,— 8,= Sy— 5,— 8,=0. (32
Solving these equations, we find that
8= 08,=8,= 8,/2= 6. (33

This implies that

lyst). Therefore, the MREGS fan=3 must contain at least
four stategwithout loss of generality the GHZ state and the
three bipartite EPR statesOf course we would like to know
whether these resources are sufficient to prephriipartite
pure states in an asymptotically reversible fashion.

A more fundamental problem is that although we have
lower bounds on the number of inequivalent kinds of en-
tanglement under asymptotically reversible LOCC transfor-

mations, we know of no nontrivial upper bounds. As noted
earlier, even for tripartite states we do not know that the
i ) number is finite. One possible approach to this problem,

For more complicated setS of states, the requirement \nich we do not explore in detail here, would be to further
that entanglement coefficients be positive may lead to noNUyenerajize the notion of state by allowing tensor factors to

niqueness. Because of ’positivity, all extremal pointsSof appear with negative as well as nonintegral exponents. A
must be in the MREGS's, and for songthe number of eneralized state such as (EBR2®(GHZ)® %3 (in

extremal points may considerably exceed the dimensionalit hemical notation, 2-EP¥—0.3-GH2) would thus repre-

of S (for example, fom>3, each.mterlor point of a regular sent a quantum “contract” comprising a license, asymptoti-
n-gon can be gxpressed in multiple ways as a convex COMkally, to consume two Alice-Bob EPR pairs along with an
bination of vertices obligation to produce 0.3-GHZ states. Allowing negative en-

_Note that there may be many MREGS's, for example any,giement coefficients would also solve the problem of
bipartite state is as MREGS'’s for bipartite entanglement. S‘?\onuniqueness of entanglement coefficients, allowing any

hO\.N QO we decid(_a_upon eanonica}l MREGS Possible cri- state to be described as a unique, but not necessarily positive,
teria include requiring the states in the MREGS to be of 3Sinear combination of states in a smaller MREGS.

low Hilbert space dimension as possible, and as high in par- The most powerful result we could hope for from ap-

tial entropy within that Hilbert space as possible. Thus forg . . hes of this kind would be to show that under some
the bipartitg case the I_EPR state is the canonical MREGS, propriately strengthenedbut still natura) notion of

to local unitary operations. asymptotic reducibility, all isentropic states are asymptoti-
cally equivalent. A less ambitious result would be to show
that for simple asymptotic reducibility, or some strengthened

For bipartite pure states, the unique asymptotic measur}éerSion of it, a_II isentropic s_tates are either eqqivalent or
of entanglement is knowfL7—19. The present paper iden- incomparable, in analogy with the_ fact that all isentropic
tifies elements of any exact or asymptotic measurmoki-  StAt€S must be either equivalent or incomparable uexiect
partite entanglement. For bipartite states, entanglement is KOCC reducibility (corollary 1.
scalar: the measure of entanglement of a state reduces to a
single number. For multipartite states, entanglement is a vec-
tor, i.e., there are inequivalent classes of entanglement. The
inequivalence leads to the concept of a MREGS, and the We thank David DiVincenzo, Julia Kempe, Noah Linden,
requirement that angn-partite entangled state be expressibleBarbara Terhal, Armin Uhlmann, and Bill Wootters for help-
as a linear combination of the states in thepartite ful discussions. C.H.B., J.A.S., and A.\V.T. acknowledge
MREGS. Within a class of states with equivalent entanglesupport from the U.S. Army Research Office, Grant No.
ment, we seek a scalar measure of entanglement. Five desiBAAG55-98-C-0041, and A.V.T. also under Grant No.
erata for a scalar measure of entanglement are listed in SEDAAG55-98-1-0366. D.R. acknowledges support from the
I, and Sec. lll A derives such a measure for the states we cabiladi program.

EPPB® EPRC® EPR A~ oco.GHZ®2. (34

IV. DISCUSSION AND OPEN PROBLEMS
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