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Exact and asymptotic measures of multipartite pure-state entanglement
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Hoping to simplify the classification of pure entangled states of multi~m!-partite quantum systems, we study
exactly and asymptotically~in n! reversible transformations amongnth tensor powers of such states~i.e., n
copies of the state shared among the samem parties! under local quantum operations and classical communi-
cation~LOCC!. For exact transformations, we show that two states whose marginal one-party entropies agree
are either locally unitarily equivalent or else LOCC incomparable. In particular we show that two tripartite
Greenberger-Horne-Zeilinger states are LOCC incomparable to three bipartite Einstein-Podolsky-Rosen~EPR!
states symmetrically shared among the three parties. Asymptotic transformations yield a simpler classification
than exact transformations; for example, they allow all pure bipartite states to be characterized by a single
parameter—their partial entropy—which may be interpreted as the number of EPR pairs asymptotically inter-
convertible to the state in question by LOCC transformations. We show thatm-partite pure states having an
m-way Schmidt decomposition are similarly parametrizable, with the partial entropy across any nontrivial
partition representing the number of standard quantum superposition or ‘‘cat’’ statesu0^ m&1u1^ m& asymp-
totically interconvertible to the state in question. For generalm-partite states, partial entropies across different
partitions need not be equal, and since partial entropies are conserved by asymptotically reversible LOCC
operations, a multicomponent entanglement measure is needed, with each scalar component representing a
different kind of entanglement, not asymptotically interconvertible to the other kinds. In particular we show
that them54 cat state is not isentropic to, and therefore not asymptotically interconvertible to, any combina-
tion of bipartite and tripartite states shared among the four parties. Thus, although them54 cat state can be
prepared from bipartite EPR states, the preparation process is necessarily irreversible, and remains so even
asymptotically. For each number of partiesm we define a minimal reversible entanglement generating set
~MREGS! as a set of states of minimal cardinality sufficient to generate allm-partite pure states by asymp-
totically reversible LOCC transformations. Partial entropy arguments provide lower bounds on the size of the
MREGS, but form.2 we know no upper bounds. We briefly consider several generalizations of LOCC
transformations, including transformations with some probability of failure, transformations with the catalytic
assistance of states other than the states we are trying to transform, and asymptotic LOCC transformations
supplemented by a negligible@o(n)# amount of quantum communication.
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I. INTRODUCTION

Entanglement, first noted by Einstein, Podolsky, a
Rosen @1# and Schro¨dinger @2#, is an essential feature o
quantum mechanics. Entangled two-particle states, by t
experimentally verified violations of Bell inequalities, hav
played an important role in establishing widespread co
dence in the correctness of quantum mechanics. Th
particle entangled states, though more difficult to produ
experimentally, provide even stronger tests of quantum n
locality.

The canonical two-particle entangled state is the Einst
Podolsky-Rosen-Bohm pair
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u00&1u11&. ~1!

~We omit normalization factors when it will cause no conf
sion.! The canonical tripartite entangled state is t
Greenberger-Horne-Zeilinger-Mermin state

u000&1u111&, ~2!

while the correspondingm-partite state

u0^ m&1u1^ m& ~3!

is called anm-particle cat~m-cat! state, in honor of Schro¨d-
inger’s cat.

More recently it has been realized that entanglement
useful resource for various kinds of quantum-informati
processing, including quantum-state teleportation@3#, cryp-
tographic key distribution@4#, classical communication ove
quantum channels@5–7#, quantum error correction@8#, quan-
tum computational speedups@9#, and distributed computation
©2000 The American Physical Society07-1
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@10,11#. In view of its central role@12# in quantum informa-
tion theory, it is important to have a qualitative and quan
tative theory of entanglement.

Entanglement only has meaning in the context of a m
tipartite quantum system, whose Hilbert space can be vie
as a product of two or more tensor factors correspond
physically to subsystems of the system. We often think
subsystems as belonging to different observers, e.g. A
has subsystemA, Bob has subsystemB, and so on.

Mathematically, anunentangledor separablestate is a
mixture of product states; operationally it is a state that
be made from a pure product state by local operations
classical communication~LOCC!. Here local operations in
clude unitary transformations, additions of ancillas~i.e., en-
larging the Hilbert space!, measurements, and throwing aw
parts of the system, each performed by one party on hi
her subsystem. Mathematically, we represent LOCC b
multilocal superoperator, i.e. a completely positive line
map that does not increase the trace, and can be impleme
locally with classical coordination among the parties.1 Clas-
sical communication between parties allows local actions
one party to be conditioned on the outcomes of earlier m
surements performed by other parties. This allows, am
other things, the creation of mixed states that are classic
correlated but not entangled.

Mathematically speaking, a pure stateuCABC...& is sepa-
rable if and only if it can be expressed as a tensor produc
states belonging to different parties:

uCABC...&5uaA& ^ ubB& ^ ugC& ^¯ . ~4!

A mixed staterABC... is separable if and only if it can b
expressed as a mixture of separable pure states:

rABC5(
i

pi ua i
A&^a i

Au ^ ub i
B&^b i

Bu ^ ug i
C&^g i

Cu ^¯ . ~5!

where the probabilitiespi>0 and( i pi51. States that are no
separable are said to beentangledor inseparable.

Besides the gross distinction between entangled and
entangled states, various inequivalentkindsof entanglement
can be distinguished, in recognition of the fact that not
entangled states can be interconverted by local operat
and classical communication. For example, bipartite

1General quantum dynamics can be represented mathemat
by completely positive linear maps that do not increase tr
@13,14#. Such a map sayL can be written asL(r)5( iL irLi

† ,
where( iL i

†Li<11. The equality holds for trace-preserving sup
operators which correspond physically to nonselective dynam
e.g., a measurement followed by forgetting which outcome w
produced. In general the superoperators may be trace decre
and correspond to selective operations, e.g., a measuremen
lowed by throwing away some outcomes. IfL is a multilocally
implementable superoperator, it must be a separable superope
i.e., a completely positive trace-preserving map of the form sho
above, where theLi ’s are products of local operators—Li

5Li
A

^ Li
B ... . Note that not all separable superoperators are m

tilocally implementable@15,16#.
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tangled states are further subdivided intodistillable and
bound entangled states, the former being states which
pure or from which some pure entanglement can be produ
by LOCC, while the latter are mixed states which, thou
inseparable, have zero distillable entanglement.

Within a class of states having the same kind of entang
ment ~e.g., bipartite pure states! one can seek a scalar me
sure of entanglement. Five natural desiderata for such a m
sure~cf. Refs.@17–21#! are the following

~i! It should be zero for separable states.
~ii ! It should be invariant under local unitary transform

tions.
~iii ! Its expectation should not increase under LOCC.
~iv! It should be additive for tensor products of indepe

dent states, shared among the same set of observers@thus if
CAB and FAB are are bipartite states shared between Al
and Bob, and E is an entanglement measur
E(CAB

^ FAB) should equalE(CAB)1E(FAB)#.
~v! It should be stable@22# with respect to transfer of a

subsystem from one party to another, so that in any tripar
stateCABC, the bipartite entanglement ofAB with C should
differ from that of A with BC by at most the entropy o
subsystemB.

For bipartite pure states it has been shown@17,19,21# that
asymptotically there is only one kind of entanglement a
partial entropy is a good entanglement measure~E! for it. It
is equal, both to the state’sentanglement of formation@the
number of Einstein-Podolsky-Rosen~EPR! pairs asymptoti-
cally required to prepare the state by LOCC#, and the state’s
distillable entanglement~the number of EPR pairs asymp
totically preparable from the state by LOCC!. Here partial
entropy is the von Neumann entropyS(r)5tr(r ln2 r) of the
reduced density matrix obtained by tracing out either of
two parties.

In Sec. II, we define exact and asymptotic reducibiliti
and equivalences under LOCC alone, and with the help
‘‘catalysis,’’ or asymptotically negligible amounts of quan
tum communication. In Sec. III we use these concepts
develop a framework for quantifying tripartite and multipa
tite pure-state entanglement, in terms of a canonical se
states which we call a minimal reversible entanglement g
erating set~MREGS!. This framework leads to an additive
multicomponent entanglement measure, based on asymp
cally reversible LOCC transformations among tensor pow
of such states, and having a number of scalar compon
equal to the number of states in the MREGS, in other wo
the number of asymptotically inequivalent kinds of entang
ment.

For generalm-partite states, partial entropy argumen
give lower bounds on the number of entanglement com
nents as a function ofm, and allow us to show that som
states, e.g., them54 cat state, are not exactly, nor eve
asymptotically, interconvertible into any combination
EPR pairs shared among the parties.

On the other hand, we show that the subclass of multip
tite pure states having anm-way Schmidt decomposition is
describable by a single parameter, its partial entropy rep
senting the number of standard cat statesu0^ m&1u1^ m& as-
ymptotically interconvertible to the state in question. Sect
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EXACT AND ASYMPTOTIC MEASURES OF . . . PHYSICAL REVIEW A 63 012307
III D treats tripartite pure-state entanglement, showing
particular that, using exact LOCC transformations, t
Greenberger-Horne-Zeilinger~GHZ! states can neither b
prepared from nor used to prepare the isentropic combina
of three EPR pairs shared symmetrically among the th
parties.

II. REDUCIBILITIES, EQUIVALENCES,
AND LOCAL ENTROPIES

Reducibility formalizes the notion of a transformation
one state to another being possible under certain conditi
while equivalence formalizes the notion of this transform
tion being reversible—possible in both directions. Wh
studying entanglement it is useful to discuss state trans
mation under LOCC. This is because a good entanglem
measure should not increase under LOCC. So, if two st
are equivalent under LOCC operations, they will have
same entanglement. This is the key idea we will use in S
III to quantify entanglement.

We start by first looking at partial entropies. Partial ent
pies have the nice property that for pure states their ave
does not increase under LOCC

Suppose them parties holding a pure stateC are num-
bered 1,2, . . . ,m. Let X denote a nontrivial subset of th
parties and letX̄ be the set of remaining parties. Then t
reduced density matrix of subsetX of the parties is defined a

rx~C!5trx̃~ uC&^Cu!. ~6!

Thepartial entropyof subsetX is the von Neumann entrop

SX~C!52tr„rx~C!ln2 rx~C!…. ~7!

When X5$ l % consists of a single party,r$ l % is called the
marginal density matrixof party l, and S(r$ l %) is the mar-
ginal entropyof party l. Two states are said to beisentropic
if for each subsetX of the partiesSX(C)5SX(F). Two
statesC and F are said to bemarginally isentropic if
S$ l %(C)5S$ l %(F) for each partyl.

Now we are ready to show that for any subsetX of par-
ties, the partial entropySX is nonincreasing under LOCC
We state this as a lemma.

Lemma 1: If a multipartite system is initially in a pure
stateC, and is subjected to a sequence of LOCC operati
resulting in a set of final pure statesF i with probabilitiespi ,
then for any subsetX of the parties

SX~C!>(
i

piSX~F i !. ~8!

Proof: The result follows from the fact that average bipa
tite entanglement~partial entropy! of bipartite pure states
cannot increase under LOCC, cf. Ref.@23#.

A. Reducibilities and equivalences: Exact and stochastic

We start with a LOCC state transformation involvin
single copies of states. If the state transformation is exact
say it is an exact reducibility. If the state transformation s
01230
n

n
e

s,
-

r-
nt
es
e
c.

-
ge

s

e
-

ceeds some of the time we say it is stochastic, and if the s
transformation needs the presence of another state, whic
is recovered after the protocol, it is called catalytic reducib
ity. In this section we define these more precisely. We s
with exact reducibility.

We say a stateF is exactly reducibleto a stateC ~written
F<LOCCC or just F<C! by local operations and classica
communication if and only if

F5L~C!, ' L ~9!

where L is a multilocally implementable trace preservin
superoperator. Alternatively we may say that the LOCC p
tocol PL corresponding to the superoperatorL transformsC
to F exactly.

Intuitively this means that the state transformation fromC
to F can be done by LOCC with probability 1.~Where it will
cause no confusion, for pure states we use a plain Gr
letter such asC to represent both the vectoruC& and the
projectoruC&^Cu.!

The relation of exact LOCC reducibility for bipartite pur
states has been studied in Refs.@24# and @25#, which give
necessary and sufficient conditions for it in terms of maj
ization of the eigenvalues of the reduced density mat
Nielsen @25# used notation reminiscent of a chemical rea
tion: where we sayF<C, he saysC→F. Both notations
mean that, given one copy ofC, we can with certainty, by
local operations and classical communication, make
copy of F.

Chemical reactions often involve catalysts, molecu
which facilitate a reaction without being used up, so it
natural to look for analogous quantum-state transformatio
Jonathan and Plenio recently found an example of succes
catalysis for bipartite states, where a catalyst allows a tra
formation to be performed with a certainty which could on
be done with some chance of failure in the absence of
catalyst@26#.

We say thatF is catalytically reducible(<LOCCc) to C if
and only if there exists a stateY such that

F ^ Y<LOCCC ^ Y. ~10!

An interesting fact about catalysis is that, because
catalyst is not consumed, one copy of it is sufficient to tra
form arbitrarily many copies ofC into F:

FY<LOCCCY⇒FnY<LOCCCnY, ; n. ~11!

Another important form of state transformation involv
probabilistic outcomes, where the procedure for the red
ibility may fail some of the time as in ‘‘entanglement gam
bling’’ @17#. We capture this idea in stochastic reducibility

We say a stateF is stochastically reducibleto a stateC
under LOCC with yieldp if and only if

F5
L~C!

tr@L~C!#
, ' L ~12!

whereL is a multilocally implementable superoperator su
that tr@L(C)#5p.
7-3
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CHARLES H. BENNETTet al. PHYSICAL REVIEW A 63 012307
This means that a copy ofF may be obtained from a cop
of C with probability p by LOCC operations. Exact reduc
ibility corresponds to the casep51. For any reducibility, one
may define corresponding notions of equivalence and inc
parability.

Two statesF and C are said to beexactly equivalent
~[LOCC or simply [! if F<C andC<F. This means that
the two states are exactly interconvertible by classically
ordinated local operations. In chemical notation this wo
beC
F. Conversely, statesF andC are said to beexactly
incomparableif neither is exactly reducible to the othe
Catalytic and stochastic equivalence and incomparab
may be defined analogously.2

In passing we note that many other reducibilities~and
their corresponding equivalences! can be considered, e.g
reducibilities via local unitary~LU! operations@27# <LU ,
stochastic reducibility with catalysis, and reducibilities wit
out communication or with one-way communication@28#.

Physically, reducibility via local unitary operations an
that via local unitary operations along with a change in
local support~corresponding to the increase or decrease
the local Hilbert space dimensions! are the same because w
could think of the extra dimensions as being present from
start and extend the local unitary operation to the lar
space. Thus, from now on, when we say local unitary ope
tions we mean local unitary operations along with a poss
change in the local support, i.e., isometric transformation3

We now look at some conditions for two states to
exactly equivalent. From lemma 1 it is clear that if two sta
are equivalent they must be isentropic, but not all isentro
states are equivalent. We are now in a position to dem
strate some important facts about exact LOCC reducibili4

Theorem 1: If C andF are two marginally isentropic pur
states, then they are either locally unitarily~LU! equivalent
or else LOCC incomparable.

Corollary 1: Two states are LOCC equivalent if and on
if they are LU equivalent:

C[LOCCF⇔C[LUF, ; C,F ~13!

2Very recently Du¨rr, Vidal, and Cirac~LANL eprint, quant-ph/
0005115! found a tripartite pure state of three qubits which is s
chastically incomparable with the GHZ state. They also showed
if two pure states are chosen randomly in the tensor product Hil
space of four or more parties, then, with probability 1, they
stochastically incomparable: neither state can be produced from
other by LOCC with any chance of success.

3Unitary operations are characterized byU†U515UU†. How-
ever, if we are want general transformations that preserve the n
of vectors, all we need isU†U51, where theU’s could be rectan-
gular matrices. SuchU are called isometric@29#.

4These results strengthen Vidal’s result@21# that LU
equivalence⇔LOCC equivalence for bipartite pure states, a
Kempe’s result@30# that if two multipartite pure states have iso
spectral marginal density matrices, then they are either LU equ
lent or LOCC incomparable.
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Corollary 2: States that are marginally but not fully isen
tropic are necessarily LOCC incomparable.

Proof: To prove this it suffices to show that for marginal
isentropic statesC andF, if F<C then they must be loca
unitarily equivalent. In light of the nonincrease of parti
entropy under LOCC~cf. lemma 1! and the fact that these
two states are marginally isentropic, a LOCC protocol th
converts one state to the other must conserve the marg
entropies at each step. Suppose the LOCC protocolP trans-
formsC to F exactly. In general such a protocol consists
a sequence of local transformations each done by one p
followed by communication of~some of! the information
gained to other parties. Without loss of generality assu
that Alice performs the first operation of such a protoc
convertingC to F, which gives the resulting ensembleE
5$pi ,c i%. Since Alice’s operation cannot change the dens
matrix rBC... ‘‘seen’’ by the remaining parties,

rBC...5(
i

pi trA~ uc i&^c i u!. ~14!

As argued earlier, the average entropy must not change,

SBC...~C!5SA~C!5(
i

piSBC...~c i !. ~15!

By the strict concavity of the von Neumann entropy@29#
each of the resultant statesc i must have the same reduce
density matrix, from the viewpoint of all the other partie
besides Alice, as the original stateC did:

trA~ uc i&^c i u!5trA~ uC&^Cu!, ; i ~16!

Therefore, the statesc i must be related by isometries actin
on Alice’s Hilbert space alone:

uc i&5Ui
A

^ I BC...uC&, ~17!

whereUi
A are unitary transformations acting on Alice’s Hi

bert space, which may have more dimensions than the
port of uC& in Alice’s space~this would correspond to Alice
having unilaterally chosen to enlarge her Hilbert spa
which she is always free to do!. Thus Alice’s measuremen
process, which appears on its face to be a stochastic pro
not entirely under her control, could in fact be faithful
simulated by having her simply toss a coin to choose
‘‘measurement result’’i with probability pi , then perform
the deterministic operationUi on her portion of the joint
state, and then finally report the resulti to all the other par-
ties. In the next step of the protocol, another party perfor
similar operations and sends classical information as
which unitary it performed and so on for each step. Thus
entire protocol consists of local unitary transformations, e
largement of Hilbert space and classical communicati
maintaining at each step the overall state to be pure.
protocol ends when the stateF has been obtained. Since th
is an exact reducibility of one pure state to another, for e
possible sequence of local unitaries, the result must beF.
Thus we can define a new protocolP8 that consists of choos
ing just one such sequence of local unitaries and it will ta

-
at
rt

e
he

rm

a-
7-4



ily
if
an
h
b

va
o

a
ite

is
sc
lo
LU
tie

is
C

f

on
-
ni
uc
ic

-
m

t
s

e
tio

on
il-

i

at

s

c-
tic

is
ur-

ow-
,
rate
sed

in
t

C
ny
be
tput
r
d
be

n,

o
at

EXACT AND ASYMPTOTIC MEASURES OF . . . PHYSICAL REVIEW A 63 012307
C to F, showing that the two states are local unitar
equivalent. The first corollary follows from the fact that
two states are LOCC equivalent, they must be isentropic
therefore marginally isentropic. The second follows from t
fact if that the two states were LU equivalent, they would
fully isentropic, not merely marginally so.

B. Asymptotic reducibilities and equivalence, and their
relation to partial entropies

Before we discuss asymptotic reducibilities and equi
lences, let us define a quantitative measure of similarity
two states. One such measure, thefidelity @31,32# of a mixed
state r relative to a pure statec, is given by F(r,c)
5^curuc&. It is the probability thatr will pass a test for
being c, conducted by an observer who knows the statec.
For mixed statesr ands it is given by the more symmetric
expressionF(r,s)5@ tr(AsrAs)1/2#2.

Exact reducibility is too weak a reducibility to give
simple classification of entanglement—even for bipart
pure states, there are infinitely many incomparable<LU
equivalence classes, which would lead to infinitely many d
tinct kinds of bipartite entanglement. Linden and Pope
@27# have explored the orbits of multipartite states under
cal unitary operations, and shown that the number of
invariants increases exponentially with the number of par
and with the number of qubits possessed by each party.

One natural way to strengthen the notion of reducibility
to make it asymptotic. We first consider ‘‘asymptotic LOC
reducibility’’ @17,28# which expresses the ability to convertn
copies of one pure state into a good approximation on
copies of another, in the limit of largen. A possibly stronger
reducibility, which we will call ‘‘asymptotic LOCCq reduc-
ibility,’’ expresses the ability to do the state transformati
with the help of a limited@o(n)# amount of quantum com
munication, in addition to the unlimited classical commu
cation and local operations allowed in ordinary LOCC red
ibility. Another natural way of strengthening asymptot
reducibility is to allow catalysis; defining ‘‘catalytic
asymptotic LOCC reducibility’’ (LOCCc), in direct analogy
with the exact case. We show that asymptotic LOCCc reduc-
ibility is at least as strong as~i.e., can simulate! LOCCq
reducibility.

Ordinary asymptotic LOCC reducibility is enough to sim
plify the classification of all bipartite pure states and so
classes ofm-partite states, so that, for any givenm, a finite
repertoire of standard states~EPR, GHZ, etc.!, which we will
later call a minimal reversible entanglement generating se
MREGS, can be combined to prepare any member of clas
an asymptotically reversible fashion, regardless of the siz
the Hilbert spaces of the parties. Whether this classifica
can be extended to cover generalm-partite states form.2
while maintaining a finite repertoire size is an open questi
Let us start by defining ordinary asymptotic LOCC reducib
ity.

StateF is asymptotically reducible~dLOCC or simply d!
to stateC by local operations and classical communication
and only if

u~n/n8!21u,d,

~18!

01230
d
e
e

-
f

-
u
-

s

-
-

e

or
in
of
n

.

f

F„L~C ^ n8!,F ^ n
…>12e, ; d.0, e.0, ' n,n8,L.

Here L is a multilocally implementable superoperator th
convertsn8 copies ofC into a high fidelity approximation to
n copies ofF. In chemical notation we can write this a
C�F.

A natural extension of asymptotic LOCC reducibility o
curs if we allow catalysis. Thus we define asympto
LOCCc reducibility as follows. We sayF is asymptotically
LOCCc reducible(dLOCCc) to C if there exists some stateY
such that

FYdCY, ~19!

where we say the stateY is a catalyst for this reducibility. As
with exact catalysis@Eq. ~11!#, asymptotic catalysis allows
an arbitrarily large ratio of reactant to catalyst:

FYdCY⇒FnYdCnY, ; n. ~20!

Another way of extending asymptotic LOCC reducibility
to allow a sublinear amount of quantum communication d
ing the transformation process.

StateF is said to beasymptoticallyLOCCq reducible
(dLOCCq) to stateC if

~k/n!,d,

F„L~G ^ k
^ C ^ n!,F ^ n

…>12e, ; d.0,

e.0, ' n,k,L.
~21!

whereG denotes them-cat stateu0^ m&1u1^ m&.
Them-cat states used here are a convenient way of all

ing a sublinear amounto(n) of quantum communication
since they can be used as described in Sec. III D to gene
EPR pairs between any two parties which in turn can be u
to teleport quantum data between the parties. Theo(n) quan-
tum communication allows the definition to be simpler
one respect: a single tensor powern can be used for the inpu
stateC and output stateF, rather than the separate powersn
andn8 used in the definition of ordinary asymptotic LOC
reducibility without quantum communication, because a
o(n) shortfall in number of copies of the output state can
made up by using cat states to synthesize the extra ou
statesde novo. This definition is more natural than that fo
ordinary asymptotic LOCC reducibility in that the input an
output states are allowed to differ in any way that can
repaired by ano(n) expenditure of quantum communicatio
rather than only in the specific way of beingn versusn8
copies of the desired state wheren2n8 is o(n).

Clearly dLOCC implies dLOCCq anddLOCCc , because or-
dinary asymptotic reducibility is a special case of the tw
other kinds of asymptotic reducibility. We can also show th
asymptotic LOCCq reducibility implies asymptotic LOCCc
reducibility, because anydLOCCq protocol can be simulated
by a dLOCCc protocol with them-cat stateG as a catalyst,
only a sublinear~and therefore asymptotically negligible!
amount of which is consumed. In more detail, ifF
dLOCCqC, then from Eq.~21!, for eache andd, there existn
7-5
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CHARLES H. BENNETTet al. PHYSICAL REVIEW A 63 012307
and k such thatC ^ n can be converted to a 12e faithful
approximation toF ^ n with the help ofk,nd cat states’
worth of quantum communication. This implies thatn copies
of C andk copies ofG can be converted into a 12e faithful
approximation ton copies ofF without any quantum com
munication. By supplying extran2k, nonparticipatory cop-
ies of G, which are present both before and after the tra
formation, and discardingk of the copies ofF which the
transformation has produced~even if the copies are en
tangled, this cannot decrease the fidelity!, we obtain that a
12e faithful approximation to (F ^ G) ^ (n2k) can be pre-
pared from (C ^ G) ^ n. This satisfies the conditions@Eq.
~18!# for asymptotic reducibility,

F ^ GdLOCCC ^ G, ~22!

or, invoking the definition@Eq. ~9!# of asymptotic catalytic
reducibility,

FdLOCCcC, ~23!

which was to be demonstrated. While the converse~i.e., that
asymptotic catalytic reducibility can be simulated
LOCCq transformations! seems plausible, we have not be
able to prove it except in special cases.

Asymptotic reducibilities and equivalences can have n
integer yields. This can be expressed using tensor expon
that take on any non-negative real value, so thatF ^ x

dC ^ y denotes

u~n/n8!2x/yu,d, F„L~C ^ n8!,F ^ n
…>12e,

;d.0, ' n,n8. ~24!

In this case we sayx/y is the asymptotic efficiency or yield
with which F can be obtained fromC. In chemical notation
this could be expressed byC�(x/y)F, keeping in mind
that the coefficientx represents an asymptotic yield or num
ber of copies of the stateF, not a scalar factor multiplying
the state vector. Clearly, if a stochastic state transforma
with yield p is possible fromC to F thenC�pF because
of the law of large numbers and the central limit theorem

We are now in a position to define the most important t
in quantifying entanglement, namely, asymptotic equi
lence. We say thatC ^ x andF ^ y, with x,y>0, areasymp-
totically equivalent(C ^ x'F ^ y) if and only if F ^ y is as-
ymptotically reducible toC ^ x, and vice versa. Two state
are said to beasymptotically incomparableif neither is as-
ymptotically reducible to the other.

Although we will mainly be concerned with asymptot
equivalence~'!, two possibly stronger reducibilities men
tioned earlier—asymptotic LOCC reducibility with a cataly
(dLOCCc) and asymptotic LOCC reducibility with a sma
amount of quantum communication (dLOCCq)—give rise to
their own corresponding versions of equivalence and inco
parability. SincedLOCCc transformations can simulate bo
dLOCCq and dLOCC, the 'LOCCc reducibility can be ex-
pected to give rise to the simplest~coarsest! classification of
states into equivalence classes, and the simplest~fewest in-
dependent components! entanglement measures for multipa
01230
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tite states. It was very recently shown@40# that evendLOCCc
is not coarse enough to connect every isentropic pair
states. @The converse—that asymptoticall
LOCCc-equivalent states must be isentropic—follows fro
the nonincrease of pure states’ partial entropies un
LOCC: if C can be efficiently converted intoF, even as-
ymptotically and even with the help of a catalyst, then f
each subsetX of the parties,SX(F) cannot exceedSX(C);
otherwise an increase of partial entropy could be made
occur in violation of lemma 1.# We collect the relations we
have proved in this section from the definitions of the va
ous reducibilities, using Lemma 1 and Theorem 1, and
press them as follows.

Theorem 2: The following implications hold among the
reducibilities, equivalences, and partial entropies of a pai
multipartite pure states.

For reducibilities and entropy inequalities~omitting men-
tion of the statesC andF where it will create no confusion!,
we have

~F[LUC!

⇒,LOCC⇒dLOCC⇒dLOCCq

⇒dLOCCc⇒SX~F!<SX~C!, ;X . ~25!

For equivalences and entropy equalities we have

~F[LUC!⇔[LOCC⇒'LOCC⇒'LOCCq

⇒'LOCCc⇒SX~F!5SX~C!,

;X, ~ i.e.,F and C are isentropic!⇒

F andC are marginally isentropic⇒

~F[LUC! or C and C are LOCC incomparable.
~26!

Figure 1 illustrates several of these relations.

C. Bipartite entanglement: a reinterpretation

As an example of the usefulness of these concepts le
reexpress the bipartite pure state entanglement result@17# in
terms of asymptotic equivalence. In this new language,
bipartite pure stateCAB is asymptotically equivalent to
SA(CAB) EPR pairs: this is the number of EPR pairs th
asymptotically, can be obtained from and are required
prepareCAB by classically coordinated local operations.

In proving this result, the concepts of entanglement c
centration and dilution@17# are central. The process of a
ymptotically reducing a given bipartite pure state to EP
singlet form isentanglement dilution, and that of reducing
EPR singlets to an arbitrary bipartite pure state isentangle-
ment concentration. Then the above result means that e
tanglement concentration and dilution are reversible in
sense of asymptotic equivalence, i.e., they approach uni
ficiency and fidelity in the limit of large number of copiesn.
The crucial requirement for these methods to work is
existence of the Schmidt biorthogonal~normal or polar! form
7-6
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EXACT AND ASYMPTOTIC MEASURES OF . . . PHYSICAL REVIEW A 63 012307
for bipartite pure states@37#, that is, the fact that any bipartit
pure stateuCAB& can be written in a biorthogonal form,

CAB5(
i

l i u i A& ^ u i B&, ~27!

where u i A& and u i B& form orthonormal bases in Alice’s an
Bob’s Hilbert space, respectively, where by choice of pha
of local bases the coefficientsl i can be made real and non
negative.

III. TRIPARTITE AND MULTIPARTITE PURE-STATE
ENTANGLEMENT

In this section we use the tools we developed earlie
propose a framework for quantifying multipartite pure-sta

FIG. 1. Relation of exact and asymptotic equivalences to eq
ity of local entropies. Two states are exactly equivalent under lo
operations and classical communication~LOCC! if and only if they
are equivalent under local unitary~LU! operations alone. An ex
ample~circled 1! is the LU interconvertibility of the two Bell state
u00&1u11& andu00&2u11&. An exact equivalence of course implie
asymptotic equivalence~dotted region! including ~circled 2! the
asymptotic equivalence between an EPR pair and an isentropic
not isospectral two-trit state of the formau00&1bu11&1gu22&. As-
ymptotically equivalent states are necessarily isentropic, but no
converse. For example~circled 3!, the isentropic—and indeed
isospectral—tripartite 2-GHZ and 3-EPR states~see Sec. III D!
were very recently shown@40# to be incomparable with respec
asymptotic LOCC reducibility. This example also illustrates the f
~cf. Ref. @30#! that isospectral states of three or more parties n
not be LU equivalent. A tensor product of circled 2 type states w
circled 3 type states yields isentropic states~circled 4! that are nei-
ther asymptotically LOCC equivalent nor isospectral. States tha
marginally but not fully isentropic~circled 5! must be incomparable
with respect to exact LOCC reducibility. Finally, at the periphe
~circled 6! are states that are not even marginally isentropic. Th
include incomparable pairs such asAB-EPR vs BC-EPR, and
properly reducible pairs such as GHZ vs EPR, but no cases of e
or even asymptotic equivalence.
01230
s

o

entanglement. Discussions in Sec. II were valid for pure
well as mixed states. However from now on we will restr
out attention to pure states.

In Sec. III A we consider the natural generalization of t
bipartite states, namely, them-party states with anm-way
Schmidt decomposition which we callm-orthogonal states
We show that for eachm such states can be characterized
a scalar entanglement measure, which may be interprete
the number ofm-cat states asymptotically equivalent to th
state in question: a single-parameter case. In Sec. III B
introduce the concepts of entanglement span, entanglem
coefficients and minimal entanglement generating sets, a
ements of a general framework for quantifying multipart
pure-state entanglement. In Sec. III C we derive low
bounds on the cardinality of MREGS’s. In Sec. III D whe
we study the question of interconversion betweenm-cat and
EPR states. In Sec. III E we show the uniqueness of
entanglement coefficients for natural MREGS possibilit
for tripartite states.

A. Schmidt-decomposable orm-orthogonal states

We consider Alice, Bob, Claire, . . . , Matt asm observers
who have one subsystem each of anm-part system in a joint
m-partite pure state. Somem-partite pure states, but not al
can be written in anm-orthogonal formanalogous to the
Schmidt biorthogonal form. We call such stat
m-orthogonal or Schmidt decomposable. Thus anm-partite
pure stateuCABC...& is Schmidt decomposableor m orthogo-
nal if and only if it can be written in a form

uCABC...M&5(
i

l i u i A& ^ u i B^ ^ u i C&¯^ u i M&, ~28!

where u i A&,u i B&,u i C&,...,u i M& are orthonormal bases for th
corresponding party. Note that by change of phases of lo
bases, each of the Schmidt coefficientsl i can be made rea
and non-negative. In anym-orthogonal state, the reduced e
tropy seen by any observer, indeed by any nontrivial sub
of observers, is the same, being given by the Shannon
tropy of the squares of the Schmidt coefficients. Already t
makes it obvious that not all tripartite and higher states
Schmidt decomposable since, for anym.2, it is clear that
there are purem-partite states having unequal partial entr
pies for the different observers. Peres@33# gave necessary
and sufficient conditions for a multipartite pure state to
Schmidt decomposable. Thapliyal@34# recently gave anothe
characterization, showing that anm-partite pure state is
Schmidt decomposable if and only if each of them21 par-
tite mixed states obtained by tracing out one party is se
rable.

For such Schmidt decomposable states, the notions of
tanglement concentration and dilution, developed for bip
tite states, generalize in a straightforward manner, so tha
an m-partite stateCABC... the local entropy, as seen by an
party, or indeed any nontrivial subset of the parties, gives
asymptotic number ofm-partite cat states into which it ca
be asymptotically interconverted. That is, ifCABC...M is a
Schmidt decomposable multipartite state, then
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CHARLES H. BENNETTet al. PHYSICAL REVIEW A 63 012307
uCABC...M&'catABC...M& ^ SA~CABC...M !. ~29!

Entanglement concentration on anm-orthogonal state
CABC...M, like its bipartite counterpart, can be done by p
allel local actions of the observers, without any communi
tion. Starting with a numbern of copies of the state to b
concentrated, each party makes an incomplete von Neum
measurement, collapsing the system onto a uniform supe
sition over an eigenspace of one eigenvalue in the prod
Schmidt basis. After enough such states have been accu
lated to span a Hilbert space of dimension slightly more th
some powerk of 2m, another measurement suffices, w
high probability, to collapse the state onto a maximally e
tangledm-partite state in a Hilbert space of dimension 2mk,
which can then be transformed by local operations int
tensor product ofk m-partite cat states.

Entanglement dilution~cf. Fig. 2! proceeds in the sam
way as for bipartite states, except that Alice locally prepa
a supply of bipartite pure statesFA,A8 having the same
Schmidt spectrum as the multipartite Schmidt decompos
stateCABC...M which she wishes to share with the other p
ties. Here the superscriptA,A8 signifies that both parts o
this state are in Alice’s laboratory, whereas her goal is to
up with states shared among all the parties. As in bipar
entanglement dilution, Alice then Schumacher compres
theA8 part of a tensor product ofn copies ofFAA8, resulting
in approximatelyk compressed qubits, wherek/n asymptoti-
cally approachesSA(F)5SA(C), the local entropy of the
Schmidt decomposable state she wishes to share. She
teleports thesek compressed qubits to the other parties
Bob, Claire, etc. The teleportation is performed not withk
EPR pairs, as in ordinary teleportation, but withk m-partite
cat states, which she has shared beforehand with the o
parties. For each of the compressed qubits, Alice perform
Bell measurement on that qubit and one leg of anm-partite

FIG. 2. Entanglement dilution for Schmidt decomposable trip

tite states. Alice prepares a local supply ofn bipartite statesFAA8

isospectral to the Schmidt decomposable tripartite stateCA,B,C she
wishes to share, and Schumacher compresses theirA8 halves~C! to
k'nS(rA) qubits. Then, usingk previously shared GHZ states, sh
teleports the compressed qubits to Bob and Charlie simultaneo
~HereM denotes a Bell measurement, the thick lines a 2k-bit clas-
sical message Alice broadcasts to both Bob and Claire, ands the
conditional Pauli rotation which completes the teleportation p
cess!. Finally, Bob and Claire Schumacher decompress~D! their k
qubits to covern qubits each, in a state closely approximatingn
copies of the diluted Schmidt decomposable tripartite stateCABC

they wished to share.
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cat state, and broadcasts the two-bit classical result to al
other parties, who then each apply the corresponding P
rotation to their leg of the shared cat state. Finally all t
other parties besides Alice apply Schumacher decompres
to their legs of the rotated cat states, leaving them parties in
a high-fidelity approximation to them-partite state
(CABC...M) ^ n which they wished to share.

This entanglement dilution protocol requires 2k/n bits of
classical information per copy~of the target state! to be com-
municated from Alice to the other two parties. Lo and Pop
scu @39# showed a bipartite entanglement dilution protoc
which requiresO(1/An) bits of communication per copy
thus, asymptotically, the classical communication cost
copy goes to zero for their protocol. The question then
whether a similar protocol can be found for the dilution
m-cat states intom-orthogonal states. It is easy to see th
replacing teleportation through EPR states with teleporta
through them-partite cat states in their protocol gives us
protocol for entanglement dilution of them-cat states into
m-orthogonal states. This protocol again uses onlyO(1/An)
classical communication per copy, an asymptotically vani
ing amount.

B. Framework for quantifying entanglement of multipartite
pure states

Now we apply concepts of reducibilities and equivalenc
II in attempting to quantifying entanglement. For gene
m-partite states, there will be several inequivalent kinds
entanglement under asymptotically reversible LOCC~or
LOCCq or LOCCc! transformations—at least as many th
number of independently variable partial entropies for su
states—and perhaps more. However, a good entanglem
measure ought to be defined so as to assign equal enta
ment~in the case of a multicomponent measure, equal in
components! to asymptotically equivalent states. This form
the basis of our framework for quantifying entanglement.

We start by looking at the concept of theentanglement
span of a set of states. Given the set of statesG
5$c1 ,c2 ,...,ck%, their entanglement span@S(G)# is defined
as the set of states that they can reversibly generate u
asymptotic LOCC. That is,

S~G!5H CuC' ^

i 51

k

uc i&
^ xi, with xi>0J . ~30!

Note that thexi give a quantitative amount of entangleme
in terms of the spanning states. They are called theentangle-
ment coefficients. In general these coefficients may be no
unique, for example, if two states in the set are locally u
tarily related. Loosely speaking these coefficients may
nonunique if the ‘‘kinds of entanglement’’ they correspon
to are not ‘‘independent.’’

Let us look at some examples. The entanglement s
under LOCC of any bipartite state is the set of all bipart
states. Another example is provided by the set
m-orthogonal states. Any such state in general, and in p
ticular them-cat state, spans the set of all them-orthogonal
states.

-
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EXACT AND ASYMPTOTIC MEASURES OF . . . PHYSICAL REVIEW A 63 012307
Let us now introduce the concept of reversible entang
ment generating sets~REGS’s!, which is dual to the concep
of entanglement span. A setG5$c1 ,c2 ,...,cn% of states is
said to be areversible entanglement generating setfor a
class of statesC if and only if C#S(G).

Clearly, every REGS for the class ofm11 partite states is
a REGS for each of itsm-partite subsystems. In particula
any REGS for the full class ofm-partite states must be ca
pable of generating an EPR pair between any two of
parties. One might suspect that the set of allm(m
21)/2 EPR pairs would be a sufficient REGS for generat
all m-partite states, but as we will see in Sec. III C, that is n
the case form>4.

To quantify entanglement, one would like to know th
fewest kinds of entanglement needed to make all states
given class. To this end we define a MREGS as a REGS
minimal cardinality. Again the setG25$EPR% is an example
of a MREGS for bipartite entanglement which induces
entanglement measure given by the partial entropy in bit

Thus we have reduced the problem of quantifying e
tanglement to the problem of finding the MREGS and
corresponding entanglement coefficients. The entanglem
coefficients give us the entanglement measure in term
how many of the states in the MREGS are required to
versibly make the state by asymptotic LOCC.

If we drop the requirement of reversibility, we get th
notion of anentanglement generating set~EGS!, a set of
states which can generate every state inC under exact or
asymptotic LOCC. An EGS state needs only one mem
since them-partite cat state by itself is sufficient to genera
all m-partite entangled states, though not reversibly. This
be seen because them-cat state can give an EPR pair b
tween any two parties by exact LOCC. So Alice can ma
the desired multipartite state in her lab and then telepo
using these EPR pairs, thus generating an arbitrary multi
tite state exactly by LOCC, starting from the appropria
number of m-cat states. To see that the transformation
irreversible, note that anm-partite cat state can be used
prepare at most one EPR state, say between Alice and
but m21 EPR states, say, connecting Alice to every ot
party, are needed to prepare the cat state again. Thap
@35# showed that a purem-partite stateC is an EGS state
~can be transformed into a cat state by LOCC! if and only if
its partial entropiesSX are positive across all nontrivial pa
titions X.

Section III C exhibits some simple lower bounds on t
cardinality of the MREGS for tripartite and higher entangl
pure states. Unfortunately we do not know any correspo
ing upper bounds. We cannot exclude the possibility that
tripartite and higher states an infinite number of asympo
cally inequivalent kinds of entanglement might exist.

C. Lower bounds on the size of MREGS based
on local entropies

It is easy to see that the Alice-Bob EPR state EPRAB

~regarded as a special case of anm-partite state in which all
the parties besides Alice and Bob are unentangled bystan
in a standardu0& state! is a MREGS for the class containin
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all and only those states which haveAB entanglement but no
other entanglement, more precisely states for whichSX is
zero if X includes bothA andB or neitherA andB, and has
a constant nonzero value for all otherX. Therefore, in order
to generate all possible bipartite EPR pairs, the MREG
for generalm-partite pure states must have at leastm(m
21)/2 members, which can be taken without loss of gen
ality to be them(m21)/2 bipartite EPR states themselves

However, for allm.3 the partial entropy argument re
quires the MREGS’s to include other states as well. With
pursuing this exhaustively@36#, we will sketch how local
entropy arguments can be used to derive other lower bou
on the size of the MREGS’s for generalm-partite states.

Let us restrict our attention tom-partite pure statesY in
which the partial entropyS„trx(uY&^Yu)… of a subsetX de-
pends only on the number of members ofX, not on which
parties are members ofX. Two examples of such as state a
the m-way cat state, and a tensor product ofm(m
21)/2 EPR pairs, one shared between each pair of par
We shall call the latter an EPRs state. Let r 21(Y)
5SAB(Y)/SA(Y) be the ratio of two-party to one-party pa
tial entropy in stateY. It is easy to see thatr 2151 for cat
states, independent ofm, but r 2152(m22)/(m21) for
EPRs states, the numerator of the latter expression being
number of edges, in anm-partite complete graph, joining a
two-vertex subsetX to its complement, while the denomina
tor is the number of edges incident on any single vert
Thus cat and EPRs states have equalr 21 for m53, but for
EPRs states with largerm, the ratio exceeds 1, as shown
Table I. Therefore the 4-cat state, unlike the 4-EPRs state,
cannot be asymptotically equivalent to any combination
the six EPR pairs, and the MREGS’s form54 must have at
least seven members.

For m55, the table also includes an entry for the ma
mally entangled state of five qubits,~e.g., a codeword in the
well-known five-qubit error-correcting code@38,23#! which
has maximal entropy across any partitionX. Since this state
has anr 21 even greater than the EPRs state, the MREGS’s
for m55 must have at least 12 states. Similarly, t
MREGS’s form56 must have at least 31 members, witho
considering other entropy ratios besidesr 21 or other states
besides the EPR, 4-cat, and 6-cat states.

TABLE I. Entropy ratior 21 for some multipartite entangled pur
states.

Parties State r 21

3 Cat ~GHZ! 1
3-EPRs state 1

4 Cat 1
6-EPRs state 4/3

5 Cat 1
10-EPRs state 3/2
Five-qubit codeword 2

6 Cat 1
15-EPRs state 8/5
7-9



irs

p
t

an
th
e
ey

p
p
o
b

om

th
te
th

te
ir
e

le
U
C

n
tie
ire
si
t
an
ai
a
n

lt
e

en
s
e
ty

rib

is

ng
a
th
d
W

can

rties,
R

S’s,

EPR

.
nt

-
ent

most
the
ent

ree
tate
s

s,
be

rma-
ent
be-

d by
ies

own
ally.
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D. Exact reducibilities between GHZ and EPR

At this point it is natural to ask whether three EPR pa
~shared symmetrically among Alice, Bob, and Claire! can be
reversibly interconverted to two GHZ states. Partial entro
arguments do not resolve the question because, for both
3-EPR state and the 2-GHZ state, the partial entropy of
nontrivial subset of the parties is two bits. Nevertheless,
impossibility of performing this conversion follows from th
fact that two states are LOCC equivalent if and only if th
are equivalent under local unitary operations.

To see that 2-GHZ and 3-EPR states are LOCC incom
rable, first observe that, since the two states are isentro
they must, by theorem 1, either be LOCC incomparable
LU equivalent. To see that they are not LU equivalent, o
serve that the mixed state obtained by tracing out Alice fr
the 2-GHZ state, namelyrBC(2-GHZ), a maximally mixed,
separable state of the two parties Bob and Claire, while
corresponding mixed state obtained from the 3-EPR sta
rBC(3-EPR) is a distillable entangled state, consisting of
tensor product of an intactBC EPR pair with another random
qubit held by each party. But if the 3-EPR and 2-GHZ sta
were LU equivalent, Bob and Claire, by performing the
own local unitary transformations without reference to Alic
could makerBC(3-EPR) from rBC(2-GHZ). Since they
cannot do this~otherwise they would be generating entang
ment by LOCC!, the 3-EPR and 2-GHZ states cannot be L
equivalent; therefore, by corollary 1 they must be LOC
incomparable.

Figure 3 shows the exact reducibilities that hold amo
EPR and GHZ states. The protocols for these reducibili
follow: To obtain an EPR pair say between Bob and Cla
Alice performs a measurement in the Hadamard ba
namely,$u011&,u021&% and informs Bob and Claire abou
the outcome. Using this information, Bob and Claire c
perform conditioned rotations that give them an EPR p
Clearly, this LOCC protocol can be generalized to many p
ties, to transform anm-cat state into an EPR pair betwee
any two parties, by having the remainingm22 parties mea-
sure in the Hadamard basis, and communicate the resu
the two parties, who then perform appropriate condition
local unitary operations.

To obtain a GHZ state from two EPR pairs sayuEPRAB&
and uEPRAB&, Alice makes a GHZ state in her lab and th
uses the EPR pairs to teleport Bob’s and Charlie’s part
them. Clearly, this protocol can be generalized to mak
m-cat state from a set ofm EPR pairs, shared by one par
with all the rest.

In passing we note that any set of EPR pairs that desc
a connected graph, the nodes representing parties and
edges representing the shared EPR pairs, is an EGS. Th
easy to prove using teleportation, as done above.

E. Uniqueness of entanglement coefficients

One key question about this framework for quantifyi
entanglement is whether entanglement coefficients
unique. Surely this is to be desired if we are to interpret
values of the coefficients as representing the amounts of
ferent kinds of entanglement present in the given state.
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do not know how to show uniqueness in general, but we
show this for some cases of interest.

For concreteness let us consider the case of three pa
say Alice, Bob, and Claire. We noted earlier that all EP
pairs shared between two parties must be in the MREG
so EPRAB, EPRBC, and EPRCA must be in the MREGS’s.
Let us consider the entanglement span of these three
pairs. Assume that there exists a stateC in this span such
that the entanglement coefficients are not unique, say~x,y,z!
and~a,b,c!, wherex, y, andz ~a, b, andc! denote the amounts
of EPRAB, EPRBC, and EPRCA in the two decompositions
Then using the fact that asymptotically LOCC-equivale
states must be isentropic, we have

x1y5a1b, y1z5b1c, z1x5c1a. ~31!

This implies that (x,y,z)5(a,b,c), and thus proves unique
ness. Clearly such an argument works for the entanglem
span of EPR pairs of more parties, because there are at
m(m21)/2 EPR pairs shared by different parties and
isentropic condition gives the same number of independ
constraints.

Now we look at the entanglement span of the above th
EPR pairs and the GHZ state. If we assume the GHZ s
belongs to the span of the EPRs state then uniqueness ha

FIG. 3. Top: Two EPR pairs, together involving three partie
can be exactly transformed to one GHZ state. A GHZ state can
transformed into any one of the three EPR pairs. These transfo
tions are exact and irreversible, involving a loss of entanglem
across some bipartite boundary. Bottom: The transformations
tween the symmetric 3-EPR state and the 2-GHZ state, marke
an X, cannot be done exactly, even though the partial entrop
agree, by the arguments of this section. Very recently it was sh
@40# that these transformation cannot even be done asymptotic
7-10
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EXACT AND ASYMPTOTIC MEASURES OF . . . PHYSICAL REVIEW A 63 012307
already been proved. Thus let us assume that the GHZ
is asymptotically not equivalent to the EPRs state. Let the
nonunique entanglement coefficients be~x,y,z,w! and (x
2dx ,y2dy ,z2dz ,w1dw), with the first three coefficients
representing the amount of the EPRs state, and the last rep
resenting the amount of the GHZ state. Without loss of g
erality we can assumedw52d.0. Again using the fact tha
asymptotically LOCC equivalent states must be isentro
we have

dw2dx2dy5dw2dy2dz5dw2dz2dx50. ~32!

Solving these equations, we find that

dx5dy5dz5dw/25d. ~33!

This implies that

EPPAB
^ EPRBC

^ EPRCA'LOCCcGHZ^ 2. ~34!

For more complicated setsS of states, the requiremen
that entanglement coefficients be positive may lead to no
niqueness. Because of positivity, all extremal points ofS
must be in the MREGS’s, and for someS the number of
extremal points may considerably exceed the dimensiona
of S ~for example, forn>3, each interior point of a regula
n-gon can be expressed in multiple ways as a convex c
bination of vertices!.

Note that there may be many MREGS’s, for example a
bipartite state is as MREGS’s for bipartite entanglement.
how do we decide upon acanonical MREGS? Possible cri-
teria include requiring the states in the MREGS to be of
low Hilbert space dimension as possible, and as high in p
tial entropy within that Hilbert space as possible. Thus
the bipartite case the EPR state is the canonical MREGS
to local unitary operations.

IV. DISCUSSION AND OPEN PROBLEMS

For bipartite pure states, the unique asymptotic meas
of entanglement is known@17–19#. The present paper iden
tifies elements of any exact or asymptotic measure ofmulti-
partite entanglement. For bipartite states, entanglement
scalar: the measure of entanglement of a state reduces
single number. For multipartite states, entanglement is a
tor, i.e., there are inequivalent classes of entanglement.
inequivalence leads to the concept of a MREGS, and
requirement that anym-partite entangled state be expressib
as a linear combination of the states in them-partite
MREGS. Within a class of states with equivalent entang
ment, we seek a scalar measure of entanglement. Five d
erata for a scalar measure of entanglement are listed in
I, and Sec. III A derives such a measure for the states we
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m-orthogonal states. In this paper, however, we focus
inequivalent classes of entanglement, leaving many qu
tions unanswered.

Very recently@40# Linden,et al., using a relative entropy
argument, strengthened the result of Sec. III D by show
that asymptotically reversible transformations are insuffici
to interconvert 2-GHZ and 3-EPR~indeed the states remai
asymptotically incomparable even with the help of a ca
lyst!. Therefore, the MREGS form53 must contain at leas
four states~without loss of generality the GHZ state and th
three bipartite EPR states!. Of course we would like to know
whether these resources are sufficient to prepareall tripartite
pure states in an asymptotically reversible fashion.

A more fundamental problem is that although we ha
lower bounds on the number of inequivalent kinds of e
tanglement under asymptotically reversible LOCC transf
mations, we know of no nontrivial upper bounds. As not
earlier, even for tripartite states we do not know that t
number is finite. One possible approach to this proble
which we do not explore in detail here, would be to furth
generalize the notion of state by allowing tensor factors
appear with negative as well as nonintegral exponents
generalized state such as (EPRAB) ^ 2

^ (GHZ)^ 20.3 ~in
chemical notation, 2-EPRAB20.3-GHZ! would thus repre-
sent a quantum ‘‘contract’’ comprising a license, asympto
cally, to consume two Alice-Bob EPR pairs along with a
obligation to produce 0.3-GHZ states. Allowing negative e
tanglement coefficients would also solve the problem
nonuniqueness of entanglement coefficients, allowing
state to be described as a unique, but not necessarily pos
linear combination of states in a smaller MREGS.

The most powerful result we could hope for from a
proaches of this kind would be to show that under so
appropriately strengthened~but still natural! notion of
asymptotic reducibility, all isentropic states are asympto
cally equivalent. A less ambitious result would be to sho
that for simple asymptotic reducibility, or some strengthen
version of it, all isentropic states are either equivalent
incomparable, in analogy with the fact that all isentrop
states must be either equivalent or incomparable underexact
LOCC reducibility ~corollary 1!.
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