Shrubland & woodland restoration in Spain and the Mediterranean

V. Ramón Vallejo & J.A. Alloza
CLIMATE CHANGE PROJECTIONS:

fire hazard & restoration

- LONGER AND MORE SEVERE FIRE SEASON
- HEAT WAVES & DROUGHT
- LARGER EXPOSED AREAS

www.fumeproject.eu
Changes in CDD interannual variability (standard deviation) in 20-year periods as compared to 1980-1999.
PLANTATIONS (1992)
Post-fire, south-facing slopes, degraded soils

Pinus halepensis

Quercus ilex ssp. *ballota*

Marls:

Limestones:
Drought is the main cause of seedling mortality both for recruitment and in afforestation

(from Alloza & Vallejo, 1999)
% Mortality the 1st post-plantation year

Length of the maximum dry period (days)1

1Consecutive days without any rainfall > 5 mm. *** Significant differences at $p < 0.05$
SMALL CHANGES IN SOIL MOISTURE (approx. - 10%) can produce increased seedling mortality and reduced growth

Pinus pinaster

Quercus ilex
TRANSPLANT SHOCK:
ROOT GROWTH AFTER TRANSPLANTING

Plot: Crevillente (Alicante).
Climate: Thermo-mediterranean semiarid
Species: P. lentiscus, J. oxycedrus, Q. coccifera

Fonseca 1999
Table 11.2 Mediterranean restoration techniques concerned with water

<table>
<thead>
<tr>
<th>Objective</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase water-use efficiency</td>
<td>Selection of drought-tolerant species and ecotypes</td>
</tr>
<tr>
<td></td>
<td>Seedling preconditioning</td>
</tr>
<tr>
<td></td>
<td>Improve below-ground performance</td>
</tr>
<tr>
<td></td>
<td>Improve nutritional status</td>
</tr>
<tr>
<td>Increase water supply</td>
<td>Soil preparation and amendment</td>
</tr>
<tr>
<td></td>
<td>Irrigation</td>
</tr>
<tr>
<td></td>
<td>Microsite selection</td>
</tr>
<tr>
<td>Reduce water losses</td>
<td>Tree shelters</td>
</tr>
<tr>
<td></td>
<td>Mulching</td>
</tr>
<tr>
<td></td>
<td>Microsite selection</td>
</tr>
<tr>
<td></td>
<td>Control of competing species</td>
</tr>
</tbody>
</table>

Vallejo et al 2012
Species survival four years after outplanting

Albatera project, P 280 mm

Survival (%)

Abbreviations: Qc: Quercus coccifera, Cs: Ceratonia siliqua, Pl: Pistacia lentiscus, Ta: Tetaclinis articulata, Ef: Ephedra fragilis, Rl: Rhamnus lycioides, Oe: Olea europaea sylvestris, Ph: Pinus halepensis, Qq: Osyris quadripalitita, Jo: Juniperus oxycedrus, Sg: Salsola genistoides, No: Nerium oleander, Taf: Tamarix africana, Ch: Chamaerops humilis, So: Salsola oppositifolia, Ls: Lygeum spartum, St: Stipa tenacissima.
SPECIES SELECTION
Water-use strategies and response to drought

At field capacity

Leaf water deficit at turgor loss (1-RWC, %)

Stomatal conductance (mmol⁻¹ m⁻² s⁻¹)

Vilagrosa et al., 2009; Hernández, 2010
Dynamics of total standing dead fuel after fire

Baeza et al. 2011
EXPLORING PROVENANCES …

Quercus ilex:
Risk of xylem cavitation among populations

Gil & Vilagrosa, unpublished
Quercus suber: Effect provenance and family/mother plant

\[F_{\text{provenance}} = 0.93 \text{ NS} \]
\[F_{\text{family}} = 1.96 \text{ *} \]

Morcillo 2006, unpublished
SPECIES DIVERSIFICATION

Planting woody resprouters
WOODY RESPRIUERS RECOVER FASTER AFTER BURNING & ARE LESS FLAMMABLE
SPECIES DIVERSIFICATION

Pistacia lentiscus
Arbutus unedo
Rhamnus alaternus
CONSTRAINTS FOR LAND RESTORATION IN DRY MEDITERRANEAN CONDITIONS

CLIMATE
- PREDICTIBLE: SUMMER DROUGHT
- LESS PREDICTIBLE: OUT-OF-SEASON DROUGHTS

SOIL
- SHALLOW/STONY/DISCONTINUOUS
- POOR STRUCTURE (PRONE TO SURFACE CRUSTING: SILTY SOILS)
- POOR BIOLOGICAL FERTILITY AND SOM
- LOW NUTRIENT CONTENT

DISTURBANCE REGIME
- FIRE (RECURRENT)
- GRAZING (FIRE-GRAZING CYCLES)
- EXTREME CLIMATIC EVENTS
TRYING TO IMPROVE SEEDLING PERFORMANCE IN THE FIELD

Overcoming transplanting shock
SEEDLING QUALITY
Drought preconditioning

Quercus suber

Nursery

- DP (drought preconditioning) produced smaller seedlings with higher R:S ratio.
DP showed a tendency to improve survival.

DP increased the root colonization in the field, deeper in the soil and with greater root biomass.
Quercus spp
USE OF DEEP CONTAINER FOR *Quercus*
ACCLIMATING ROOT SYSTEMS TO CC:

Use of deep container to improve root colonization of seedlings

Quercus ilex

Chirino *et al.*, 2009

3 month

18 month
Water manipulation of growing medium: addition of hydrogel and clay in the substrate
Use of hydrogel in seedlings of *Quercus suber* (cork oak)

Increase seedling survival in the field (*Q. suber*; S. Espadán)
THE USE OF TREE-SHELTER
Olea europaea
2005, 2 year
Growth dynamics of *Quercus ilex ssp ballota* seedlings and acorns in relation to some field and nursery treatments

Months since February 1997

- **Hydrogel**
- **Control**
- **Treeshelter (TS)**
Tree-shelters limitations

- Inside the tube, temperature increases a few °C with respect to ambient.
- For temperature > 40-45°C PSII (Fv/Fm) efficiency decreases ⇒ stress in the photosynthetic system.
- Slightly decreases R:S ratio.
- In moist conditions, excessive stem elongation (etiolation) and weakening.
SOIL PREPARATION

Mechanical hole with backhoe *Spider*
TECHNIQUES TO IMPROVE WATER AVAILABILITY TO SEEDLING

Increase Runoff

Enhance Infiltration

Reduce Evaporation
water harvesting
Mortality

Species

% mortality

Quercus ilex spp. Ballota

Pinus halepensis

Hole

Water harvesting

CEAM
IMPROVED MICROCATCHMENT RAIN WATER CAPTURE EFFICIENCY

Rain events < 10 mm
Survival of *Olea europaea* seedlings 2 years after planting in two experimental semiarid stations.
Enhanced accumulation of roots, organic matter faunal activity Preferential water flow
Soil amendments: Biosolids

Pinus halepensis
(20 months after planting)

Fuentes et al 2010
Soil amendments: Biosolids

Fuentes et al. 2010
THE COST OF PLANTATION QUALITY IMPROVEMENT
SEEDLING SURVIVAL VS DROUGHT DURATION
1st PLANTATION YEAR

Vallejo et al., 2012
MEDIUM-TERM EFFECTS OF PLANTATIONS

ALBATERA SITE (SE SPAIN) P ≈ 280 mm
ALBATERA: Functional analysis

Six years after afforestation
ALBATERA: Functional analysis

Six years after afforestation
The role of extant vegetation: facilitation or competition?
Fig. 2. Results of the mixed model for survival. Values reported are the mean effect size (d_+) and the 95% CI. The significance (P) of the Q statistic for the difference between groups in the effect of nurse shrubs on survival is given. See Methods for a description of the grouping variables.
Quercus suber, post-summer survival. S. Espadà (Castelló, Spain)

We carried out a manipulative experiment to evaluate the importance of competition by pines, competition by the herbaceous understorey, and all other factors pooled.

PC: pine control; OC: open control; PM: dead pine; PH: herbicide for grasses
Alpha grass steppe restoration

Competition by grasses seems to be the most limiting factor for the establishment of woody resprouters

Pinus halepensis

Brachypodium retusum

Pistacia lentiscus

Maestre et al., 2004
PLANT-PLANT INTERACTIONS: ALPHA GRASS STEPPES

Which are the main drivers of alpha grass facilitation?
Alpha grass steppe restoration

Alpha grass has a consistent positive effect on the establishment of woody seedlings

Maestre et al., 2001
Alpha grass steppe restoration

Days after plantation

- Tussock control (ECO)
- Tussock no shadow (ESO)
- Tussock no runoff (ECH)
- Open control (BCO)
- Tussock no competition (ECM)
- Open no runoff (BCH)

Survival

- P. lentiscus

Shadow is the main control of facilitation

Maestre et al., 2003
La Hunde site (Ayora, Valencia, Spain)

Secondary pine woodlands.
Stand densities: low, medium and high.
Three replicates (zones): 9 plots and 60 seedlings/plot

<table>
<thead>
<tr>
<th>TREATMENTS</th>
<th>HIGH DENSITY (HD)</th>
<th>MEDIUM DENSITY (MD)</th>
<th>LOW DENSITY (LD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stand density</td>
<td>Stand density: 600-900 trees/ha</td>
<td>Stand density: 500-700 trees/ha</td>
<td>Stand density: 100-300 trees/ha</td>
</tr>
<tr>
<td></td>
<td>GSF = 0.38</td>
<td>GSF = 0.44</td>
<td>GSF = 0.75</td>
</tr>
</tbody>
</table>

Field plantations 2011
REINTRODUCING RESPouters UNDER PINE CANOPY

<table>
<thead>
<tr>
<th>Species</th>
<th>Life form</th>
<th>Leaf habit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbutus unedo</td>
<td>Shrub</td>
<td>Evergreen</td>
</tr>
<tr>
<td>Rhamnus alaternus</td>
<td>Shrub</td>
<td>Evergreen</td>
</tr>
<tr>
<td>Quercus ilex</td>
<td>Tree</td>
<td>Evergreen</td>
</tr>
<tr>
<td>Quercus faginea</td>
<td>Tree</td>
<td>Deciduous</td>
</tr>
<tr>
<td>Fraxinus ornus</td>
<td>Tree</td>
<td>Deciduous</td>
</tr>
<tr>
<td>Acer granatense</td>
<td>Tree</td>
<td>Deciduous</td>
</tr>
</tbody>
</table>
Results. Survival and RGR per treatment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>HD</th>
<th>MD</th>
<th>LD</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGR Height (year⁻¹)</td>
<td>0.0</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>RGR Diameter (year⁻¹)</td>
<td>0.0</td>
<td>0.1</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Survival (%)

<table>
<thead>
<tr>
<th>post-transplanting shock</th>
<th>HD</th>
<th>MD</th>
<th>LD</th>
</tr>
</thead>
<tbody>
<tr>
<td>97.7</td>
<td>96.4</td>
<td>99.0</td>
<td></td>
</tr>
</tbody>
</table>

$p = 0.805$ ns

$p = 0.003$
CONCLUSIONS

• Available ecological restoration technology allows for reintroducing native plants and recovery critical ecosystem functions for many Mediterranean lands

• Higher inputs are required for highly degraded ecosystems, higher stress conditions

...but

• We need understanding the thresholds for cost-effective restoration, both in biophysical and socieconomic terms