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Abstract
A superoscillatory function—that is, a band-limited function f (x) oscillating
faster than its fastest Fourier component—is taken to be the initial state of
a freely-evolving quantum wavefunction ψ . The superoscillations persist for
unexpectedly long times, but eventually disappear through the interaction of
contributions to ψ with complex momenta that are exponentially disparate
in magnitude; this is established by applying the asymptotics of integrals,
supported by numerics. f (x) can alternatively be regarded as the wave
generated by a diffraction grating, propagating paraxially and without
evanescence as ψ in the space beyond. The persistence of superoscillations is
then interpreted as the propagation of sub-wavelength structure farther into the
field than the more familiar evanescent waves.

PACS numbers: 02.30.Mv, 06.35.Ge, 42.25.Fx, 42.30.Kq

1. Introduction

Physical and mathematical arguments [1–10] have established the existence of band-limited
functions f (x) with the apparently paradoxical property that they can oscillate faster than
their fastest Fourier component; moreover, these ‘superoscillations’ can be arbitrarily fast and
can occupy arbitrarily large regions of the x axis. The paradox posed by superoscillations is
dissolved [6] by f (x) being exponentially small in the superoscillatory region.

Our purpose here is to explore the following question: how long do superoscillations
survive if f (x) is the initial state of a quantum wavefunction ψ(x, t) evolving in free space?
The naive expectation, that superoscillations are so delicate that they will dissolve in an
exponentially short time, turns out to be wrong: the fast variations of ψ persist much longer.

For our detailed study we choose not a general superoscillatory f (x)—constructed, for
example, by the recipes in [6] or [9, 10]. Rather, we consider one particular function, described
in section 2; but we expect this to display general features. The evolution of the state, starting

3 http://www.phy.bris.ac.uk/people/berry mv/index.html.
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with f (x), is formulated and illustrated numerically in section 3. The detailed explanation
(section 4) of the persistence of the superoscillations involves the interaction of waves with
complex momenta, derived by a delicate exercise in the asymptotics of integrals.

Since the time-dependent Schrödinger equation for the evolution of a function of one
variable x is identical to the paraxial wave equation in the plane, and because the f (x) we
study is periodic, our evolving quantum state also describes waves (e.g. light) propagating
beyond a suitably constructed diffraction grating. As explained in section 5, this grating can
generate a wave with a structure smaller than the wavelength, and so represents a kind of
‘superresolution’. We show that this superresolution persists over much greater distances than
the usual kind based on evanescent waves; moreover, this potentially useful property survives
the replacement of paraxial by exact wave propagation.

2. Superoscillatory initial state

Consider the function [1, 7]

f (x) = (cos x + ia sin x)N (a > 1, N � 1). (1)

For general a, f (x) is periodic with period π (up to a sign if N is odd). If a = 1, f (x) =
exp(iNx), representing a plane wave travelling to the right. For a > 1, the variation near x = 0
is faster:

f (x) ≈ exp(N log(1 + iax) ≈ exp(iaNx). (2)

This is surprising because the Fourier series for f (x), namely

f (x) =
N∑

m=0

cm exp{iNkmx}, (3)

where

km = 1 − 2m

N
, cm = N !

2N
(−1)m

(a2 − 1)N/2[(a − 1)/(a + 1)]Nkm/2

[N(1 + km)/2]![N(1 − km)/2]!
, (4)

contains only wavenumbers |km| � 1. Therefore equation (2) indicates superoscillatory
behaviour, with the degree of superoscillation described by a.

To understand the superoscillations in greater detail, we write f (x) in a form that can be
confirmed by direct calculation, namely

f (x) =
(

a

k(x)

)N/2

exp

{
iN

∫ x

0
dx ′ k(x ′)

}
, (5)

involving the local wavenumber (expectation of momentum)

k(x) ≡ 1

N
Im ∂x log f (x) = a

cos2 x + a2 sin2 x
. (6)

The wavenumber varies from the superoscillatory k(0) = a to the slowest variation
k(π) = 1/a. The superoscillatory region, within which |k| > 1, is

|x| < xs = arccot
√

a. (7)

The number of oscillations in this region is

nosc = N

2π

∫ arccot
√

a

−arccot
√

a

dx k(x) = N

2π
arctan

√
a. (8)

Equation (5) shows that in the superoscillatory region |f | is exponentially smaller (in N) than in
the ‘normal’ region |k| < 1. Therefore, N is an asymptotic parameter, describing the number
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Figure 1. The superoscillatory function f (x) (equation (1)), plotted as log|Re f | for a = 4, N =
20. Here and in subsequent figures, double-headed arrows mark the shortest period π/N = π/20 in
the Fourier series; because a = 4, the fastest superoscillations (near x = 0) are four times smaller.

of oscillations in the superoscillatory region and the corresponding exponential smallness
of |f |.

The region where (2) is a good approximation, that is, where the amplitude of
the superoscillations is approximately constant—we can call this the region of fast
superoscillations—is smaller than (7). To explore it, we expand (5) near x = 0, using (6), to
get an approximation slightly more accurate than (2):

f (x) ≈ exp{iaNx} exp
{

1
2N(a2 − 1)x2

}
. (9)

Thus, the region of fast superoscillations is

|x| < xfs = 1√
N(a2 − 1)

, (10)

and the number of fast superoscillations is

nfs =
√

N

π

a√
a2 − 1

. (11)

Figure 1 is a picture of f (x), using a representation that will be employed extensively
in what follows. To display the oscillations, and to accommodate the exponentially large
variation in |f | we plot log|Re f |, so that the oscillations are visible as downward spikes at
the zeros of Re f (pictures are very similar with Im f rather than Re f ).

Superoscillation is a subtle phenomenon, associated with delicate correlations between
the Fourier components of f (x). Therefore, there is no hint of superoscillations in the power
spectrum, namely

P(k) = Nc2
m (m = (1 − k)N/2)

2
∑N

0 c2
m

≈
N�1

1

σ
√

2π
exp

{
− (k − 〈k〉)2

2σ 2

}
, (12)

where

〈k〉 = 1

a
, σ ≡

√
(k − 〈k〉)2 =

√
a2 − 1

2Na2
. (13)

Thus the asymptotic spectrum is a narrow Gaussian (figure 2) centred on the wavenumber
k = 1/a, representing the exponentially dominant slow oscillations near |x| = π .
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Figure 2. Spectrum of f (x) for a = 4, N = 20. Dots: the exact spectrum (middle member of
(12)); smooth curve: Gaussian approximation (right-hand member of (12)).

3. Quantum evolution and disappearance of superoscillations

It is convenient to write the Schrödinger equation, with initial state f (x), in the form

iN∂tψ(x, t) = − 1
2∂2

xψ(x, t), ψ(x, 0) = f (x), (14)

in which the asymptotic parameter N plays a role analogous to Planck’s constant. The evolving
state ψ(x, t) can be written either as an integral over the propagator or a sum over Fourier
components:

ψ(x, t) =
√

N

2π it

∫ ∞

−∞
dx ′f (x ′) exp{iN(x − x ′)2/2t}

=
N∑

m=0

cm exp

{
iN

(
kmx − 1

2
k2
mt

)}
. (15)

Although we will be mainly concerned with the early development of ψ , an important
additional property is that ψ is periodic in t as well as in x, with period Nπ/2 (up to a phase
factor, and a shift in x of π/2 if N is even). This periodicity is the phenomenon of quantum
revivals [11–13].

The white lines in figure 3 show how the oscillations evolve. As figure 3(a) shows, the
superoscillations do not disappear immediately, but persist for a time. After longer times
(figure 3(b)) the oscillations get slower, and eventually (figure 3(c)) are within the range
|k| � 1 expected on the basis of the Fourier components in equations (3) and (4), with the
initial region of exponentially weak superoscillations disappearing into a confusion of white
at the bottom of the picture. Over the full range between t = 0 and the revival period t = Nπ/2
(figure 3(d)), the oscillations are slower still, reflecting the mean 〈k〉 = 1/a in the narrow
power spectrum (12).

Figure 4 illustrates the disappearance of superoscillations in more detail, with graphs of
ψ(x, t) for series of values of t; the value (3+

√
7)/8 in figure 4(d) is the time when, according

to the theory of section 4 applied to this case, the superoscillations have disappeared. A striking
feature of figures 4(c)–(e) is a ‘wall’, separating regions of fast oscillation (to the left) from
much slower oscillations (to the right).

4. Explanation in terms of complex momenta

To understand the disappearance of superoscillations and the ‘wall’ phenomenon just
described, we need a representation of ψ more transparent than the Fourier series (15).
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Figure 3. Density plots of −log|Re ψ | of the evolution of the wavefunction (15), for a = 4, N =
20. (a) 0 � t � 0.04π ; (b) 0 � t � π/2, (c) 0 � t � π ; (d) 0 � t � 10π . In this representation,
the zeros of Re ψ appear as white lines.
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Figure 4. Superoscillations disappearing as t increases, for a = 4, N = 20. (a) t = 0; (b) t =
0.015π ; (c) t = 0.08π ; (d) t = (3 + √7)/8 = 0.706; (e) t = 0.5π ; (f ) t = π .

This can be derived using asymptotics exploiting N � 1, which implies that the integrand
in (15) varies rapidly in both modulus and phase. To accommodate this, it is convenient to
rewrite (15) first as

ψ(x, t) =
√

N

2π it

∫ ∞

−∞
dx ′ exp

{
iN

[∫ x ′

0
dx ′′q(x ′′) + (x − x ′)2/2t

]}
, (16)
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in which, q(x) is the complex momentum

q(x) = − i

N
∂x log f (x) = a cos x + i sin x

cos x + ia sin x
(17)

(the wavenumber (6) is thus k(x) = Re q(x)). And denoting the exponent (complex phase)
by N�, ψ can be written as

ψ(x, t) =
√

N

2π it

∫ ∞

−∞
dx ′ exp{iN�(x ′, x, t)}. (18)

For N � 1, the integral can be approximated by the saddle-point method [14, 15], giving
ψ as one or more contributions from the (generally complex) saddles xj (x, t) (stationary
points of �), satisfying

∂x ′�(x ′, x, t) = 0 ⇒ q(x ′) = x − x ′

t
⇒ x ′ = xj (x, t). (19)

Physically, the saddles can be regarded as complex momenta determining ψ as a superposition
of waves, given by standard saddle-point theory as

ψsp(x, t) =
∑

j

f (xj )√
1 + t∂xq(xj )

exp{iN(x − xj )
2/2t}. (20)

The sum is over all the saddles that contribute—that is, all those into which the initial x′ contour
(the real axis) can be deformed while keeping the integral convergent. For very small t, there
is just one contributing saddle, which from (19) is close to x; as t increases, other saddles
enter the picture, in a complicated way that we will describe soon and which is essential to
understanding how superoscillations disappear.

The saddle-point method can be implemented numerically, giving results almost
indistinguishable from those (e.g. figures 3 and 4) computed from the Fourier series, even
when N is quite small. But to implement the procedure analytically we introduce a further
simplification, exploiting the fact that the phenomenon we are interested in—the disappearance
of superoscillations—involves quite small x and t. In this situation, which turns out to be a
good approximation for large a, we can replace f (x) and q(x) by simpler functions, and
introduce new scaled variables:

fapp(ξ) = (1 + iξ)N , qapp(ξ) = 1

1 + iξ
, ξ ≡ ax, τ ≡ a2t. (21)

The scaling eliminates the parameter a from ψ(ξ , τ ) which is given by

ψapp(ξ, τ ) =
√

N

2π iτ

∫ ∞

−∞
dξ ′fapp(ξ

′) exp{iN(ξ − ξ ′)2/2τ }

=
√

N

2π iτ

∫ ∞

−∞
dξ ′ exp

{
iN

[∫ ξ ′

0
dξ ′′qapp(ξ

′′) + (ξ − ξ ′)2/2τ

]}

=
√

N

2π iτ

∫ ∞

−∞
dξ ′ exp{iN�app(ξ

′, ξ, τ )}

= N !(1 + iξ)N
int(N/2)∑

m=0

1

m!(N − 2m)!

(
− 2iτ

N(1 + iξ)2

)m

. (22)

Before proceeding further, it is necessary to check that the simplification (21) preserves the
essential structure of the wave ψ(x, t) that we are studying. Figure 5 indicates that it does,
and that the agreement persists for times over which the superoscillations disappear (there are
slight differences, but nothing important).
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Figure 5. Magnified density plots comparing −log|Re ψ |, computed from (15) ((a) and (c))
and −log|Re ψapp|, computed from (22) ((b) and (d)) in the plane of the scaled variables ξ , τ

(equation (21)), for a = 4, N = 20.

For ψapp, the saddle-point method can be implemented explicitly. There are two saddles,
ξ±(ξ , τ ), given by

∂ξ ′�app(ξ
′, ξ, τ ) = 0 ⇒

ξ ′ = ξ±(ξ, τ ) = 1
2 (ξ + i ± i

√
1 − ξ 2 + 2i(ξ − 2τ)).

(23)

For small τ , and with a natural convention for the square root, the saddle close to ξ , which we
expect to be the main contribution, is the solution ξ−(ξ , τ ). For general ξ , τ , the saddle-point
approximation is

ψapp,sp(ξ, τ ) =
∑
±

a±
exp{iN�app±(ξ, τ )}√
1 + τ∂ξqapp(ξ±(ξ, τ ))

, (24)

where

�app±(ξ, τ ) ≡ �app(ξ±(ξ, τ ), ξ, τ ). (25)

The multiplier a± is 1 if the saddle ± contributes, and zero if it does not—a tricky matter that
we explain now.

The deportment of the saddles divides the ξ , τ plane into regions, according to two criteria.
At typical points, the contributions exp{iN�app,±} differ exponentially in absolute value; there
are regions where + dominates −, and vice versa. These are separated by ‘anti-Stokes lines’,
where the absolute values of the exponentials are equal. Also important are ‘Stokes lines’,
where the absolute values are maximally different; the importance of these lines of extreme
dominance is that across them the subdominant (small) exponential can appear or disappear
whilst ‘hidden’ behind the dominant one [16–18]—a phenomenon central to exponential
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Figure 6. Structure of the ξ , τ plane according to the saddle-point approximation. Full curves: anti-
Stokes lines; dashed curves: Stokes lines; dotted line: branch cut; black dot: saddle coalescence; +
and −: contributing saddles, with the dominant saddle encircled. The Stokes and anti-Stokes lines
were computed numerically using (26).

asymptotics [19]. In addition, the square root in (23) introduces a branch cut, across which
the + and − contributions interchange. These three types of line are determined by

anti-Stokes line: Im[�app+(ξ, τ ) − �app−(ξ, τ )] = 0
Stokes line: Re[�app+(ξ, τ ) − �app−(ξ, τ )] = 0
branch cut: argument of √ in (20) negative real

⇒ τ > 0.5, ξ = 2τ.

(26)

Figure 6 shows how the ξ , τ plane is structured by these lines. The dominant feature
from which all the lines issue is the point ξ = 1, τ = 1/2 where the two saddles coalesce. We
will describe the associated structure by proceeding clockwise round a circuit from the bottom
right of the picture, where only − contributes, although it is subdominant, because there is no
accompanying + exponential.

In fact, − contributes all the way across the small τ part of the plane, but in ways that
are not obvious, as will now be explained. Moving left from the bottom right we cross a
Stokes line, and − persists because the + saddle, that would otherwise dominate, is absent.
Further left, we cross an anti-Stokes line; now − is the larger exponential, but still there is
no +. The + exponential finally appears further to the left, on crossing the second Stokes line,
and contributes along with −, but its contribution is subdominant.

This situation (both + and − contributing, with – dominant) continues round the circuit as
τ increases, until the next anti-Stokes line is encountered, at τ > 1/2, ξ = 1. As we will soon
see, this is the most important event in the circuit. Crossing this anti-Stokes line moving to the
right, + becomes dominant; soon afterwards, a Stokes line is crossed and the now-subdominant
− saddle disappears, leaving only the dominant +. The next event is crossing the branch cut,
across which + changes into −, which is still dominant. Finally, an anti-Stokes line is crossed,
and −, contributing by itself, becomes subdominant as we close the circuit and return to the
initial region.

Figure 7 illustrates the accuracy of the saddle-point approximation when calculated as
just described. Even the inevitable failure when τ = 1/2, through the saddle coalescence at
ξ = 1 where the approximation diverges because of the vanishing of the denominator in (24),
is barely visible in figure 7(b) and the magnification in (c).



Superoscillation evolution 6973

0.5 1 1.5

-5

0

5

-2 1 0 1 2

0

10

-2 1 0 1 2

0

10

-2 1 0 1 2

0

10

ξ

lo
g|

R
eψ

|

(a) (b)

(c) (d )
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In understanding the ‘wall’ phenomenon and the disappearance of superoscillations,
the exchange of dominance on crossing the anti-Stokes line ξ = 1, τ > 1/2 is of
central importance, because the associated wavenumber that appears is smaller than the
superoscillatory wavenumber that it replaces. This explains the ‘wall’, clearly visible at
ξ = 1 in figure 7(d). At the wall itself, the two wavenumbers are

kapp±(1, τ ) ≡ Re qapp(ξ±(1, τ ), 1, τ ) = 1 ∓ √
2τ − 1

2τ
. (27)

At τ = 1/2, when the wall starts, kapp+ = kapp− = 1, which happens to be the superoscillatory
value in the scaled variables. Higher up the wall, both wavenumbers decrease, with the
dominant value k+app decreasing faster and becoming negative when τ > 1, indicating a wave
travelling to the left.

With equation (27) we are at last able to answer the question, posed at the beginning, of
when the superoscillations disappear. This happens at the time τ d when the larger wavenumber
kapp− decreases to the value corresponding to the maximum Fourier component in the original
f (x). The scaling (21) shows that this corresponds to kapp = 1/a. From (27),

kapp−(1, τd) = 1

a
⇒ τd = a2

4

(
1 +

2

a

√
1 +

4

a
− 4

a2

)
→
a�1

a2

2
. (28)

In the original variable t, this corresponds to the superoscillation disappearance time

td = 1

4

(
1 +

2

a
+

√
1 +

4

a
− 4

a2

)
→
a�1

1

2
. (29)

Note that td depends only on a, and the dependence is weak; in particular, td is independent of
N, and therefore, much smaller than the quantum revival time Nπ/2.

The foregoing arguments involve the particular superoscillatory initial state (1). However,
we expect that our interpretation of the disappearance of superoscillations, in terms of complex
momenta, will apply more generally. The reason is that for any initial quantum state the
evolution can be described by an integral, analogous to the first equality in (15). Moreover, if
the state is superoscillatory there will be a large parameter, analogous to N, so the integrand
will vary quickly in modulus and phase, justifying the application of asymptotics, leading to
the evolution being dominated by complex saddles, that is complex momenta. This deserves
further study.
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5. Diffraction grating analogue

One possible way to explore the evolution experimentally exploits the fact that f (x) is periodic
and so can represent a diffraction grating that transforms an incident plane of light or massive
quantum particles (e.g. neutrons) into a propagating series of diffracted beams. In the case of
light, such a grating could be manufactured by programming a spatial light modulator [20].

Let a plane wave with wavelength λ = 2π/K, propagating freely in the z direction,
encounter a grating at z = 0, with spatial period πd, that transforms the wave to the
superoscillatory function

	(x, 0) = f (x/d). (30)

We stipulate that there are no evanescent waves in the half-space z > 0; the condition for this
is K > N/d. On the other hand, we want the superoscillations in the grating to be smaller than
λ, so that K < aN/d. These conditions, namely

aN

d
> K >

N

d
, (31)

generate a grating with a sub-wavelength structure, producing a field that nevertheless consists
entirely of propagating (nonevanescent) waves. Therefore this grating produces an unfamiliar
kind of superresolution (sub-wavelength structure in the field), namely superresolution without
evanescent waves. We will investigate how far into the field the superoscillations propagate.

The field beyond the grating is the exact solution of the Helmholtz equation with
wavenumber K, starting with (30), namely (after removing a trivial phase factor)

	(x, z) = exp(−iKz)

N∑
m=0

cm exp
{
i
(
Nkmx/d + z

√
K2 − N2k2

m

/
d2

)}
. (32)

If the second inequality in (31) is strong, that is if the highest Fourier components of the
grating vary much more slowly than λ, all propagation angles θm = arcsin(Nkm/dK) are small,
and it is tempting to replace by its paraxial approximation, namely

	paraxial(x, z) =
N∑

m=0

cm exp
{
iN

(
kmx/d − zNk2

m

/
2Kd2

)}

= ψ

(
x

d
, z

N

Kd2

)
, (33)

where ψ is given by (15).
By this procedure, the question of propagation of superoscillations beyond the grating is

reduced to the question already studied, of the persistence of superoscillations under quantum
evolution. The periodicity of ψ , representing quantum revivals, is now reinterpreted as the
Talbot effect [21–23] in diffraction theory: reproduction of the form of a grating at multiples
of the Talbot distance

zTalbot = 1

2
πKd2 = (grating period)2

λ
. (34)

But since superoscillations are so delicate, it is imperative to know whether they are destroyed
by non-paraxial effects. Figures 8 and 9 indicate that this does not happen, as we discuss in
more detail later. The situation depicted, where d = 1, a = 8, N = 10, K = 40, corresponds to
a grating with maximum propagation angle θmax ∼ arcsin(1/4) ∼ 15◦, which is paraxial but
not extremely so, with the shortest spatial scale dπ/N = 2λ in its Fourier series, and with a
superoscillatory fine structure with spatial scale dπ/Na = λ/4.
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Figure 8. Density plots of waves beyond a superoscillatory diffraction grating, for d = 1, a = 8,
N = 10, K = 40 ((a) and (c)) paraxial wave −log|Re 	parax| (equation (33)); ((b) and (d)) as (a),
for the exact diffracted wave −log|Re 	| (equation (32)). As before, double-headed arrows mark
the shortest period dπ/N = π/10 in the Fourier series; in (a) and (b), the bars mark the wavelength
λ = 2π/K = π/20.
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Figure 9. Full curves: paraxial wave log|Re 	parax|; dashed curves: exact waves log|Re 	|,
for d = 1, a = 4, N = 10, K = 40, and (a) z = 0; (b) z = 1/32 (coalescence of saddles
(section 4)); (c) z = zλ = 0.213 (superoscillations expand to λ); (d) z = zd = 2.449 (disappearance
of superoscillations); (e) z = zT/2 = 10π (half the Talbot repetition distance); (f ) z = zT = 20π

(Talbot repetition distance). Double-headed arrows and bars as in figure 8.

For the grating wave, the physically important propagation range is the distance zλ, below
which the superoscillatory fine structure remains smaller than the wavelength. This can be
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derived from (27), as the condition for the scaled wavenumber kapp at the left of the ‘wall’ to
fall to the value Kd/Na; a short calculation gives

zλ = N

4K


1 +

2Kd

Na
+

√
1 +

4Kd

Na
− 4

(
Kd

Na

)2

 →

a�1

N

2K
= Nλ

4π
. (35)

This distance depends only weakly on the degree of superoscillation a, but depends strongly
on the asymptotic parameter N.

We should compare zλ with the persistence distance of ordinary evanescent waves with
transverse wavenumber aN/d, corresponding to the fastest superoscillation. Such waves have
the form exp(iaNx/d) exp(−z

√
(aN/d)2 − K2), so the persistence distance, beyond which

the waves have decayed below 1/e of their original intensity, is

zevanescence = 1

2
√

(aN/d)2 − K2
→
a�1

d

2Na
<

1

2K
. (36)

Thus,

zλ/zevanescence > N � 1, (37)

and we conclude that, for propagating sub-wavelength structure, gratings based on
superoscillations are much more effective than the more familiar ones based on evanescent
waves.

Analogous to the quantum superoscillation disappearance time td (equation (29)) is the
distance zd, where the superoscillations have expanded to the spatial scale of the largest Fourier
component in the grating. This is

zd = Kd2

4N

(
1 +

2

a
+

√
1 +

4

a
− 4

a2

)
→
a�1

Kd2

2N
. (38)

The proliferation of significant propagation distances associated with these gratings might
be confusing, so here is a summary, together with the numerical values (in brackets) for the
parameters of figures 8 and 9:

z = 0; inital superoscillation

z = d2K

2Na2

(
= 1

32

)
; coalescence of saddles (complex momenta)

z = zλ(=0.213); oscillations reach wavelength scale (equation (35))

z = zd(=2.449); superoscillations disappear (equation (38))

z = zTalbot(=20π); Talbot repetition distance (equation (34)).

(39)

Finally, we discuss the comparison of the paraxial and exact fields in figures 8 and 9.
Figures 8(a) and (b) show slight differences between the fields over the range in which
superoscillations expand to the external wavelength scale, but the differences do not destroy our
conclusion about the effectiveness of superoscillatory gratings for propagating sub-wavelength
structure. Over the larger distance depicted in figures 8(c) and (d)), including the range in
which superoscillations disappear, differences are barely perceptible.

The more discriminating comparisons in figure 9 show that the main differences between
the paraxial and exact waves occur in the exponentially weak regions of the field. For the
smaller distances corresponding to saddle coalescence (figure 9(b)) and zλ (figure 9(c)), there
is some nonparaxial corruption of the superoscillations, but they are not destroyed. For zd

(figure 9(d)), the differences are barely distinguishable, and this agreement extends to great
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distances, including zTalbot/2 (figure 9(e)). At zTalbot itself (figure 9(f )), the exact diffracted
wave does not reproduce the superoscillations, but the parts of the pattern that are not
exponentially small are correctly reproduced.
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