Food Waste Digestion at East Bay Municipal Utility District, Oakland, CA

Natalie Sierra / Ned Beecher
Overview: EBMUD food waste digestion

- EBMUD treats wastewater from 7 cities
- Food waste, FOG, and other high-strength wastes are trucked in and co-digested with primary & secondary wastewater solids
- In 2010, at the EBMUD wastewater facility
 - 90% of electricity needs provided from EBMUD biogas
 - Almost $3 million saved in electric power demand
- Winter 2012: EBMUD wastewater facility became a net electricity producer, (new turbine went online).
- EBMUD also has solar & hydropower installations

<table>
<thead>
<tr>
<th>Power Source</th>
<th>Produced (MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydropower generated</td>
<td>144,818</td>
</tr>
<tr>
<td>Solar power generated</td>
<td>640</td>
</tr>
<tr>
<td>Biogas power generated</td>
<td>36,900</td>
</tr>
<tr>
<td>Total renewable energy</td>
<td>182,358</td>
</tr>
<tr>
<td>Power purchased from grid</td>
<td>81,500</td>
</tr>
<tr>
<td>Net renewable energy</td>
<td>100,858</td>
</tr>
</tbody>
</table>
EBMUD Pretreatment Process

Patented Process
Photographs from EBMUD Presentation at www.bacwa.org
Key for rapid, thorough digestion: consistent pulped waste
EPA-Funded Research on Food Waste Digestion at East Bay MUD

• Evaluation of food waste digestion vs. municipal ww solids digestion
• Bench scale
• Evaluated:
 – Minimum MCRT
 – VS & COD loading
 – VS destruction
 – CH₄ production rates
 – Process Stability
 – Meso & thermo AD operating temperatures

U.S. ENVIRONMENTAL PROTECTION AGENCY REGION 9

"Anaerobic Digestion of Food Waste"
Funding Opportunity No. EPA-R9-WST-06-004

FINAL REPORT
March 2008
Prepared by:
East Bay Municipal Utility District

Donald M.D. Gray (Gabb)
PRINCIPAL INVESTIGATOR

Paul Suto
PROJECT MANAGER

Cara Peck
EPA PROJECT MANAGER
Turning Food Waste into Energy at the East Bay Municipal Utility District (EBMUD)

EBMUD Helps Mitigate Climate Change Through Anaerobic Digestion

Fact: Food Waste Contributes to Climate Change

Food waste is one of the least recovered materials in the municipal solid waste stream and is one of the most important materials to divert from landfills. Food that is disposed of in landfills decomposes to create methane, a potent greenhouse gas that contributes to climate change.

- More about the importance of diverting food waste from landfills

Fact: Food Waste Can Be Transformed Into A Natural Fertilizer

Of the less than 3% of food waste recovered from the waste stream, composting is the prominent diversion method. Composting, either in your backyard or in a commercial facility, creates a natural fertilizer with many beneficial qualities.

- More information on composting

Fact: Food Waste Can Be Used to Generate Renewable Energy

Join the Discussion
Greenversations Question:

http://www.epa.gov/region9/waste/features/foodtoenergy/index.html
Findings

Compared to wastewater solids, food waste...

- produces as much or more energy / ton of processed material fed into digesters
- Food waste digestion happens at a quicker rate
- VSD = 70 to 80% (compared to ~50 – 60% for wastewater solids)
- Food waste AD produces ~1/2 the residuals (by weight)
- MCRT of 15 days for food waste maximizes CH_4 concentration (65 – 70%), but 10 days is OK too
- In short: food waste is more readily biodegradable

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Food Waste 15-day MCRT AVG (Range)</th>
<th>Food Waste 10-day MCRT AVG (Range)</th>
<th>Municipal Wastewater Solids 15-day MCRT AVG (Range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane Production Rate</td>
<td>ft3/dry ton applieda</td>
<td>13,300 (9,800 – 17,000)</td>
<td>9,500 (6,600 – 14,400)</td>
<td>10,000 (7,500 – 12,600)</td>
</tr>
<tr>
<td></td>
<td>ft3/wet ton deliveredb</td>
<td>5,300 (2,500 – 4,300)</td>
<td>2,400 (1,700 – 3,600)</td>
<td>NAd</td>
</tr>
<tr>
<td></td>
<td>m3/dry metric ton applieda</td>
<td>420 (200 – 530)</td>
<td>360 (200 – 450)</td>
<td>310 (230 – 390)</td>
</tr>
<tr>
<td></td>
<td>m3/wet metric ton deliveredb</td>
<td>100 (75 – 135)</td>
<td>75 (50 – 110)</td>
<td>NAd</td>
</tr>
<tr>
<td></td>
<td>ft3/day/1,000 ft3 digester volume</td>
<td>2,300 (1,100 – 3,200)</td>
<td>2,600 (1,800 – 3,300)</td>
<td>750 (550 – 930)</td>
</tr>
<tr>
<td>Electricity Production Ratec</td>
<td>kWh/dry ton applieda</td>
<td>990 (730 – 1,300)</td>
<td>710 (490 – 1,080)</td>
<td>750 (560 – 940)</td>
</tr>
<tr>
<td></td>
<td>kWh/wet ton deliveredb</td>
<td>250 (190 – 320)</td>
<td>180 (130 – 270)</td>
<td>NAd</td>
</tr>
<tr>
<td></td>
<td>kWh/dry metric ton applieda</td>
<td>1,100 (800 – 1,400)</td>
<td>780 (540 – 1,190)</td>
<td>830 (620 – 1,040)</td>
</tr>
<tr>
<td></td>
<td>kWh/wet metric ton deliveredb</td>
<td>280 (200 – 350)</td>
<td>200 (140 – 300)</td>
<td>NAd</td>
</tr>
<tr>
<td></td>
<td>kWh per year/1,000 ft3 digester volume</td>
<td>43,700 (21,300 – 62,100)</td>
<td>57,000 (43,600 – 73,700)</td>
<td>14,600 (10,700 – 18,000)</td>
</tr>
<tr>
<td>Household Energy Equivalent Ratee</td>
<td>households/year/100 tons/day</td>
<td>1,100 (800 – 1,400)</td>
<td>800 (550 – 1,200)</td>
<td>NAd</td>
</tr>
<tr>
<td></td>
<td>households/year/100 metric tons/day</td>
<td>1,200 (880 – 1,500)</td>
<td>880 (600 – 1,300)</td>
<td>NAd</td>
</tr>
<tr>
<td></td>
<td>households per year/1,000 ft3 digester volume</td>
<td>7.5 (3.6 – 10.3)</td>
<td>8.4 (5.8 – 12.3)</td>
<td>2.4 (1.8 – 3)</td>
</tr>
</tbody>
</table>

Notes:
1. Dry ton applied refers to food waste solids applied to the digesters after processing a wet ton delivered load.
2. Wet ton delivered refers to food waste tonnage (including water) delivered by the hauler prior to processing.
3. Calculated based on 1 ft3 CH_4 = 1,000 BTUs and 13,400 BTUs = 1 kWh.
4. Calculated based on 2001 EPA residential energy survey for CA where average household energy use is 6,000 kWh annually.
5. Based on data from previous EBMUD bench-scale pilot study. Digesters were fed thickened waste activated sludge and screened primary sludge.
6. Data is not typical of municipal wastewater solids feeding to digesters.
7. For annual data, 100 ton/day food waste assumes processing at 5 days per week, 52 weeks per year.
8. For annual data, it is assumed municipal wastewater solids loading occurs 5 days per week, 52 weeks per year.
9. A typical food waste load delivered weighs approximately 20 tons, and has a 28% TS content.
10. Approximately 10% of the delivered food waste as total solids (TS) mass is discharged in reject stream.
11. Data range presented is from stable digester operating periods for both mesophilic and thermophilic digesters.
12. AVG = Average, NA = Not Applicable.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Food Waste Pulp</th>
<th>Wastewater Solids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile Solids in Feed (%)</td>
<td>85–90</td>
<td>70–80</td>
</tr>
<tr>
<td>Volatile Solids Loading (lbs/ft³–day)</td>
<td>0.60 +</td>
<td>0.20 max</td>
</tr>
<tr>
<td>COD Loading (lbs/ft³–day)</td>
<td>1.25 +</td>
<td>0.06–0.30</td>
</tr>
<tr>
<td>Total Solid Fed (%)</td>
<td>10 +</td>
<td>4</td>
</tr>
<tr>
<td>Volatile Solids Reduction (%)</td>
<td>80</td>
<td>56</td>
</tr>
<tr>
<td>Hydraulic Detention Time (days)</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Methane Gas Produced (m³/ton)</td>
<td>367</td>
<td>120</td>
</tr>
<tr>
<td>Gas Produced (liters/liter of digested volume)</td>
<td>58</td>
<td>17</td>
</tr>
<tr>
<td>Biosolids Produced (lbs/lbs fed)</td>
<td>0.28</td>
<td>0.55</td>
</tr>
</tbody>
</table>
TIPPING POINT: Resource Center for Converting Wastes into Products and Energy

(After D. Parry, CDM)

Wastewater

Fuel

Reclaimed Water

Energy (Heat, Power)

Biosolids (Fertilizer)

Resource Center

Food Waste

Other Organic Waste

FOG