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The pigeonhole principle: “If you put three pigeons in two pigeon-
holes, at least two of the pigeons end up in the same hole,” is an
obvious yet fundamental principle of nature as it captures the very
essence of counting. Here however we show that in quantum me-
chanics this is not true! We find instances when three quantum
particles are put in two boxes, yet no two particles are in the same
box. Furthermore, we show that the above “quantum pigeonhole
principle” is only one of a host of related quantum effects, and
points to a very interesting structure of quantum mechanics that
was hitherto unnoticed. Our results shed new light on the very
notions of separability and correlations in quantum mechanics
and on the nature of interactions. It also presents a new role for
entanglement, complementary to the usual one. Finally, interfero-
metric experiments that illustrate our effects are proposed.

weak value and weak measurement | entanglement and quantum
nonlocality | correlations | two-state vector formalism | foundations of
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Quantum Pigeonhole Principle
Arguably the most important lesson of quantum mechanics is that
we need to critically revisit our most basic assumptions about
nature. It all started with challenging the idea that particles can
have, at the same time, both a well-defined position and a well-
defined momentum, and went on and on to similar paradoxical
facts. But, the pigeonhole principle that is the subject of our paper
seems far less likely to be challenged. Indeed, although on one
hand it relates to physical properties of objects––it deals, say, with
actual pigeons and pigeonholes––it also encapsulates abstract
mathematical notions that go to the core of what numbers and
counting are so it underlies, implicitly or explicitly, virtually the
whole of mathematics. [In its explicit form the principle was first
stated by Dirichlet in 1834 (1) and even in its simplest form its uses
in mathematics are numerous and highly nontrivial (2).] It seems
therefore to be an abstract and immutable truth, beyond any
doubt. Yet, as we show here, for quantum particles the principle
does not hold.
Consider three particles and two boxes, denoted L (left) and R

(right). To start our experiment, we prepare each particle in a
superposition of being in the two boxes,

j+i= 1ffiffiffi
2

p ðjLi+ jRiÞ. [1]

The overall state of the three particles is therefore

jΨi= j+i1j+i2j+i3. [2]

Now, it is obvious that in this state any two particles have nonzero
probability to be found in the same box. We want however to
show that there are instances in which we can guarantee that no
two particles are together; we cannot arrange that to happen
in every instance, but, crucially, there are instances like that.

To find those instances we subject each particle to a second
measurement: we measure whether each particle is in the state
j+ ii= ð1= ffiffiffi

2
p ÞðjLi+ ijRiÞ or j− ii= ð1= ffiffiffi

2
p ÞðjLi− ijRiÞ (these are

two orthogonal states, so there exists a hermitian operator
whose eigenstates they are––we measure that operator). The
cases we are interested in are those in which all particles are
found in j+ ii, i.e., the final state

jΦi= j+ ii1j+ ii2j+ ii3. [3]

Importantly, neither the initial state nor the finally selected
state contains any correlations between the position of the
particles. Furthermore, both the preparation and the postse-
lection are done independently, acting on each particle
separately.
Let us now check whether two of the particles are in the same

box. Because the state is symmetric, we could focus on particles 1
and 2 without any loss of generality; any result obtained for this
pair applies to every other pair.
Particles 1 and 2 being in the same box means the state being in

the subspace spanned by jLi1jLi2 and jRi1jRi2; being in different
boxes corresponds to the complementary subspace, spanned by
jLi1jRi2 and jRi1jLi2. The projectors corresponding to these
subspaces are

Πsame
1,2 =ΠLL

1,2 +ΠRR
1,2

Πdiff
1,2 =ΠLR

1,2 +ΠRL
1,2

, [4]

where

Significance

We show that quantum mechanics violates one of the funda-
mental principles of nature: If you put three particles in two
boxes, necessarily two particles will end up in the same box.
We find instances when three quantum particles are put in two
boxes, yet no two particles are in the same box, a seemingly
impossible and absurd effect. This is only one of a host of re-
lated quantum effects which we discovered and which point to
a very interesting structure of quantum mechanics that was
hitherto unnoticed and has major implications for our un-
derstanding of nature. It requires us to revisit some of the most
basic notions of quantum physics––the notions of separability,
of correlations, and of interactions.
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ΠLL
1,2 = jLi1jLi2   1hLj2hLj,      ΠRR

1,2 = jRi1jRi2   1hRj2hRj,
ΠLR

1,2 = jLi1jRi2   1hRj2hLj,      ΠRL
1,2 = jRi1jLi2   1hLj2hRj.

[5]

On the initial state alone, the probabilities to find particles 1 and
2 in the same box and in different boxes are both 50%. On the
other hand, given the results of the final measurements, we al-
ways find particles 1 and 2 in different boxes. Indeed, suppose
that at the intermediate time we find the particles in the same
box. The wavefunction then collapses (up to normalization) to

jΨ′i=Πsame
1,2 jΨi= 1

2
ðjLi1jL

�
2 + jRi1jRi2Þj+ i3, [6]

which is orthogonal to the postselected state (3), i.e.,

hΦjΠsame
1,2 jΨi= 0. [7]

Hence in this case the final measurements cannot find the
particles in the state jΦi. Therefore, the only cases in which the
final measurement can find the particles in the state jΦi are those
in which the intermediate measurement found that particles 1 and
2 are in different boxes.
Crucially, as noted before, the state is symmetric under per-

mutation, hence what is true for particles 1 and 2 is true for all
pairs. In other words, given the above pre- and postselection, we
have three particles in two boxes, yet no two particles can be
found in the same box––our quantum pigeonhole principle.

Related Effect for Every Final Outcome
In the previous section we focused on what happens when at
the final measurement all particles are found in the state j+ ii. It
is in this case that the intermediate measurements exhibit the
quantum pigeonhole effect. However, this is only one of the eight
possible outcomes of the final measurement; indeed, each particle
can be found either in j+ ii or in j− ii. It is important to note that
in each of these cases an interesting effect occurs: In the case when
the final state is j− ii1j− ii2j− ii3 the intermediate measurements
exhibit once again the quantum pigeonhole effect, i.e., no two
particles can be found in the same box. For the final state
j− ii1j+ ii2j+ ii3 intermediate measurements find that particle 2 is
in the same box as 1, particle 3 is in the same box as 1, but particles
2 and 3 are not in the same box (see the Supporting Information).
Similar patterns occur in all other cases.

Generalizing the Quantum Pigeonhole Principle
The above effect is but one of a multitude of similar effects. For
example, in the case of N particles in M <N boxes we can
guarantee that no two particles are in the same box when we
prepare each particle in the state

j0i= 1ffiffiffiffiffi
M

p
XM

k=1

jki, [8]

and we find, in a final measurement, each particle in the state

jπ=Mi= 1ffiffiffiffiffi
M

p
XM

k=1

eiðπk=MÞjki [9]

(see the Supporting Information).

Nature of Quantum Correlations
Before analyzing our paradox in more detail, we would like to
comment more on the nature of quantum correlations.
The first thing to notice is that neither the preselected state nor

the postselected state is correlated (they are both direct products

and each particle is prepared and postselected individually), yet
the particles are correlated.
The second thing to notice is that if we measure the location

of each particle individually, they appear to be completely un-
correlated. Indeed, suppose we measure separately the location
of particles 1 and 2. There are four possible outcomes of this
measurement: LL, LR, RL,   RR, and, as one can easily show, they
all occur with equal probabilities. It is only when we ask solely
about the correlation, and no other information (i.e., whether
the two particles are in the same box or not, without asking in
which box they are), that we find them correlated.
The above shows a fundamental difference in the way in which

the probabilities work in the standard, “preselected only” ex-
periment and in a “pre- and postselected” one (i.e., when we
only consider the cases in which a final measurement gave a
particular answer).
Indeed, consider first the standard situation, that is, consider

that the particles are prepared in the state jΨi and we do not
perform a final measurement and selection according to its re-
sult. Suppose first that we measure separately the location of
each particle. The probabilities to find LL and RR are given,
respectively, by

PðLLÞ= hΨjΠLL
1,2 jΨi    PðRRÞ= hΨjΠRR

1,2 jΨi. [10]

Hence, the probability to find the particles in the same box by
using this measurement is

PðLL  or  RRÞ=PðLLÞ+PðRRÞ= hΨjΠLL
1,2 jΨi+ hΨjΠRR

1,2 jΨi
= hΨjΠLL

1,2 +ΠRR
1,2 jΨi. [11]

Suppose however that we measure an operator that only tells
us whether or not the particles are in the same box, without
indicating in which box they are. This operator has only two
eigenvalues, corresponding to “same” and “different” and the
corresponding projectors Πsame

1,2 and Πdiff
1,2 . The probability to

find the two particles in the same box by this measurement
is then

PðsameÞ= hΨjΠsame
1,2 jΨi= hΨjΠLL

1,2 +ΠLL
1,2 jΨi, [12]

which is identical to the probability of finding the particles in the
same box when we measure their position individually. Hence for
a standard, preselected-only situation, the coarse-grained mea-
surement that asks only about correlations but no other in-
formation gives the same probabilities as the more detailed
measurement.
On the other hand, suppose we compare the above two

measurement methods but in the case of a pre- and postselected
ensemble. In full generality, when one measures an arbitrary
operator A on a pre- and postselected ensemble, the probability
to obtain the eigenvalue ai is given by

PðaiÞ= jhΦjΠijΨij2P
jjhΦjΠjjΨij2

, [13]

where Πi are the corresponding projectors (4).
Using this result, in the case of separate measurements on

each particle we find

PðLLÞ= 1
N

��hΦjΠLL
1,2 jΨi

��2,       PðRRÞ= 1
N

��hΦjΠRR
1,2 jΨi

��2, [14]

with

N =
X

kl=L,R

��hΦjΠkl
1,2jΨi

��2. [15]
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Obviously PðLL  or  RRÞ=PðLLÞ+PðRRÞ is now different from

PðsameÞ= jhΦjΠsame
1,2 jΨij2

jhΦjΠsame
1,2 jΨij2 + jhΦjΠdiff

1,2 jΨij2
. [16]

What the above discussion shows is that there is a significant
difference between correlations that can be observed when we
measure particles separately and when we measure them jointly.
This difference can be observed only when we consider pre- and
postselected ensembles, but it is always there, as an intrinsic part
of quantum mechanics. Indeed, one may not be familiar with the
idea of pre- and postselection but in fact it is something that we
encounter routinely: Every time when we have a sequence of
measurements we can split the original ensemble into a number
of different pre- and postselected subensembles according to the
result of the final measurement, and in each such subensemble
we can observe a similar effect.
The third thing to notice is that the global measurement which

only asks about correlations but no other detailed information is,
in some sense, better than the detailed measurement as it delivers
the information about correlations while minimizing the distur-
bance that it produces to the state. Indeed, suppose two particles
are in an arbitrary superposition αjLi1jRi2 + βjRi1jLi2. The global
measurement will tell us that the particles are in different boxes
and will not disturb the state at all, because it is an eigenstate of
the measured operator. On the other hand, if we measure each
particle separately, we disturb the state, collapsing it on either
jLi1jRi2 or jRi1jLi2. In the case of a preselected-only ensemble,
what happens to the state after the measurement does not matter,
but if we are interested in following this measurement with a
subsequent measurement and look at the different pre- and
postselected ensembles, how much the intermediate time mea-
surement disturbed the state is essential. This is the reason why
postselection is essential to see the effect.
Finally, and most importantly, we note that the global mea-

surement is a measurement of an operator with entangled eigen-
states and it requires either to put the particles in interaction or
consume some entanglement resources to perform it. The quan-
tum pigeonhole effect is thus an example of a new aspect of en-
tanglement: Entanglement in the measurement is needed to reveal
correlations existing in a direct product state.

Nature of Quantum Interactions: A First Experiment
The quantum pigeonhole effect has major implications for the
understanding of the very nature of quantum interactions.
Consider again three particles and two boxes. Let the particles
interact with each other by bipartite short-range interactions, i.e.,
any two particles interact when they are in the same box and do
not interact otherwise. Then, as there are three particles and
only two boxes we expect that always at least two of the particles
should interact. But, due to our pigeonhole effect, this is not so,
as shown in the following experiments.
Consider a Mach–Zender interferometer for electrons, as

depicted in Fig. 1. It consists of two beam-splitters BS1 and BS2,
a phase shifter (PS) that introduces a phase shift of π, and two
detectors, D1 and D2. The detectors have spatial resolution, so
they can tell exactly where each particle landed. When an elec-
tron is injected from the left side, the first beam-splitter gener-
ates the state j+i= ð1= ffiffiffi

2
p ÞðjLi+ jRiÞ. The PS, final beam-

splitter, and detectors in effect implement a measurement with
eigenstates j± ii= ð1= ffiffiffi

2
p ÞðjLi± ijRiÞ. Indeed, if the state before

PS is j+ ii the electron ends with certainty at D1, whereas if it is
j− ii it ends with certainty at D2.
Suppose now that we inject simultaneously three electrons

in the interferometer from the left side, such that they travel in
parallel beams. The beams are arranged in an equilateral

triangle configuration, as can be seen by the zoomed-in cut-away
section of the beam in Fig. 1.
When two electrons go through the same arm of the in-

terferometer they repel each other and their trajectories are
deflected. Indeed, the force that one electron exerts on the other
produces a change in momentum and this in turn leads to the de-
flection of the beams by an amount depending on the original
separation of the beams, the length of the interferometer, and the
speed of the electrons. When the electrons go through different
arms they effectively do not interact (because the arms are sepa-
rated by a large distance). Because we have three electrons and only
two arms, we expect to always have interactions, regardless of which
detectors the electrons end up at after traversing the interferometer.
We are interested in what happens in the cases when all three

electrons end up at D1 and when the interaction between the
electrons is not too strong. Ending up at D1 is our desired
postselection. The requirement that the interaction should not
be too strong (which can be arranged, for example, by spacing

Fig. 1. Mach–Zender interferometer for electrons. BS1 and BS2 are beam-
splitters, PS is a π PS, and D1 and D2 are detectors with spatial resolution.
Three electrons are simultaneously injected on parallel trajectories. The
cross-section shows the spatial arrangement of the beams. The image at the
detector is obtained by superposing the results of many runs, but only
keeping those runs in which all three electrons arrived at D1.
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the parallel beams further away or making the arms shorter) is
more subtle. The point is the following. We know that when
considering three noninteracting particles in two boxes, given the
appropriate pre- and postselection, no two particles are in the
same box. We certified this by showing that whichever pair of
particles we measured we always find them in different boxes.
But, if we were to try to measure two or all pairs in the same
experiment, the measurements would disturb one another and
we would not see the effect. Indeed, suppose we first measure if
particles 1 and 2 are in the same box, then particles 1 and 3, and
then we make the postselection. Now it is actually possible to
find 1 and 2, or 1 and 3, or both 1 and 2 and 1 and 3 in the same
box. Indeed, for example starting with the initial state, Eq. 2, we
can find particles 1 and 2 in the same box. In this case the state
collapses to jΨ′i=Πsame

1,2 jΨi. This state is orthogonal to the
postselected state, Eq. 3, so if we were to make the postselection
now this even would not be selected; this was our main proof of
the quantum pigeonhole effect. However, suppose that instead
of making the postselection at this point we now make a mea-
surement of the pair 1, 3. We can also find 1 and 3 in the same
box. The state now collapses to jΨ″i=Πsame

1,3 Πsame
1,2 jΨi. But now,

crucially, jΨ″i is not orthogonal to the postselected state, Eq. 3,
hence these events are not eliminated from the postselected
ensemble. To be able to see the effect we need to limit the
mutual disturbance of the measurements.
In our interferometer case, the interaction between the elec-

trons leads to the deflection of the beams whenever two elec-
trons are in the same arm. The deflection of the beams is
therefore effectively like a measurement of whether or not two
electrons are in the same arm. To limit the disturbance produced
by the simultaneous existence of the interaction between all
three pairs, we just need to reduce the strength of the effect of
the interaction. Technically, we want to ensure that the change in
the momentum of an electron due to the force produced by the
other electrons is smaller than the spread in its momentum. Due
to this, the deflection of a beam––if it occurs––is smaller than its
spatial spread, hence, by seeing where one electron landed on D1
we cannot tell if its trajectory was deflected or not. However, by
collecting the results of multiple runs we can easily identify if the
electrons were deflected or not (Fig. 2).
Naively, we would expect to see the three beams deflected

outward and deformed; each electron should move radially

outward when all three are present in the same arm, and sideways
when only two electrons are present. We expect the deviation to
be by less than the cross-section but nevertheless by a noticeable
amount. Instead (see the Supporting Information) what we find is
that the beams are completely undeflected and undisturbed (up to
second-order perturbations), indicating that indeed there was no
interaction whatsoever between the electrons.

Second Experiment
A second experiment uses a similar interferometer as described in
the first experiment, but instead of electrons we now inject atoms.
Let all of the atoms start in an excited state and arrange the setting
in such way that there is a very significant probability for the atoms
to spontaneously emit photons while traversing the interferome-
ter. We surround the interferometer with photon detectors that
could detect the emitted photons. Importantly, we chose the en-
ergy separation between the ground and excited state such that the
wavelength of the emitted photons is much larger than the sepa-
ration between the arms, so that by detecting a photon we cannot
tell whether the atom that emitted it went through the left or right
arm. Again, we inject all three atoms from the left and are in-
terested only in the cases in which all three end up at detector D1.
When two atoms are close to each other (being in the same

arm) they interact with each other (for example by dipole–dipole
interactions) and the energy levels are shifted. Observing the
wavelength of the emitted photons we can then tell if the atoms
were in the same arm or not. Following the same reasoning as
used in the previous experiment, we also arrange for the fre-
quency shift to be smaller than the spread of the spectral line, so
that the three pairwise interactions should not disturb each
other. Again, due to this, one single photon observation cannot
tell us whether the frequency was shifted or not, but by accu-
mulating the statistics we can detect the shift.
Because there are three atoms but only two arms, similarly to

the previous experiment, we expect that in each run of the ex-
periment at least two atoms will be in the same arm, so the
photons they emit will be frequency shifted, no matter which de-
tector the atoms end up in. However, according to our quantum
pigeonhole effect, when we look at the cases in which all three
atoms end up at D1, we see that the spectral lines are unshifted.

Conclusions
In conclusion, we presented a new quantum effect that requires
us to revisit some of the most basic notions of quantum physics––
the notions of separability, of correlations, and of interactions. It
is still very early to say what the implications of this revision are,
but we feel one should expect them to be major because we are
dealing with such fundamental concepts.

ACKNOWLEDGMENTS. Y.A. acknowledges support (in part) by the Israel
Science Foundation Grant 1311/14, the Israeli Centers of Research Excellence
Center “Circle of Light” of Deutsch-Israelische Projektkooperation, the German–
Israeli Project cooperation, and the European Research Council (ERC) Advanced
Grant Nonlocality in Space and Time (NSLT). Y.A., D.C.S., and J.T. acknowledge
support (in part) by the Fetzer Franklin Fund of the John E. Fetzer Memorial
Trust. S.P. acknowledges the ERC Advanced Grant NSLT.

1. Dirichlet PGL, Dedekind R (1863) Vorlesungen über Zahlentheorie (Vieweg,
Braunschweig, Germany); trans (1999) [Lectures on Number Theory] (American
Mathematical Society, Providence, RI). German.

2. Allenby RBJT, Slomson AB (2011) How to Count: An Introduction to Combinatorics
(CRC, Boca Raton, FL), 2nd Ed.

3. Nielsen M, Chuang I (2000) Quantum Computation and Quantum Information (Cam-

bridge Univ Press, Cambridge, UK).
4. Aharonov Y, Bergmann P, Lebowitz J (1964) Time symmetry in the quantum process of

measurement. Phys Rev 134:B1410–B1416.

Fig. 2. (A) Observed distribution shows no displacement of the beams,
whereas naively we would expect the beam to be moved and deformed, due
to a combination of different cases depicted in B, which depend on which
particles are in the same arm and repel each other.
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