
The fever response is a hallmark of infection and 
inflammatory disease, and has been shaped through 
hundreds of millions of years of natural selection. Febrile 
temperatures are so closely linked to the inflammatory 
response that heat (calor) is one of the four cardinal signs 
of inflammation, along with pain (dolor), redness (rubor) 
and swelling (tumor), as described by Celsus in approxi-
mately the first century bc1. The induction of fever in 
endothermic (warm-blooded) animals occurs at a high 
metabolic cost, such that a 1 °C rise in body temperature 
requires a 10–12.5% increase in metabolic rate2. There is 
mounting evidence that the increase in core body tem-
perature of 1 °C to 4 °C that occurs during fever is associ-
ated with improved survival and the resolution of many 
infections. For example, the use of antipyretic drugs to 
diminish fever correlates with a 5% increase in mortal-
ity in human populations infected with influenza virus 
and negatively affects patient outcome in the intensive 
care unit of hospitals3–5. Preclinical studies in rabbits 
infected with rinderpest virus also found an increase in 
mortality when fever was inhibited using the antipyretic 
drug acetylsalicylic acid (also known as aspirin): 70% 
of acetylsalicylic acid-treated animals died as a result of 
infection compared with only 16% of the animals that 
had a normal febrile response6. However, fever is not 
universally beneficial, particularly in cases of extreme 
inflammation where lowering rather than raising body 
temperature has evolved as a protective mechanism7–10. 

Thus, uncontrolled fever is associated with worse out-
comes in patients with sepsis or neurological injuries, 
whereas treatments that induce hypothermia can have 
a clinical benefit in these patients11,12. A challenge in 
ascertaining the precise value of fever in endotherms is 
that the antipyretics used to inhibit fever target multiple  
aspects of the inflammatory response in addition to  
temperature regulation11.

Ectothermic (cold-blooded) vertebrates, which last 
shared a common ancestor with mammals more than 
600 million years ago, provide an ‘experiment in nature’ 
by which to examine the direct impact of febrile tempera-
tures on survival. Ectotherms as diverse as reptiles, fish 
and insects raise their core temperature during infection 
through behavioural regulation, which leads the animals to 
seek warmer environments (despite the risk of predation) 
or, in the case of bees, to raise the local temperature of the 
hive through increased physical activity2,13–19. Landmark 
studies published 40 years ago by Kluger’s laboratory 
showed that the survival of the desert iguana Dipsosaurus 
dorsalis is reduced by 75% if prevented from behaviour-
ally raising its core temperature by approximately 2 °C after 
infection with the Gram-negative bacterium Aeromonas 
hydrophila2,13,14. The heat-seeking behaviour of the 
desert iguana, blue-finned tuna and leech is negated by 
antipyretic drugs, indicating that common biochemical 
pathways drive fevers in ectothermic and endothermic ani-
mals14,16,20. Surprisingly, the correlation between infection 
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Abstract | Fever is a cardinal response to infection that has been conserved in warm-blooded 
and cold-blooded vertebrates for more than 600 million years of evolution. The fever 
response is executed by integrated physiological and neuronal circuitry and confers a 
survival benefit during infection. In this Review, we discuss our current understanding of  
how the inflammatory cues delivered by the thermal element of fever stimulate innate and 
adaptive immune responses. We further highlight the unexpected multiplicity of roles  
of the pyrogenic cytokine interleukin‑6 (IL‑6), both during fever induction and during the 
mobilization of lymphocytes to the lymphoid organs that are the staging ground for immune 
defence. We also discuss the emerging evidence suggesting that the adrenergic signalling 
pathways associated with thermogenesis shape immune cell function.
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and increased temperature even extends to plants, which 
arose 1.5 billion years ago. For example, the tempera-
ture of the leaves from the bean plant Phaseolus vulgaris 
increases by around 2 °C following infection with the fun-
gus Colletotrichum lindemuthianum21. Thermoregulation 
in plants occurs through mitochondrial respiration22, 
although it is not known whether these fever-like responses 
have a direct effect on the clearance of infection.

The fact that fever has been retained throughout verte
brate evolution strongly argues that febrile temperatures 
confer a survival advantage. A long-standing mystery 
relates to the protective mechanisms by which fever 
wards off attacks by invading pathogens. One mecha-
nism involves direct effects of febrile temperatures on the 
infectious potential of pathogens23. For example, 40–41 °C 
temperatures cause a greater than 200‑fold reduction in 
the replication rate of poliovirus in mammalian cells and 
increase the susceptibility of Gram-negative bacteria 
to serum-induced lysis24,25. In this Review, we discuss  
the evidence suggesting that febrile temperatures  
boost the effectiveness of the immune response during 
infections by stimulating both the innate and the adap-
tive arms of the immune system. We highlight the role 
of the pyrogenic cytokine interleukin‑6 (IL‑6) in two key 
phases of the febrile response: first, in driving the rise in 
core temperature; and second, as a downstream effector 
cytokine that orchestrates lymphocyte trafficking to lym-
phoid organs. We also describe febrile temperature as a 
‘rheostat’ that ‘dials down’ systemic inflammation during 
the return to homeostasis. In addition, we highlight new 
data demonstrating the overlapping signalling pathways 
that are involved in thermogenesis and in the regulation of 

the immune response. We only briefly discuss the neuronal 
circuitry that drives fever and the evolutionarily conserved 
heat shock protein (HSP) response (BOX 1), but we refer 
the reader to recent comprehensive reviews for additional 
information on these topics, as well as on the contributions 
of hypothermia to limiting inflammation26–30.

Induction of fever
The IL‑6–COX2–PGE2 axis drives fever. The induction 
and maintenance of fever during infection involves the 
tightly coordinated interplay between the innate immune 
system and the neuronal circuitry within the central and 
peripheral nervous systems. Immune sensing of infection 
begins with the binding of pathogen-associated molecular  
patterns (PAMPs) — for example, lipopolysaccharide 
(LPS), viral RNA and fungal sugars — to pathogen 
recognition receptors (PRRs), such as Toll-like recep-
tors (TLRs), which are expressed by innate immune cell 
populations, including macrophages, neutrophils and 
dendritic cells (DCs) (FIG. 1). Much of our current under-
standing of the molecular mechanisms underlying fever 
stems from studies in which rodents were injected with 
LPS, which is a component of Gram-negative bacterial 
cell walls, to model immune-induced thermoregulation. 
In this model, prostaglandin E2 (PGE2) produced by 
brain vascular endothelial cells is considered to be a major 
pyrogenic mediator of fever31–33. This lipid effector mol-
ecule integrates input signals from pyrogenic cytokines 
that are produced in response to pathogenic stimuli with 
output signals involving neurotransmitters that raise 
core body temperature (FIG. 1). PGE2 is also synthesized 
in the periphery early in this response — that is, before 
the detection of circulating cytokines. It is produced by 
haematopoietic cells following LPS-mediated activation of 
TLR4 and travels through the blood–brain barrier to initi-
ate fever26,30,34–38. LPS-induced fever occurs via autonomic 
mechanisms driven by PGE2 binding to PGE2 receptor 3 
(EP3; also known as PTGER3), which is expressed by 
thermoregulatory neurons in the median preoptic nucleus 
region of the hypothalamus8,39–41. Endotherms elevate 
body temperature through the release of noradrena-
line, which increases thermogenesis in brown adipose 
tissue and induces vasoconstriction in the extremities 
to reduce passive heat loss26,27. In addition, signalling 
through the neurotransmitter acetylcholine stimulates 
the musculature to convert stored chemical energy into  
thermal energy and increases overall metabolic rates2,26,42,43. 
Endotherms, like ectotherms, also engage in heat- 
seeking behavioural thermoregulation that does not 
require median preoptic neurons, although the pathways 
involved are mostly unknown8–10.

LPS-induced TLR4 signalling stimulates the synthesis 
of pyrogenic cytokines (namely, IL‑1, IL‑6 and tumour 
necrosis factor (TNF)) at the site of infection, as well as in 
the brain, and it is becoming clear that IL‑6 is an impor-
tant mediator of fever induction26,44–47. Notably, multiple 
cell types in the brain (for example, astrocytes, microglial 
cells and neurons) have the ability to synthesize IL‑6 in 
response to local inflammatory stimuli48–53. Although 
the direct administration of IL‑1, IL‑6 or TNF into the 
brain leads to a febrile response, several lines of evidence 

Box 1 | Thermal regulation of heat shock proteins

Heat shock proteins (HSPs) are cytoprotective proteins that are constitutively expressed 
and also rapidly induced under proteotoxic stress conditions such as heat, hypoxia, 
oxidative stress, toxin exposure, nutrient deprivation and infection26–29,200–202. Although 
HSPs were originally discovered in the context of heat shock (42–45 °C), they are also 
inducible by febrile temperatures (38–41 °C) in mammalian cells26,122,189–191. Stress-induced 
transcription of HSPs is driven by post-translational modifications (sumoylation and 
phosphorylation) of heat shock factor protein 1 (HSF1): these modifications release HSF1 
from a complex with HSP70 and HSP90 (REFS 29,200,201). This results in the formation of 
HSF1 homotrimers that translocate to the nucleus and activate the transcription of genes 
including those encoding HSPs that contain heat shock element sequences29,200,201. 
A major function of HSPs is to maintain appropriate folding of their client proteins, thereby 
protecting them from proteolysis. HSPs have key roles in regulating multiple signalling 
pathways under constitutive and stress conditions. For example, there are more than 200 
established client proteins of HSP90, including members of the mitogen-activated 
protein kinase (MAPK), Janus kinase–signal transducer and activator of transcription  
(JAK–STAT) and cyclin-dependent kinase 1 (CDK1) signalling pathways29,200,202–204.  
Cancer cells that are under chronic proteotoxic stress conditions often become ‘addicted’ 
to HSPs, and high intratumoural expression of HSP70 or HSP90 is a poor prognostic 
indicator in patients with cancer, suggesting HSP inhibitors as a treatment option in 
cancer200,203,204. There are also non-canonical HSPs that do not have traditional chaperone 
or protein-folding activity but their expression is nonetheless tightly regulated by HSF1. 
One example is CXC-chemokine ligand 8 (CXCL8; also known as IL‑8), which mediates 
the recruitment of neutrophils upon exposure to fever-range hyperthermia in 
lipopolysaccharide instillation models of acute lung inflammation84,85. Active areas of 
investigation in the HSP field are considering the physiological impact of the multiple 
post-translational modifications of HSFs and HSPs (for example, phosphorylation, 
acetylation, S‑nitrosylation, ubiquitylation and sumoylation), as well as the interplay 
between these molecules and positive and negative immune regulation29,200,205.
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point to a requisite role for IL‑6 in sustaining fever. In this 
regard, LPS-induced fever does not occur in the presence 
of IL‑6‑specific neutralizing antibody or in IL‑6‑deficient 
mice, even though TNF and IL‑1 upregulation is normal in 
these settings54–58. Moreover, direct intracerebroventricular 
injection of IL‑6, but not IL‑1, restores febrile responses 
in IL‑6‑deficient mice55. Febrile temperatures have  
further been implicated in a positive feedback loop  
during the early stages of infection. Specifically, passive  
elevation of the core body temperature of mice to the 
febrile range using whole-body hyperthermia substan-
tially augments circulating levels of IL‑1, IL‑6 and TNF 
during LPS-induced inflammation26,59–61. The pyrogenic 
role of IL‑6 has recently been corroborated in patients 
with paediatric leukaemia, in which treatment with 
the IL‑6 receptor antagonist tocilizumab was found to 
reverse the high fevers that develop during T cell based- 
immunotherapy (specifically, following the administra-
tion of chimeric antigen receptor-expressing T cells or a 
CD19/CD3‑bispecific antibody)62,63.

Systemic or locally produced cytokines act in the 
brain to augment the synthesis of cyclooxygenase 2 
(COX2), the enzyme responsible for oxidizing arachi-
donic acid to produce PGE2 (FIG. 1), and IL‑1 receptors 
that mediate COX2 induction have been identified 
on brain endothelial cells within the median preoptic 
nucleus region of the hypothalamus64,65. Although the 
specific cell types that upregulate COX2 expression in 
response to IL‑6 remain to be identified, blood vessels  
in the brain reportedly express the IL‑6 receptor 
subunit-α (IL-6Rα)53, which together with the ubiqui-
tously expressed gp130 subunit (also known as IL‑6Rβ) 
forms the functional IL‑6 receptor. Several stud-
ies have shown that cerebral COX2, PGE2 and fever 
are not induced during LPS-driven inflammation in 
IL‑6‑deficient mice or in the presence of IL‑6‑specific 
neutralizing antibody66–68. Alternatively, IL‑6 cannot ini-
tiate a febrile response in the absence of COX2 or PGE2, 
and intracerebroventricular delivery of PGE2 bypasses 
the requirement for IL‑6 during fever induction in 
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Figure 1 | The induction of fever during infection.  The recognition of 
damage-associated molecular patterns (DAMPs) or pathogen-associated 
molecular patterns (PAMPs), such as lipopolysaccharide (LPS), by Toll-like 
receptors (TLRs) and other pattern recognition receptors drives the 
activation of dendritic cells (DCs) and macrophages (upper left panel). 
These innate immune cells release prostaglandin E2 (PGE2) and 
pyrogenic cytokines (namely, interleukin‑1 (IL‑1), IL‑6 and tumour 
necrosis factor (TNF)) that act systemically to induce fever. IL‑6 operates 
downstream of IL‑1 in the median preoptic nucleus region of the 
hypothalamus to induce the synthesis of cyclooxygenase 2 (COX2),  
the enzyme responsible for the production of additional PGE2 (REFS 64,65). 
PGE2 is considered to be the major pyrogenic mediator of fever31–33. 

Receptor activator of NF‑κB (RANK) that is expressed by astrocytes also 
acts via the COX2–PGE2 pathway to induce fever47. However, it is not 
known whether this pathway parallels the IL‑6 response or whether 
the IL‑6 and RANK ligand (RANKL) pathways converge, potentially via 
IL‑6 regulation of RANKL expression in vascular endothelial cells in the 
hypothalamus. Neurons expressing PGE2 receptor 3 (EP3) trigger the 
sympathetic nervous system to release noradrenaline, which elevates 
body temperature by increasing thermogenesis in brown adipose tissue 
and by inducing vasoconstriction to prevent passive heat loss (upper 
right panel)2,26,27,42,43. In addition, acetylcholine contributes to fever by 
stimulating muscle myocytes to induce shivering. IL-1R, IL-1 receptor; 
IL-6Rα, IL-6 receptor subunit-α.
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IL‑6‑deficient mice69,70. Collectively, these observations 
establish that COX2 and PGE2 are crucial mediators 
that can operate downstream of IL‑6 in the LPS-induced 
febrile response.

RANKL and fever induction. An open question is 
whether IL‑6 is the direct regulator of COX2 and PGE2 
induction during the febrile response or whether other 
intervening cytokines are involved. The possibility of 
other cytokine involvement is suggested by an elegant 
study by Hanada et al.47 who showed that, similarly to 
IL‑6, the cytokine receptor-activator of NF‑κB ligand 
(RANKL; also known as TNFSF11) converges on the 
COX2–EP3–PGE2 pathway, leading to fever induc-
tion in the LPS-induced model of inflammation (FIG. 1). 
RANKL is best known as a regulator of bone remodel-
ling and lymph node organogenesis71. However, mRNA 
encoding RANKL is also produced in the lateral septal 
nucleus region of the brain that interconnects with the 
hypothalamus, and the RANKL receptor, RANK (also 
known as TNFRSF11A), is found on astrocytes in the 
preoptic region of the hypothalamus47. Further support 
for a role of this cytokine in thermoregulation is provided 
by findings that children with RANK mutations exhibit 
impaired fever responses during pneumonia47. Although 
the potential interplay between IL‑6 and RANKL–RANK  
during fever has not been explored, it is tempting to 
speculate that RANKL is a downstream mediator  
of IL‑6‑induced pyrogenesis on the basis of evidence that 
IL‑6 directly stimulates RANKL synthesis by synovial 
fibroblasts in mouse models of rheumatoid arthritis72.

Immune stimulation by thermal stress
One benefit widely attributed to fever is the enhance-
ment of immune-protective mechanisms during infec-
tion. Defence against pathogens involves tight spatial and 
temporal regulation of the immune system, and the same 
pyrogenic cytokines that are produced during the induc-
tion of fever also operate locally to orchestrate immunity 
within infected tissues73. Innate immune cells are the ‘first 
responders’, arriving within hours of infection to directly 
destroy pathogens via phagocytic or cytotoxic activi-
ties. These activities limit infection until a peak adaptive 
immune response is generated, normally around 1 week 
later. Macrophages and DCs bridge the gap between 
innate and adaptive immunity by taking up pathogens 
in peripheral tissues and then relocating to draining 
lymph nodes where they drive the population expansion 
of pathogen-specific effector T cells74,75. Crucial to this 
process is the colocalization of DCs and T cells near high 
endothelial venules (HEVs), which are the major portals 
for entry of blood-borne lymphocytes74–76.

Given the complexity of these immune mechanisms, 
it is remarkable that fever-range temperatures stimu-
late almost every step of this process, promoting both 
innate and adaptive immunity. In the various in vitro and 
in vivo studies described below, the potential impact of 
the thermal element of fever has primarily been explored 
using hyperthermic temperatures within the febrile 
range for mammals (that is, ranging from 38 °C to 41 °C;  
ΔT ~1–4 °C above baseline). Experimental hyperthermia 

is a powerful approach to study the impact of fever-range 
temperatures on immunity, which is otherwise difficult 
to discriminate during natural fever because of the atten-
dant inflammatory programme (comprised of lipid and 
cytokine mediators) that regulate both fever and immu-
nity. However, an important caveat from a physiological 
perspective is that the heat conservation associated with 
natural fever fundamentally differs from the cooling  
mechanisms that are enacted by thermoregulation  
following exogenous heat application.

Impact of febrile temperatures on innate immunity. 
Previous research using animal models of hyperthermia 
treatment alone, or with LPS challenge or bacterial 
infection, strongly supports the idea that fever-range 
temperatures elevate the respiratory burst that is typi-
cally associated with the activation and bacteriolytic 
activity of neutrophils77,78 (FIG. 2a). Thermal stress fur-
ther increases neutrophil recruitment to local sites of 
infection and other distant tissues61,79 (FIG. 2a), includ-
ing tumours77. Neutrophil localization in peripheral 
tissues is at least partly due to heat-induced increases 
in the numbers of circulating neutrophils, which 
are dependent on granulocyte colony-stimulating  
factor (G‑CSF)80,81. G‑CSF is also central to a model of 
radiation-induced neutropenia in which fever-range 
whole-body hyperthermia substantially increases the  
number of neutrophils in the blood and augments  
the number of haematopoietic stem cells and neutrophil 
progenitors in the bone marrow82 (FIG. 2a). This effect 
is dependent on enhanced production of IL‑1α, IL‑1β 
and IL‑17 preferentially in intestinal tissue. Importantly,  
the precise outcome of the thermal effect depends on the 
heating protocol used and the geography of cell recruit-
ment (FIG. 2a). Indeed, temperatures above the normal 
febrile range impair neutrophil accumulation and func-
tion83. Moreover, Hasday and colleagues61,84 found that 
fever, or exposure to fever-range hyperthermia, in an LPS 
model increases neutrophil localization to the lungs, which 
can have negative consequences owing to inflammation-
induced local tissue damage. Heat-induced neutrophil 
recruitment in the lungs depends on the non-canonical 
chemotactic HSP CXC-chemokine ligand 8 (CXCL8; also 
known as IL‑8), the expression of which is controlled by 
the heat-inducible transcription factor heat shock factor 
protein 1 (HSF1)61,84,85 (BOX 1). Neutrophil recruitment to 
the lungs also involves a decrease in endothelial barrier 
integrity through a mechanism that depends on the mito-
gen-activated protein kinases (MAPKs) p38, extracellular 
signal-regulated kinase 1 (ERK1) and ERK2 (REF. 84).

The effect of heat on natural killer (NK) cells has 
been most extensively studied in the context of tumour 
immunity. It has been shown that NK cell cytotoxic activ-
ity and recruitment to tumour sites is increased by fever-
range hyperthermia in vivo86–89 (FIG. 2b). This enhanced 
cytotoxicity depends on heat-induced upregulation of 
the NKG2D ligand MICA (MHC class I polypeptide-
related sequence A) on tumour cells, as well as on 
the clustering of NKG2D receptors on the surface of 
NK cells90. Elevated temperatures also decrease MHC 
class I expression by tumour cells while simultaneously 
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Figure 2 | Response of innate immune cells to thermal stress. 
a | Fever-range temperatures drive several crucial aspects of innate immunity. 
Fever-range hyperthermia stimulates the release of neutrophils from the 
bone marrow in a granulocyte colony-stimulating factor (G‑CSF)-driven 
manner (left panel)80–82. Febrile-range temperatures also promote neutrophil 
recruitment to the lungs and other local sites of infection in a CXC-chemokine 
ligand 8 (CXCL8)-dependent manner that additionally involves decreased 
endothelial barrier function in blood vessels61,84,85. Upon arriving at the site of 
infection, thermal stress further elevates the respiratory burst, which 
increases the bacteriolytic activity of neutrophils (right panel)77,78. b | Thermal 
treatment improves natural killer (NK) cell cytotoxic activity through  
the induction of MHC class I polypeptide-related sequence A (MICA) 
expression on target cells (for example, tumour cells) and by inducing the 
clustering of the MICA receptor NKG2D on the surface of NK cells90.  
c | Temperatures in the febrile range increase the ability of antigen-presenting 

cells to support the formation of the adaptive immune response. Heat 
improves the phagocytic potential of macrophages and dendritic cells (DCs) 
and increases their responsiveness to invading pathogens by upregulating 
their expression of both Toll-like receptor 2 (TLR2) and TLR4 (REFS 119,120). 
Thermal treatment also induces the release of immunomodulatory 
molecules such as cytokines (for example, tumour necrosis factor (TNF)), 
nitric oxide (NO) and heat shock protein 70 (HSP70). In addition, heat 
increases the expression of MHC class I and MHC class II molecules, as well 
as co‑stimulatory molecules (CD80 and CD86), by mature DCs and augments 
their CC‑chemokine receptor 7 (CCR7)-dependent migration via the 
afferent lymphatics that serve as a conduit to draining lymph nodes117,121–124. 
DCs exposed to febrile temperatures are also more efficient at cross- 
presenting antigens and inducing T helper 1 (T

H
1) cell polarization121. ERK, 

extracellular signal-regulated kinase; HSF1, heat shock factor protein 1; 
IFNγ, interferon‑γ; IL, interleukin.
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increasing HSP70 production, and both of these 
responses are linked to enhanced cytotoxic potential in 
NK cells91. The upregulation of HSPs in tumour cells  
in response to thermal stress is also likely to be involved in  
the enhanced cross-priming of antigen-specific  
cytotoxic T lymphocytes that was observed when DCs 
were loaded with lysate from heated melanoma cells92.

Macrophages have served as a major model for the 
study of fever-range hyperthermia. Early studies demon-
strated that whole-body heating (to ~39.5 °C) improves 
bacterial clearance and also increases serum concen-
trations of IL‑1, IL‑6 and TNF in mice challenged with 
LPS59,60,93,94. The source of these cytokines was found to be 
the macrophages of the liver (that is, Kupffer cells), as well 
as macrophages in other organs. Later work by Lee et al.95 
showed that hyperthermia induces the upregulation of 
HSP70 and that this ‘reprogrammes’ macrophages to show 
sustained activation in response to LPS. The mechanism 
involves the phosphorylation of inhibitor of NF-κB (IκB) 
and IκB kinase (IKK), the nuclear translocation of nuclear 
factor-κB (NF‑κB) and its binding to the Tnf promoter95,96. 
HSP70 is also required for enhancing the expression of 
nitric oxide and inducible nitric oxide synthase by peri-
toneal macrophages following exposure to fever-range  
temperatures together with LPS and interferon‑γ (IFNγ)97. 
Although HSPs are usually assumed to be intracellular, 
heat stress can induce the release of HSP70 from cells 
into the extracellular environment where it can act as a 
damage-associated molecular pattern (DAMP) to stimu-
late macrophages and DCs98–100. Extracellular HSP70 and 
other HSPs engage multiple surface receptors, includ-
ing CD91 (also known as LRP1), scavenger receptor A,  
CD40, TLR2 and TLR4, leading to the release of nitric 
oxide, TNF, IL‑1β, IL‑6 and IL‑12 (REFS 100–110). Notably, 
some investigators have paradoxically observed an anti-
inflammatory role for HSPs111–113. It has been suggested 
that these differences result from the precise location of 
the HSPs within macrophages: extracellular HSPs provide 
danger signals to enhance inflammation, whereas intra-
cellular HSPs could help to suppress inflammatory signal-
ling114. Taken together, the data regarding innate immune 
cells, body temperature and HSPs reveal fascinating, but 
still poorly understood, layers of interdependency between 
the febrile response and the more ancient HSP response.

Fever enhances DC functions. Several studies have dem-
onstrated that elevated temperatures substantially enhance 
the phagocytic potential of DCs, in addition to augment-
ing IFNα production in response to viral infection115–118 
(FIG. 2c). Heating of immature DCs also upregulates their 
expression of TLR2 and TLR4, suggesting a role for ther-
mal signals in enhancing pathogen sensing by innate 
immune cells119,120. Febrile temperatures further increase 
DC expression of MHC class I and MHC class II mol-
ecules and co‑stimulatory molecules, including CD80 and 
CD86, and can augment the secretion of the T helper 1 
(TH1) cell-polarizing cytokines IL‑12 and TNF102,117,119–123.  
Additional reports point to a role for fever-range tem-
peratures in augmenting the migration of antigen- 
presenting cells (APCs), such as skin Langerhans cells,  
to draining lymph nodes124 (FIG. 2c). These data may help 

to explain the fact that febrile temperatures can accelerate 
the swelling phase of a contact hypersensitivity reaction 
when heat is delivered to mice shortly after the applica-
tion of the elicitation dose of a skin sensitizer, fluorescein 
isothiocyanate (FITC)124. The underlying mechanism 
that directs DC migration to draining lymph nodes prob-
ably involves increased responsiveness of CC‑chemokine 
receptor  7 (CCR7) to its ligands, which has been 
described for heat-treated mature DCs in chemotaxis 
assays in vitro121. CCR7 senses CC-chemokine ligand 21 
(CCL21) gradients in vivo, thereby guiding DC entry 
into afferent lymphatics and their subsequent migration 
near HEVs within draining lymph nodes125–128. Thus, 
febrile temperatures seem to regulate the CCR7‒CCL21 
axis in order to optimally position DCs in lymphoid  
organs at sites where they can present antigen to  
lymphocytes upon their arrival via HEVs.

Given these observations, it is not surprising that 
fever-range thermal stress enhances the ability of DCs 
to stimulate T cells, as well as DC cross-presenting func-
tions (FIG. 2c). In mixed lymphocyte reactions, applying 
thermal stress ex vivo to LPS-pulsed mature human 
monocyte-derived DCs led to enhanced proliferation 
of naive CD4+ T cells and promoted their differen-
tiation towards a TH1 cell phenotype121. Similarly, DCs 
isolated from heat-exposed mice exhibit a superior 
ability to activate T cells102. In studies in which DCs 
from patients with medullary thyroid cancer were pre-
heated before co‑culture with T cells, the T cells showed  
enhanced cytotoxicity against tumour targets119. This 
increased cytotoxicity of effector T cells correlated with 
heat-induced upregulation of both MHC class I molecule 
and HSP70 expression in mature, but not immature, 
DCs. Together, these findings demonstrate that systemic 
fever-range temperatures can target different compo-
nents of the innate immune system, including the HSP  
response, in order to enhance effector T cell responses.

Thermal mechanisms boost adaptive immunity. A crucial  
determinant for the generation of adaptive immunity 
is the high rate of lymphocyte trafficking through lym-
phoid organs. The entire pool of naive T cells in a mouse 
lymph node turns over around two to three times per day 
as a result of T cell recirculation75,129. This dynamic flux 
increases the probability that rare antigen-specific T cells 
(present at a frequency of only ~1 in 105–106)130,131 will 
receive activating signals from DCs. The entry of blood-
borne B cells and T cells into lymph nodes and Peyer’s 
patches occurs preferentially at HEVs through a well-
defined adhesion cascade that involves several steps: first, 
L‑selectin- and/or α4β7 integrin-initiated tethering and 
rolling; second, CCL21‑dependent activation of CCR7 
on adherent lymphocytes; third, lymphocyte function- 
associated antigen 1 (LFA1)-mediated firm arrest via 
binding to its endothelial counter-receptors inter
cellular adhesion molecule 1 (ICAM1) and ICAM2;  
and fourth, LFA1–ICAM‑directed transendothelial 
migration74–76,132,133. As described below, we have shown 
that fever-range thermal stress targets multiple steps  
in this cascade by invoking a wide array of lymphocyte 
and endothelial trafficking molecules134–142 (FIG. 3a).
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An early indication that fever could control lympho
cyte trafficking emerged from studies showing transient 
decreases in circulating levels of T cells in mice or patients 
with cancer following elevation of core body tempera-
tures to ~39.5 °C by febrile-range whole-body hyper
thermia83,137,143. Reductionist studies found that direct 
heat treatment of B cells or T cells ex vivo for 6 hours 
resulted in an approximately twofold increase in their 
ability to bind to HEVs in vitro or to home to lymph 
nodes or Peyer’s patches in vivo134–139. Lymphocytes iso-
lated from heat-exposed mice exhibit similar enhance-
ment of homing properties138. It is worth noting that 
this represents a substantial increase above the already  
efficient rate of homeostatic trafficking whereby  
approximately one in four lymphocytes initiate the  
adhesive events that precede extravasation75,129.

Fever-range temperatures augment trafficking through 
a lymphocyte-autonomous mechanism by target-
ing the binding activity of both L‑selectin (FIG. 3a) and 
α4β7 integrin without altering their density134,136–139. 
In lymph node HEVs, fever-range hyperthermia pro-
motes L‑selectin-dependent lymphocyte rolling along 
vessel walls through the formation of short-lived catch-
bonds with its endothelial counter-receptor, peripheral 
node addressin (PNAD)74,75. Febrile temperatures also 
enhance α4β7 integrin binding to mucosal addressin cell 
adhesion molecule 1 (MADCAM1) in HEVs in Peyer’s 
patches and mesenteric lymph nodes144. Direct expo-
sure of lymphocytes to heat does not alter the affinity of 
LFA1 for its endothelial ligands134,136. It remains an open  
question whether the chemokine receptor CCR7 is 
affected by febrile temperatures.

Figure 3 | Fever-range thermal stress and the adaptive immune 
response.  a | Fever-range thermal stress supports increased adaptive 
immunity by targeting two distinct aspects of T cell activation in lymph 
nodes. Heat enhances the rate of lymphocyte trafficking across high 
endothelial venules (HEVs) in peripheral lymph nodes through effects on 
each step of the adhesion cascade. Heat treatment of lymphocytes 
increases the frequency of L‑selectin-dependent tethering and rolling 
interactions134,135,137–139. Febrile-range temperatures independently act on 
HEVs to enhance the transition of lymphocytes from transient rolling to 
stable arrest by increasing the intravascular density of CC‑chemokine 
ligand 21 (CCL21) on the heparan sulphate-rich glycocalyx and intercellular 
adhesion molecule 1 (ICAM1)140–142. ICAM1 also supports lymphocyte 
crawling to inter-endothelial cell junctions and transendothelial 
migration131,145,146. Heat also acts directly on the T cells within lymphoid 

organs by pre-clustering components of the immunological synapse (the 
T  cell receptor (TCR) β-chain and CD8). This prolongs stable contacts with 
antigen-presenting cells (APCs) and increases CD8+ T cell differentiation 
towards an effector phenotype that is characterized by enhanced L‑selectin 
downregulation, cytotoxic function and production of interferon‑γ 
(IFNγ)151,152. b | Epifluorescence whole-mount confocal microscopy image of 
HEVs that are actively supporting lymphocyte trafficking in a mouse lymph 
node. HEVs are stained in red with phycoerythrin (PE)‑conjugated MECA‑79 
antibody that recognizes peripheral lymph node addressin (PNAD), whereas 
lymphocytes are labelled in green using carboxyfluorescein succinimidyl 
ester (CFSE). Photomicrograph image of lymph node HEVs courtesy of 
J. Muhitch, Roswell Park Cancer Institute, Buffalo, New York, USA. CCR, 
CC-chemokine receptor; HEC, high endothelial cell; LFA1, lymphocyte 
function-associated antigen 1.
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The intrinsic binding function of HEVs is also 
enhanced approximately twofold in LPS- or turpentine- 
induced mouse models of fever, as well as during the 
exposure of mice to fever-range whole-body hyper-
thermia136,137,140–142 (FIG. 3a). As in lymphocytes, maximal 
enhancement of HEV adhesion requires sustained tem-
perature elevation (more than 6 hours)136,137,140–142, reca-
pitulating the extended time-frame of physiological 
fever responses. Chen et al.140,141 visualized lymphocyte 
interactions in mouse HEVs using intravital micro
scopy (FIG. 3b), together with quantitative image analy-
sis of trafficking molecules, to pinpoint the thermally 
responsive trafficking mechanisms in HEVs. Thermal 
stress does not alter the ability of HEVs to support  
rolling, nor does it change the intraluminal den-
sity of the prototypical rolling molecules PNAD or 
MADCAM1 (REFS  140,141). Instead, exposure to 
febrile temperatures profoundly increases the abil-
ity of HEVs to support the stable arrest of lympho-
cytes, and this can be attributed to heat-induced 
increases in the intravascular density of CCL21 and 
ICAM1 (REFS 140,141) (FIG. 3a). Notably, the level of 
HEV adhesiveness and ICAM1 expression induced 
by thermal stress is equivalent to that observed in 
response to the potent pro-inflammatory cytokine 
TNF140. Thermal upregulation of CCL21 and ICAM1 
expression in HEVs is consistent with the known 
concentration-dependent roles of these molecules in 
augmenting LFA1 affinity (~10,000‑fold), thereby sup-
porting stable adhesion of lymphocytes within vessel  
walls145,146. In addition, increases in ICAM1 expres-
sion in response to hyperthermia probably promote 
LFA1‑dependent transendothelial migration in HEVs 
and the formation of ICAM1‑dense adhesive patches 
that guide lymphocyte diapedesis into underlying  
tissues133,147,148.

Once lymphocytes gain entry into lymphoid organs 
there is evidence that their ability to respond to stimu-
latory signals is also enhanced by febrile temperatures. 
Direct exposure of T cells to fever-range hyperthermia 
increases their proliferation in response to mito-
gens149,150. Furthermore, in both in vitro and in vivo 
models of antigen-driven T cell activation by APCs, 
thermally treated CD8+ T cells show greater differentia-
tion towards an effector phenotype, with pronounced 
L‑selectin downregulation, enhanced cytotoxic func-
tion and increased production of IFNγ151,152 (FIG. 3a). 
Enhanced stimulation of naive CD8+ T cells is aligned 
with temperature-dependent activation of protein 
kinase Cβ (PKCβ), prolonged stable contacts with 
APCs and transient clustering of components of the 
immunological synapse (the T cell receptor (TCR) 
β-chain and CD8) in cholesterol-enriched micro
domains151,152. Similar heat-induced changes in mem-
brane fluidity and macromolecular clustering in the 
plasma membrane occur in CD4+ T cells that reduce 
the requirement for CD28 stimulation for IL‑2 produc-
tion153. These findings suggest that febrile temperatures 
lower the threshold for T cell signalling and effector 
T cell differentiation by pre-associating the signalling 
components of the TCR complex.

IL‑6 is a thermally sensitive effector of trafficking. 
Investigation into the mechanisms underlying thermal 
regulation of trafficking led to the unexpected discov-
ery that the same pyrogenic cytokine that is responsible 
for inducing fever — namely, IL‑6 (REFS 135,137,138) 
— also controls both lymphocyte and endothelial  
adhesion132,138–140,142. The thermal response further 
depends on a second soluble factor, the soluble form of 
IL‑6Rα (sIL‑6Rα), which acts cooperatively with IL‑6 
and the membrane-anchored gp130 signal transducing 
molecule through a well-defined mechanism that is 
termed trans-signalling138–140,154,155 (FIG. 4a). This thermally  
sensitive mechanism was identified in vitro and in vivo 
using recombinant soluble gp130 (REFS 138,140), which 
is a competitive antagonist of IL‑6 trans-signalling but 
which does not affect classical signalling that involves 
membrane-anchored IL‑6Rα154,156.

In lymphocytes, the MEK1–ERK1/ERK2 signal-
ling pathway, but not the p38 or JUN N-terminal kinase 
(JNK) pathways, operates downstream of IL‑6–sIL‑6Rα 
trans-signalling in response to heat138. This promotes 
L‑selectin interactions with actin-based cytoskeletal  
scaffolding elements, thereby enhancing its apparent  
tensile strength (FIG. 4b). IL‑6‑induced activation of  
signal transducer and activator of transcription 3 (STAT3) 
also occurs in lymphocytes in response to thermal 
stress138, although it is not known whether this contrib-
utes to lymphocyte adhesion or delivers survival sig-
nals157,158 that aid the expansion of populations of effector 
lymphocytes within lymphoid organs. Consistent with 
the evolutionary conservation of the febrile response, 
L‑selectin adhesion is induced by fever-range tempera-
tures through a common IL‑6 trans-signalling mechanism 
in animals representing four taxa of jawed vertebrates 
that includes endothermic mammals (for example, 
human, rodent, dog, cow, tiger, elephant and rhinoceros)  
and birds (chicken), as well as ectothermic amphibians and  
fish134,135,137–139. These observations strongly suggest that 
conservation of IL‑6‑regulated lymphocyte traffick-
ing mechanisms over hundreds of millions of years of  
evolution confers a survival benefit during fever.

Ligation of gp130 by IL‑6–sIL‑6Rα also upregulates 
the intravascular density of ICAM1 in HEVs during 
heat treatment of mice132,140 (FIG. 4b). The dual require-
ment for IL‑6 and sIL‑6Rα for ICAM1‑dependent traf-
ficking in HEVs during thermal stress is in line with 
the prevailing view that endothelial cells generally lack 
membrane-anchored IL‑6Rα and thus are refractory to 
IL‑6 unless sIL‑6Rα is available132. STAT3 signalling and 
MEK1–ERK1/ERK2 signalling have been implicated in 
the transcriptional regulation of ICAM1 (REF. 132) and 
thus are potential mediators of the thermal response in 
HEVs. By contrast, CCL21 induction is not dependent 
on IL‑6 trans-signalling140, suggesting that an additional 
molecular pathway is induced by febrile temperatures.

One of the most intriguing findings to emerge from 
intravital imaging relates to the tight spatial regulation of 
IL‑6–sIL‑6Rα responses in vascular beds during thermal 
responses. In this regard, Chen et al.140 showed that HEVs 
respond to IL‑6 trans-signalling during thermal stress, but 
contiguous vascular segments that are not comprised of 
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high endothelial cells (HECs) are completely refractory to 
thermally induced IL‑6 trans-signalling (FIG. 4b). Similarly, 
non-HEVs in other organs are not responsive to febrile 
temperatures, although heat shock (which occurs at tem-
peratures greater than 43 °C) reportedly stimulates ICAM1 
expression in normal vascular endothelium137,140–142,159,160. 

This restricted vascular response to physiological tem-
perature elevation is proposed to maintain the focal 
trafficking of lymphocytes at HEVs in lymph nodes and 
Peyer’s patches that are located throughout the body, thus 
maximizing their opportunity to scan pathogen-derived 
antigens from peripheral sites of infection137,140,141.

Figure 4 | Thermal stress acts through IL‑6 trans-signalling to improve 
lymphocyte trafficking into lymph nodes. a | Heat-dependent interleukin‑6 
(IL‑6) trans-signalling is initiated by binding of the soluble form of the IL‑6 
receptor‑α subunit (sIL‑6Rα) to both IL‑6 and membrane-anchored gp130 
(REFS 154,155). Soluble gp130 functions as a selective antagonist of IL‑6 
trans-signalling and downstream activation of canonical signalling pathways 
— mediated by Janus kinase–signal transducer and activator of transcription 
(JAK–STAT) and MEK1–extracellular signal-regulated kinase 1 (ERK1)/ERK2 — 
but does not interfere with classical signalling by membrane-anchored IL‑6Rα 
and transmembrane gp130 (REF. 156). b | Febrile temperatures act on 
lymphocytes and high endothelial cells (HECs) to improve lymphocyte 
trafficking exclusively across high endothelial venules (HEVs) in lymph nodes. 
Vessel segments immediately proximal to HEVs are refractory to thermal 

treatment, which may reflect the lower expression of gp130 by squamous 
endothelial cells that line non-HEVs162. Fever-range temperatures act  
directly on lymphocytes through IL‑6 trans-signalling to stimulate the  
MEK1–ERK1/ERK2 signalling pathway, promoting L‑selectin adhesion and 
intermolecular interactions between the actin-based cytoskeleton, α‑actinin  
and the cytoplasmic tail of L‑selectin138 (left inset). IL‑6 trans-signalling 
upregulates the intravascular density of intercellular adhesion molecule 1 
(ICAM1) in HEVs during heat treatment of mice, although the downstream 
signalling mediators remain unknown (right inset). Fibroblastic reticular cells that 
are in direct contact with HECs165 are a possible source of the IL‑6, and proximal 
dendritic cells (DCs) and T cells could provide the sIL‑6Rα138,164 required to 
enhance the adhesive properties of HEVs during thermal stress. LFA1, 
lymphocyte function-associated antigen 1; PNAD, peripheral node addressin.
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The mechanism that maintains spatial resolution 
within venular segments over distances spanning the 
width of a single HEC (~30 μm)161 remains to be resolved, 
but clues have emerged from recent transcriptional pro-
filing of various cell subsets in lymphoid organs. HECs 
are distinguished from their normal endothelial cell 
counterparts by elevated expression of Il6st (which 
encodes gp130)162, which could theoretically predispose 
them to be highly sensitive to IL‑6–sIL‑6Rα in the local 
milieu (FIG. 4b). Although the overall nodal concentrations 
of IL‑6–sIL‑6Rα are unchanged by thermal stress140,163, 

heat could theoretically induce their synthesis by dis-
crete cell populations or could lower the threshold for 
signalling in HECs. Fibroblastic reticular cells (FRCs) 
are a possible source of IL‑6 during fever on the basis of 
their high expression of Il6 mRNA relative to haemato
poietic cells or vascular endothelial cells within skin-
derived lymph nodes164. Unlike other vascular beds 
that are circumscribed by pericytes, HEVs are in direct 
contact with FRCs, and thus are optimally positioned to 
receive instructions from FRC-derived cytokines74,75,165. 
Of particular relevance is a report that IL‑6 synthesis by 
fibroblasts can be induced by the heat-inducible tran-
scription factor HSF1 (REF. 166). The sIL‑6Rα necessary 
for trans-signalling is probably provided by neighbour-
ing leukocytes, including DCs, monocytes and/or  
T cells138,164. Recent studies have shown that febrile  
temperatures can also act through IL‑6 trans-signalling to 
augment the recruitment of cytotoxic CD8+ T cells across 
tumour-associated vessels142. These studies are highly  
relevant to the use of thermal medicine as an adjuvant  
for cancer immunotherapy (BOX 2) and raise the possibil-
ity that fever could invoke similar mechanisms to amplify 
effector T cell trafficking at sites of infection.

A return to homeostasis
The immune response must be tightly regulated to avoid 
excessive tissue damage after infection. By extension, 
it makes sense that the effects of febrile temperatures 
on the immune system are also temporally regulated  
during the resolution phase of inflammation, although 
a full picture of the underlying mechanisms is yet to 
emerge. One example is the rapid restoration of lympho
cyte trafficking in HEVs to basal levels within 6 hours 
following cessation of fever-range hyperthermia134,137,141. 
Normalization of HEVs is mediated by zinc-dependent 
metalloproteinases that cleave endothelial ICAM1 while 
sparing other trafficking molecules (such as PNAD)141, 
although it is not known whether heat stimulates 
the catalytic activity of these enzymes. In line with a 
potential anti-inflammatory role of hyperthermic tem-
peratures, heat shock (42 °C for 15 minutes) has been 
found to blunt leukocyte adhesion within vessels if  
administered 2 days before the intravascular delivery of 
the neutrophil attractant FMLP in vivo167.

Although febrile temperatures initially increase the 
production of pro-inflammatory cytokines by macro
phages at sites of inflammation59–61,95,96, there is also evi-
dence that thermal stress dampens cytokine synthesis 
once macrophages become activated. This sequence of 
events is analogous to natural fever, which often occurs 
after macrophages and other innate immune cells initially 
encounter PAMPs. In this regard, human monocyte-
derived macrophages with an activated phenotype pro-
duce less IL‑1β, IL‑6 and TNF when exposed to febrile 
temperatures than heat-inexperienced cells95,96,168–170. 
Heat reduces the transcription of pro-inflammatory 
cytokines through repressive activities of HSF1, together 
with diminished recruitment of NF‑κB to the promoter 
regions of cytokine-encoding genes, and also lowers 
cytokine mRNA stability171–173. Thermal treatment of 
LPS-activated macrophages also seems to dial down 

Box 2 | Thermal therapy and cancer

Thermal therapy is administered at a wide range of temperatures for cancer treatment. 
High temperature focal hyperthermia (>45 °C) and ablation therapy (>70 °C) directly 
destroy cancer cells and can indirectly boost antitumour immunity, whereas moderate 
hyperthermic therapy (38–42 °C) is mainly used in an adjuvant setting to target the tumour 
microenvironment206–208. Temperature effects on blood flow, vascular permeability, 
interstitial pressure and hypoxia are implicated in enhanced chemosensitization and 
radiosensitization in patients with cancer treated with hyperthermia209–215. Thermal 
therapy also holds promise for improving the delivery of chemotherapeutic drug cargo by 
heat-sensitive liposomes216. Recent preclinical studies suggest that the immunostimulatory 
activities of febrile temperatures can be exploited therapeutically in combination with 
promising cancer treatments. Emerging immunotherapies such as dendritic cell (DC) 
vaccination, adoptive transfer of ex vivo-activated T cells or checkpoint blockade inhibitors 
(for example, drugs targeting cytotoxic T lymphocyte protein 4 (CTLA4) and programmed 
cell death protein 1 (PD1)) have shown benefit in generating antitumour immunity217–220. 
Notably, the efficacy of DC vaccines in patients with advanced melanomas or mouse 
tumour models is substantially improved with the use of hyperthermia as an adjuvant 
therapy221,222. Moreover, fever-range thermal therapy overcomes impediments to 
trafficking in mouse tumour vessels through an interleukin‑6 (IL‑6) trans-signalling 
mechanism that involves IL-6 binding to soluble IL-6 receptor subunit-α (IL-6Rα) and 
heat-induced gp130 on tumour endothelial cells. This, in turn, stimulates E‑selectin- and 
P‑selectin-dependent rolling and intracellular adhesion molecule 1 (ICAM1)-dependent 
firm adhesion of adoptively transferred cytotoxic CD8+ T cells (see the figure). Increased 
T cell entry into tumours is further linked to improved antitumour immunity and delayed 
tumour growth142. The antitumour immune effects of IL‑6 that are induced by thermal 
therapy are counterintuitive in light of substantial evidence that IL‑6 signalling exerts 
pro-tumorigenic activities by stimulating the survival and proliferation of tumour cells,  
as well as angiogenesis155,223. Together, these studies highlight a unique role for thermal 
therapy in modulating the tumour microenvironment that can be co‑opted to increase 
the efficacy of diverse anticancer therapies.
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inflammation by inhibiting the release of the inflamma-
tory DAMP high mobility group protein B1 (HMGB1), 
which is a ligand for TLR2 and TLR4 (REFS 170,174). 
Inhibition of HMGB1 release prevents the subse-
quent activation of NF‑κB, which controls the synthe-
sis of pro-inflammatory cytokines in innate immune 
cells169,170,174. The idea that heat can dampen an ongoing 
pro-inflammatory condition in vivo has recently been 
tested in a mouse model of collagen-induced arthritis175. 
Mice exposed to fever-range hyperthermia had less joint 
damage, which was correlated with a reduction in serum 
TNF levels and increased IL‑10 production in inflamed 
joints. Collectively, these findings suggest that strategic 
temperature shifts contribute to a biochemical negative 
feedback loop that protects tissues against damage from 
excessive cytokine release following infection.

Thermogenesis and adrenergic signalling
Neural components of the thermoregulatory system  
continuously monitor temperature changes throughout 
the body and initiate integrated responses that either 
increase internal heat content (for example, through 
thermogenesis in brown adipose tissue) or increase the 
dissipation of heat (for example, following intense exer-
cise)8. Given the homeostatic importance of thermo
regulation it is all the more remarkable that fever has 
been so long maintained in evolution, as natural thermo
regulatory signals must be suppressed in order to increase 
body temperature. Although the examples discussed 
above demonstrate that the immune system is respon-
sive to elevated temperatures, new studies have revealed 
that this system is also highly sensitive to the metabolic 
stress that is associated with thermogenesis. Emerging 
evidence strongly supports a direct role for cold stress-
induced noradrenaline production and the interaction of 
noradrenaline with β‑adrenergic receptors on immune 
cells as a major mechanism for immune modulation 
by environmental cold stress. It is well established that 
noradrenaline-driven stimulation of β‑adrenergic recep-
tors is crucial for the release of additional heat from 
mitochondria in brown adipose tissue during cold 
stress to maintain a normal core body temperature176,177. 
Moreover, the ubiquitous presence of β‑adrenergic recep-
tors has been observed on the surface of immune cells, 
and there is a growing appreciation of the functional con-
sequences of signalling through these receptors178–180. Even 
more recent studies have demonstrated a crucial role for 
β‑adrenergic receptor signalling by noradrenaline for the  
control of lymphocyte egress from lymph nodes and  
the modulation of cytokine production and proliferation 
in CD8+ memory T cells181,182.

These parallel lines of research have now been joined 
in studies that demonstrate marked alterations in immune 
cell activity during cold stress. Nguyen et al.183 discov-
ered that cold stress stimulates IL‑4- and IL‑13‑driven 
differentiation of macrophages in brown adipose tissue 
towards an ‘alternative activation’ programme that leads 
to their production of noradrenaline (FIG. 5a). Surprisingly, 
data obtained using various knockout mice (deficient in 
IL‑4, IL‑13, STAT6 or IL‑4 receptor) revealed that the 
noradrenaline produced by these macrophages is crucial 

for maintaining sufficient thermogenesis in the face of 
cold stress183,184. Kokolus et al.184 further demonstrated 
that DCs from cold-stressed mice that have a normal 
body temperature owing to increased thermogenesis 
exhibit a reduced ability to stimulate T cells. Cold stress is 
also associated with accelerated tumour growth in murine 
models, which reflects enhanced tumour cell survival 
pathways and a shifted balance towards an immuno
suppressive environment; this environment is associated 
with increased numbers of myeloid-derived suppressor 
cells and intratumoural regulatory T cells together with 
reduced numbers of CD8+ effector T cells184–186 (FIG. 5b).

An intriguing aspect is that the presence of cancer 
creates a notable heat-seeking behavioural response in 
animals184. These data support the conclusions drawn by 
Romanovsky and colleagues who have contended that 
endothermic animals, including humans, exhibit heat-
seeking behaviour even before other fever-generating 
symptoms occur9,10. Findings in this exciting area contrib-
ute additional molecular detail to the fundamental role of 
temperature stress in influencing the functional balance 
between both arms of the immune system187,188.

Concluding remarks and future directions
The evolutionary conservation of the fever response 
over millions of years is in line with its protective role: 
the survival benefit conferred on the host outweighs the 
metabolic cost of elevating core body temperatures dur-
ing infection. Cellular components of the immune system 
have emerged as central components that actively drive 
fever induction in addition to serving as thermally sensi-
tive effectors. Moreover, the complexity of the molecular 
pathways that coordinate a febrile response is mirrored 
by the diverse cell types that are affected by hyperthermic 
temperatures: these include DCs, macrophages, NK cells, 
neutrophils, B cells, T cells and vascular endothelial cells. 
The picture that emerges is one in which febrile tempera-
tures serve as a systemic alert system that broadly pro-
motes immune surveillance during challenge by invading 
pathogens. Furthermore, mechanistic insight into the 
immune-protective nature of fever has opened up new 
avenues to exploit the immunostimulatory activities of 
thermal stress in the context of cancer therapy.

Fundamental questions remain regarding the nature 
of the temperature-sensing machinery that triggers 
changes in immune cell behaviour. HSF1‑regulated 
HSPs are strong candidates in view of their rapid induc-
tion even at the relatively modest temperature elevation 
(ΔT ~1–4 °C) that accompanies fever26,122,189–191. Also 
intriguing are reports that HSF1 regulates additional 
genes that are relevant to the induction and/or effector 
phases of fever, including IL6 and COX2 (REFS 166,192). 
Notably, HSP90 and the JAK1–JAK2–STAT3 signalling 
axis triggered by IL‑6 are participants in a feedforward 
loop: IL‑6–STAT3 signalling stimulates HSP90 produc-
tion, and JAK2 and STAT3 are established client proteins 
that are chaperoned by HSP90 (REFS 193–197). Thus, it 
is tempting to speculate that the induction of HSP90 or 
other HSPs by febrile temperatures lowers the threshold 
for IL‑6 signalling. Additionally, a class of temperature-
sensing transient receptor potential (TRP) cation channel 
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proteins expressed on immune cells and endothelial cells 
are likely to coordinate responses to febrile temperatures 
and inflammatory cytokines, such as IL‑6 and lipid medi-
ators26,198,199. There are also unanswered questions regard-
ing the mechanisms that underlie the spatial regulation by 
IL‑6 during fever induction and lymphocyte trafficking 
in HEVs. Although brain endothelial cells and HECs are 
predicted to be the main targets of IL‑6, the contributions 
of intermediary cells have not been excluded.

Another unanswered question is whether febrile 
temperatures mobilize innate and adaptive immune cells 
to sites of infection. Observations that the administra-
tion of fever-range hyperthermia is effective in boost-
ing E‑selectin-, P‑selectin- and ICAM1‑dependent 
trafficking of cytotoxic CD8+ T cells in tumour tissues142 
raise the strong possibility that similar mechanisms are 
triggered in infected tissues during fever. Similarly to 
CXCL8, several inflammatory chemokines that recruit 
NK cells, CD4+ and CD8+ T cells, and monocytes (such 
as CXCL9, CXCL10, CXCL11 and CXCL12), contain 
putative HSF1‑binding sites within their gene promoters 
and, consequently, may be induced by thermal stress26. 
An important caveat is that information regarding the 
cytokine circuitry (for example, IL-1, IL‑6 and RANKL) 
leading to fever, as well as the impact of temperature 
on immune function, is mostly based on experimental 
models using LPS or fever-range hyperthermia as surro
gates for pathogen-induced fever. Although these stud-
ies provide insight into the mechanistic underpinnings 
of immune regulation by temperatures within the febrile 
range, lessons learned from studies of thermogenesis183–185 
indicate that overall temperature sensing (cold or hot) in  
the absence of disease can have unexpected outcomes 
in innate and adaptive immunity. The next frontier will 
be to establish whether the same mechanisms that have 
been identified during the challenge of healthy animals 
with LPS or fever-range hyperthermia also operate  
during febrile responses to pathogens.

Figure 5 | Cold stress stimulates nerve-driven modulation of thermogenesis  
and antitumour immunity.  a | Exposure to cold stress drives the release of 
neurotransmitters, such as noradrenaline, by neurons. This initiates the interleukin‑4 
(IL‑4)- and IL‑13‑driven ‘alternative activation’ programme of differentiation in 
macrophages, resulting in the additional production of noradrenaline, which stimulates 
β‑adrenergic receptors (βARs) that are expressed on brown adipocytes, thus driving 
thermogenesis183. b | Cold stress in tumour-bearing mice maintained at standard  
housing temperatures (20–26 °C) tilts the balance towards an immunosuppressive  
local tumour microenvironment. This is characterized by a substantial increase  
in the number of intratumoural regulatory T (T

Reg
) cells, and a concomitant decrease in 

the number of CD8+ T cells when compared with tumours that develop in mice housed  
under thermoneutral ambient temperature (30–31 °C)184. Tumour cell survival and  
tumour growth are also accelerated by cold stress184–186.
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