Post-fire Associations of Butterfly Behavior, Occupancy, and Abundance with Environmental Variables and Nectar Sources in the Sierra Nevada, California

David Pavlik
University of Minnesota
Department of Fisheries, Wildlife, and Conservation Biology
Chapter 1: Sugars in nectar sources and their use by butterflies in the Sierra Nevada, California

Chapter 2: Factors associated with post-fire butterfly occupancy and nectar attributes in the Sierra Nevada, California
Study Area: Rim Fire

The Rim Fire Threatens National Park

- Acres burned: 105,620
- Structures threatened: 4,500
- Cost to date: $5.4 million

Nearly triple in size since Aug. 21, the blaze is spreading west and east toward Yosemite National Park.
Study Area

Rim Fire

- August- October 2013
- One of the largest in CA history
- Burned more than 1040 km² (257,000 acres)
Background Information

- Historical fire suppression
- More frequent, large fires
- Fire as a management tool
 - Endangered species management

(King 2003) (Schultz and Dlugosch 1999)
Background Information
Chapter 1: Sugars in nectar sources and their use by butterflies in the Sierra Nevada, California
Background Information

- Adult butterflies like nectar
- Important for population size, survival, and fecundity
- Nectar = water, sugars, amino acids
Background Information

• Not all nectar created equally

• 3 main sugars: sucrose, glucose, fructose

• Composition varies by species
• Fire affects nectar

• Abundance, volume, concentration highest after fire

• Prescribed fire for butterfly management
Background Information

• Butterflies are picky... in the lab

• Some species prefer sucrose

Sucrose

Glucose and Fructose
Is this realistic?

Does the lab represent natural settings?

Equal resource access in lab experiments
Objectives

• What sources do butterflies use in a natural setting?

• Nectar use associated with:
 • Total sugar mass?
 • Total sucrose mass?
 • Proportion of sucrose to total sugars?
Field Methods

- 2014: 8 transects
- 2015: 12 transects
- 300-500m in length
- Separated into 20-m segments
- Five surveys (visits) each
Field Methods

Butterflies

• Record every individual within 10 meters

• Note if taking nectar & nectar source
Field Methods

Vegetation

• Random 1 m² in each segment
 • Canopy cover
 • Percent live ground cover
 • # florets of nectar sources
Field Methods

Vegetation

• Collect florets
 • 5 per species
• Bag overnight
• Shake in 2ml dH₂O
• Freeze for analysis

(Bentley and Ellas 1983, Grunfeld et al. 1989, Morrant et al. 2009)
Analytical Methods

- Volume in sources too low for traditional methods
- High performance liquid chromatography- mass spectrometry (LC-MS)
Analytical Methods

- Prepared known concentrations
 - 0.0005 – 0.30 mg/ml
 - Generated calibration curve
Analytical Methods

• Compare samples to calibration curve
• mg/ml of sugar solution
• x2 (ml) to calculate sugar mass
Analytical Methods

• Linear regression to test intensity of use vs.
 • Total sugar mass
 • Total sucrose mass
 • Relative proportion of sucrose to overall sugars
Results

• 45 species of butterflies
 • 32 taking nectar

• 20 nectar sources
 • 314 observations of feeding

• Sugar mass from 0.004-0.913 mg
Results

Intensity of use vs. sugar mass

(R^2 < 0.01, p = 0.92)
Results

Intensity of use vs. sucrose mass

$R^2 < 0.01, p = 0.96$
Results

Intensity of use vs. sucrose proportion

(R² < 0.01, p = 0.76)
Conclusions

• No evidence for nectar use based on sugar content
• Generalists
• Lab not representative of natural setting

Sucrose

Glucose and Fructose
Conclusions

- Nectar is widely available after fire
- Fire for butterfly and nectar source management
- Natives vs non-natives
Chapter 2: Factors associated with post-fire butterfly occupancy and nectar attributes in the Sierra Nevada, California
Objectives

• Why are butterflies found where they are after a fire?

• What environmental factors determine spatial distribution of butterflies?
Objectives

• Do environmental attributes affect butterfly:
 • Occupancy?
 • Abundance?

• Does fire severity affect environmental attributes?
 • Vegetation burn severity
 • Soil burn severity
Fire Severity

Vegetation Burn Severity
- U.S. Forest Service
 - Relative differenced normalized burn ratio

Soil Burn Severity
- U.S. Forest Service
 - Difference in spectral reflectivity
• Detection < 1

• Key assumption: Closure

• Occupancy with relaxed closure
 • Probabilities of entry and departure

(MacKenzie et. al 2002)
Analytical Methods

• Detection
 • probability of detecting the species at a site if it is present during sampling

• Occupancy
 • expected probability that the species is present at a given site
Analytical Methods: Covariates

Occupancy with relaxed closure (Kendall et al. 2013)

Detection:
• Survey-specific number of florets
• Visit number

Occupancy:
• Canopy cover
• Live ground cover
• Nectar: categorical (ordinal), total florets
Analytical Methods: Models

• Step 1: Covariate effects on probability of entry, departure, detection
 • Occupancy held constant

• Retain highest or most parsimonious model

• Step 2: Covariate effects on probability of occupancy
Analytical Methods: Abundance

- Negative binomial generalized linear models
 - Canopy cover
 - Live ground cover
 - Number of florets
 - Categorical (ordinal) nectar
Analytical Methods: Fire Severity

- ANOVA
 - Vegetation and Soil Severity
 - None, low, moderate, high

- Canopy cover
- Live ground cover
- Number of florets

- Tukey’s pairwise comparisons
Models

45 total species observed

Icaricia lupini (lupine blue)

Junonia coenia (common buckeye)

Phyciodes mylitta (mylitta crescent)

Erynnis persius (persius duskywing)

Colias eurytheme (orange sulphur)
Occupancy Results

Probability of Detection

<table>
<thead>
<tr>
<th>Species</th>
<th>Survey-specific number of florets</th>
<th>Visit number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colias eurytheme (2015)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Icaricia lupini (2014)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Icaricia lupini (2015)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Junonia coenia (2015)</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Phyciodes mylitta (2015)</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Erynnis persius (2015)</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
Occupancy Results

Probability of Occupancy

<table>
<thead>
<tr>
<th>Species</th>
<th>Canopy</th>
<th>Live ground cover</th>
<th>Categorical nectar</th>
<th>Number of florets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colias eurytheme (2015)</td>
<td>-</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Icaricia lupini (2014)</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Icaricia lupini (2015)</td>
<td>-</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junonia coenia (2015)</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phyciodes mylitta (2015)</td>
<td>-</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erynnis persius (2015)</td>
<td>-</td>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>
Nectar Results

Nectar Attributes

<table>
<thead>
<tr>
<th>Species</th>
<th>Number of florets</th>
<th>Categorical nectar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colias eurytheme (2015)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Icaricia lupini (2014)*</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Icaricia lupini (2015)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Junonia coenia (2015)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Phyciodes mylitta (2015)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Erynnis persius (2015)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Species and year</td>
<td>Canopy cover</td>
<td>Live ground cover</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Colias eurytheme</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(2015)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Icaricia lupini</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(2014)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Icaricia lupini</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(2015)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junonia coenia</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>(2015)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phyciodes mylitta</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(2015)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erynnis persius</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(2015)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fire Severity Results

2014

- Vegetation Severity
 - Canopy cover
 - Unburned > low, moderate, high
2015

Vegetation Severity

Canopy Cover
• Unburned > low > moderate > high

Live Ground Cover
• Moderate, high > unburned, low

Number of florets
• High > unburned, low
Fire Severity Results

Soil Burn Severity

2014
• None

2015

Canopy Cover
• Unburned, low > moderate

Live Ground Cover
• Moderate > unburned, low, high

Number of inflorescences and sugar mass
• Moderate > unburned, low
Conclusions

• Attributes associated with occupancy
 • Canopy cover
 • Live ground cover

• Likely changes in first few years after fire

• Number of florets is a better predictor of occupancy than nectar categories
Conclusions

- Abundance associated with
 - Canopy cover
 - Live ground cover
 - Categorical nectar

- Nectar measures more often associated with abundance than occupancy
Conclusions

• Fire affects environmental attributes

• Moderate or high severity has largest positive effect for butterflies
Conclusions

• Management implications

• Butterflies and fire
 • More than just host plants and nectar

• Abundance and Occupancy
 • Some same, some different
Acknowledgements

• Strategic Environmental Research and Development Program
• Wally Dayton Wildlife Fellowship
• National Institute of the General Medical Sciences of the National Institutes of Health
• Kevin Welsh and Lauren Gonce
Questions?