

Research Brief for Resource Managers

Release: December 2018 **Contact:** Jon E. Keelev Marti Witter Liz van Mantgem Phone: (559) 565-3170 (805) 370-2333

jon keeley@usgs.gov

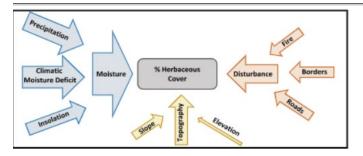
marti witter@nps.gov evanmantgem@usgs.gov

Central and Southern California Team, USGS Sequoia and Kings Canyon Field Station, Three Rivers, CA 93271

Extreme Drought Causes Chaparral Type Conversion

Park, I.W., J. Hooper, J.M. Flegal, and G.D. Jenerette. 2018. Impacts of climate, disturbance and topography on distribution of herbaceous cover in Southern California chaparral: insights from a remote-sensing method. Diversity and Distributions 12pp.DOI: 10.1111/ddi.12693

The rugged, chaparral dominated Angeles National Forest (ANF, California) is a beautiful and popular recreation destination. However, it is being damaged by a combination of overwhelming anthropogenic stressors, including climate change-induced megadroughts, unnaturally shortened fire intervals, very poor air quality (e.g., high levels of nitrogen deposition), and the invasion of non-native groundcover plants (e.g., Bromus tectorum, B. madritensis, and *Spartium junceum*). To discern the relative importance of these stressors on ANF chaparral, these researchers asked two specific questions: 1) what is the extent of the non-native herbaceous groundcover in the ANF; and 2) how much do moisture, disturbance, and local topography differentially influence that groundcover over the course of a year?


After finding an average 2008 groundcover estimate of 31%, these researchers showed that **moisture** availability explained 47% of the variation for that year while the other combined factors (i.e., topography and disturbance) only explained 17% of that

Management Implications

- A non-native, grass dominated "herbaceous groundcover [was] pervasive throughout the study footprint" (Fig.2), contrary to expectations.
- Where fire frequency was normal, sitespecific moisture was "the dominant factor in determining the distribution of grasses and other herbaceous cover."
- Lowered available moisture inhibits seedling recruitment and kills vulnerable endemic seedlings, leaving gaps that are vulnerable to the non-native, understory invasion.

variability (see Fig.1). The conclusion was that wherever fire return intervals remain normal, impending climate-change induced precipitation reduction will be the most important factor in ANF chaparral typeconversion to novel, non-native plant communities.

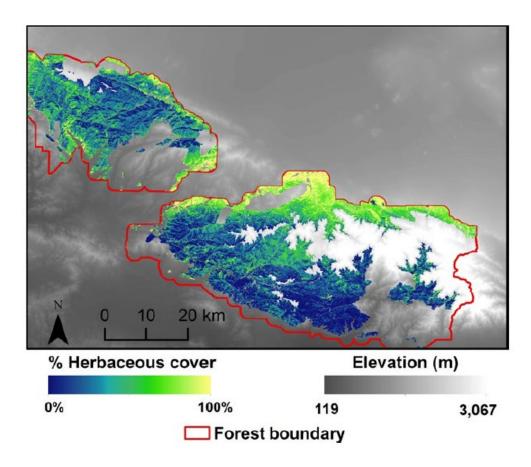

Because the authors felt that standard monitoring techniques were inadequate for detecting landscape-scale invasive groundcover in chaparral shrub communities, they devised a remote sensing protocol.

Figure 1. Contributions of all factors to distribution of herbaceous cover. Arrow weights correspond to relative importance of each factor in prediction the percent of herbaceous cover.

The baseline, 31% unnatural chaparral understory was assessed via 2008 NDVI (normalized differential vegetation index)

estimates from Landsat TM4-5 surface reflective data and compared to slope data, precipitation data, climate moisture deficit data, fire return interval data, and forest boundary data. A manual calibration of these pixel data consisted of 275 randomly placed pilot sites, each representing a 30m pixel of either: intact chaparral, highly invaded grassland, or mixed chaparral/herbaceous cover. These manually acquired pixel data were then used to describe the remotesensed pixels via regression models. A series of 15 useable images every three or four weeks showed the variable, min and max NDVI's for 2008.

Figure 2. Estimated herbaceous cover across study footprint within Angeles National Forest. Blue, Green, and Yellow areas represent the area evaluated in this study. Red lines indicate forest boundary.