Atmospheric River Storms in the Tuolumne Basin and other California Watersheds

Leah Campbell*, Douglas Alden°*, & Anna Wilson*

°Scripps Engineering Research and Field Support
*Center for Western Weather and Water Extremes
Scripps Institution of Oceanography
University of California San Diego

Yosemite Hydroclimate Workshop
What is an Atmospheric River?

“A long, narrow, and transient corridor of strong horizontal water vapor transport that is typically associated with a low level jet stream ahead of the cold front of an extratropical cyclone”

-AMS Glossary
California’s Variable Precipitation

- Southwestern (SW) U.S. has the largest year to year precipitation variability in the US.
- The year to year variability in CA is largely caused by the wettest days (ARs).
- ARs contribute ~30-40% to seasonal SWE accumulations in the Sierra Nevada (6-7 events/year on average)

Coefficient of variation for annual precipitation 1950-2008

Dettinger et al. (2011), Guan et al. 2010
ARs in Western California

Water Supply vs. **Flooding**

All 7 floods in the Russian River over 8 years (Oct 1997-Feb 2006) are associated with atmospheric rivers

Contribution (%) of ARs to total annual precipitation (1950-2013)

Gershunov et al. 2017

Ralph et al. 2006
Forecast Informed Reservoir Operations (FIRO)

- FIRO is a proposed management strategy: *Can reservoir operators use state of the art weather forecasting and watershed monitoring to make adaptive management decisions?*

- Lake Mendocino is a proof-of-concept testbed that could have application to other reservoirs.
Unique Observational Network in CA

California Extreme Precipitation Network

- FM-CW snow-level radar
- 449-MHz wind profiler
- GPS receiver for integrated water vapor
- Soil Moisture and Temperature Probes

CA Dept. of Water Resources (DWR), NOAA and Scripps Inst. Of Oceanography
- Installed 2008-2014
- >100 field sites

White et al. 2013
Scripps Hydroclimate Network
Elevational Transect across Sierra

Priest Reservoir
Scripps Hydroclimate Network

- 12 sites along Hwy 120 from Priest Reservoir to Lee Vining
- 1 site at Devils Postpile National Monument
- 7 sites in White Mountains adjacent to Piute Creek Drainage
- 4 time lapse camera systems
A Tale of Two (Warm and Wet) Storms

March 22-23

April 6-8

Photo: The Union via AP

Photo: National Park Service
Streamflow

Merced River at Pohono Bridge Near Yosemite

Max = 12,100 cfs
April 7, 5:00 pm PDT

Flood Stage: 7,000 cfs

Big Creek above Whites Gulch

Max = 2,690 cfs
March 22, 2:00 pm PDT
Storm 1: March 21-22

0600Z 03/22/2018

72-hr QPE ending 5 AM PDT 23 March
Melting Level: ~ 2700 m (8900 ft)

~80% of Upper Tuolumne & Merced watersheds below melting level
Snow at Dana Meadows
Sierra Snow Extent

March 19, 2018

March 26, 2018

Data Source: MODIS
Hydroclimate Network
Hydroclimate Network

Forty Mile 1720m

%VWC

Feb Mar Apr May

10cm 30 cm 60 cm 90 cm

Soil Temperature °C

Feb Mar Apr May
Storm 2: April 6-7
Rain at Dana Meadows

APRIL 6 - APRIL 7
RAIN ON SNOW
Melting Level: ~ 3950 m (12900 ft)

100% of Upper Tuolumne & Merced watersheds below melting level

Snow Level Radar: https://www.esrl.noaa.gov/psd/data/obs/datadisplay/
Sierra Snow Extent

Data Source: MODIS
Hydroclimate Network
Hydroclimate Network
CW3E Snow-Level Tool

http://cw3e.ucsd.edu/DSMaps/DS_freezing.html

Developed by Brian Henn & Jay Cordeira, CW3E
Developed by Brian Henn & Jay Cordeira, CW3E

http://cw3e.ucsd.edu/DSMaps/DS_freezing.html
Are Winter Storms Getting Warmer?

Snow level observed by profiling radars at Chico, Oroville, and Colfax

Hatchett et al. 2017
Summary & Conclusions

• March 21-22:
 • Primarily low-elevation snow melt, with snow accumulation above ~9000 feet
 • Flooding at lower-elevation gauges

• April 4-6:
 • Rain up to ~12000 feet
 • Flooding at upper-elevation gauges

• As climate warming continues, will ARs remain known as important snow producers for California?
Template