IT’S ALL IN THE MIX – DESIGN OF NEW MIXERS FOR ANAEROBIC SLUDGE DIGESTION FACILITIES AT ST. JOHNSBURY WWTF

Meredith Zona, P.E., LEED AP BD+C, Stantec
Naomi Johnson, P.E., Dufresne Group
James Brimblecombe, Utility Partners

NEBRA ANNUAL CONFERENCE
OCTOBER 26, 2017

Image Source: Google Maps, 2012
1 - Introduction to St. Johnsbury WWTF
2 – Existing Digester Facilities
3 – 2013 Digester Mixer Evaluation Study
4 – Energy Evaluation of Digestion Process
5 – Digester Mixer Design Considerations
6 – Current Status
1 - INTRODUCTION TO ST. JOHNSBURY WWTF
TOWN OF ST. JOHNSBURY, VT
Pop. 7,600 2010 Census

Image Sources: Google Maps, 2017
PLANT CHARACTERISTICS

- Secondary Treatment Plant
- Owned by Town of St. Johnsbury
- Operated by Utility Partners
- Treats St. Johnsbury, VT Wastewater
- Handles Water Trt. Plant Residuals
- Last Major Upgrade 1988-1990
- Discharges to Passumpsic River
TREATMENT PROCESS COMPONENTS – LIQUID TRAIN

1. Influent Lift Pumps
2. Preliminary Treatment
3. Primary Settling
4. Rotating Biological Contactors
5. Final Settling
6. Chlorination / Dechlorination

Image Source: Google Maps, 2017
TREATMENT PROCESS COMPONENTS
– SOLIDS TRAIN

1. Primary and Secondary Sludge, Scum, and Septage
2. Primary Digester
 • Anaerobic Digestion
3. Secondary Digester
 • Settling
 • Gas Holder Tank
4. Sludge Storage Tank
5. Land Application

Image Source: Google Maps, 2017
INFLUENT PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>2008 Design</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Daily Flow (MGD)</td>
<td>1.6</td>
<td>0.74</td>
</tr>
<tr>
<td>Peak Daily Flow (MGD)</td>
<td>6.9</td>
<td>6.9</td>
</tr>
<tr>
<td>BOD (mg/L)</td>
<td>251</td>
<td>271</td>
</tr>
<tr>
<td>TSS (mg/L)</td>
<td>296</td>
<td>298</td>
</tr>
</tbody>
</table>
2 – EXISTING DIGESTER FACILITIES
PRIMARY DIGESTER

- 45' Diameter Dual-Deck Steel Structure
- Dome Surface Fixed to Concrete Tank Walls
- Gas Mixing System Converts Volatile Organic Solids to Methane Gas
- Gas Mixing System in Constant Use
SECONDARY DIGESTER

- 45' Diameter Floating Steel Cover
- Cover Rides Up & Down on Gas Bubble
- Steel Rollers & Spiral Guides Align Cover
- Digester Serves as Settling and Gas Holding Tank
- Gas Mixing System Used Infrequently
EXISTING GAS MIXING/HEATING SYSTEM
EXISTING GAS MIXING/HEATING SYSTEM

- Large Gas Bubble Mixing System
- Gas Drawn Off Center Well of Secondary Digester
- Gas Cleaned, Compressed, & Returned to Three, 24" Diameter Open-Ended Heating/Mixing Tubes
- Heat Exchanger Mounted on Inside of Tubes
DIGESTER SIZE & OPERATION

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digester Tank Dimensions, Diam X Ht</td>
<td>45’ x 21’</td>
</tr>
<tr>
<td>Tank Volume, Each, cf</td>
<td>31,620</td>
</tr>
<tr>
<td>Type of Operation</td>
<td>Mesophilic</td>
</tr>
<tr>
<td>Internal Temperature, °F</td>
<td>95</td>
</tr>
</tbody>
</table>
DIGESTER OPERATING CONDITIONS

<table>
<thead>
<tr>
<th></th>
<th>Design</th>
<th>2014 Avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sludge Loading, lbs/day</td>
<td>3,846</td>
<td>1,874</td>
</tr>
<tr>
<td>Volatile Solids (VS) In, %</td>
<td>70</td>
<td>62</td>
</tr>
<tr>
<td>VS Loading to Primary Digester, lbs VS/1000 cf/day</td>
<td>85</td>
<td>38</td>
</tr>
<tr>
<td>Tank Detention Time, Days</td>
<td>16</td>
<td>37</td>
</tr>
<tr>
<td>Estimated VS Reduction, %</td>
<td>55</td>
<td>60</td>
</tr>
</tbody>
</table>
Reasons for Evaluation Study

• Mixing Equipment >22 Years Old
• Poor Mixing Characteristics
• Solids Build-up in Tank
• Water Residuals Impact
• Tanks Taken Out of Service Frequently
• Gas Mixing Not Comparable to Current Mixing Systems
Mixers Evaluated

- Linear Motion Mixer
- Low Speed Mechanical Mixer
- Rooftop Mounted Internal Draft Tube Mixer, With and Without Sludge Heat Exchanger
- External Draft Tube Mixer, With and Without Sludge Heat Exchanger
Mixer Cost Summary

<table>
<thead>
<tr>
<th>ALTERNATIVE</th>
<th>CONSTRUCTION COST</th>
<th>ANNUAL O & M COST</th>
<th>PRESENT WORTH COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINEAR MOTION MIXER</td>
<td>$1,344,800</td>
<td>$20,300</td>
<td>$1,598,000</td>
</tr>
<tr>
<td>LOW SPEED MIXER</td>
<td>$1,234,400</td>
<td>$22,500</td>
<td>$1,515,000</td>
</tr>
<tr>
<td>INTERNAL DRAFT TUBE MIXER</td>
<td>$1,179,800</td>
<td>$21,900</td>
<td>$1,453,000</td>
</tr>
<tr>
<td>INTERNAL ROOFTOP DRAFT TUBE MIXER WITH INTEGRAL HEAT EXCHANGER</td>
<td>$526,500</td>
<td>$15,200</td>
<td>$716,000</td>
</tr>
<tr>
<td>EXTERNAL DRAFT TUBE MIXER</td>
<td>$1,569,800</td>
<td>$29,100</td>
<td>$1,932,000</td>
</tr>
<tr>
<td>EXTERNAL DRAFT TUBE MIXER WITH INTEGRAL HEAT EXCHANGER</td>
<td>$1,003,500</td>
<td>$23,300</td>
<td>$1,294,000</td>
</tr>
</tbody>
</table>
4 – Energy Evaluation of Digestion Process
2015 Digestion Energy Evaluation Report

Investigated

• Digester Gas Production/Use
• Increased Digester Gas Production Alternatives
• Additional Energy Efficiency Improvement Alternatives
• Digester Gas Use for Energy Production
<table>
<thead>
<tr>
<th></th>
<th>%TS (in)</th>
<th>%VS (in)</th>
<th>%VS (out)</th>
<th>%VSR</th>
<th>Sludge Loading (in gal)</th>
<th>SRT (days)</th>
<th>VS Destroyed (lbs)</th>
<th>VS Loading (lbs/10³ ft³)</th>
<th>Gas Production (ft³/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>2.5</td>
<td>60</td>
<td>43</td>
<td>50</td>
<td>5849</td>
<td>1196</td>
<td>40</td>
<td>367</td>
<td>23</td>
</tr>
<tr>
<td>February</td>
<td>2.9</td>
<td>70</td>
<td>41</td>
<td>70</td>
<td>6265</td>
<td>1516</td>
<td>38</td>
<td>768</td>
<td>35</td>
</tr>
<tr>
<td>March</td>
<td>4.6</td>
<td>64</td>
<td>37</td>
<td>67</td>
<td>4533</td>
<td>1721</td>
<td>52</td>
<td>760</td>
<td>36</td>
</tr>
<tr>
<td>April</td>
<td>1.9</td>
<td>54</td>
<td>39</td>
<td>46</td>
<td>11067</td>
<td>1709</td>
<td>21</td>
<td>433</td>
<td>30</td>
</tr>
<tr>
<td>May</td>
<td>3.2</td>
<td>53</td>
<td>40</td>
<td>41</td>
<td>5559</td>
<td>1461</td>
<td>43</td>
<td>326</td>
<td>25</td>
</tr>
<tr>
<td>June</td>
<td>3.2</td>
<td>51</td>
<td>39</td>
<td>39</td>
<td>6730</td>
<td>1769</td>
<td>35</td>
<td>358</td>
<td>29</td>
</tr>
<tr>
<td>July</td>
<td>3.2</td>
<td>62</td>
<td>42</td>
<td>56</td>
<td>7150</td>
<td>1880</td>
<td>33</td>
<td>668</td>
<td>38</td>
</tr>
<tr>
<td>August</td>
<td>4.4</td>
<td>57</td>
<td>37</td>
<td>56</td>
<td>6347</td>
<td>2304</td>
<td>37</td>
<td>753</td>
<td>43</td>
</tr>
<tr>
<td>September</td>
<td>3.8</td>
<td>69</td>
<td>38</td>
<td>72</td>
<td>7893</td>
<td>2470</td>
<td>30</td>
<td>1272</td>
<td>56</td>
</tr>
<tr>
<td>October</td>
<td>4.1</td>
<td>68</td>
<td>38</td>
<td>71</td>
<td>9006</td>
<td>3044</td>
<td>26</td>
<td>1517</td>
<td>67</td>
</tr>
<tr>
<td>November</td>
<td>2.2</td>
<td>71</td>
<td>39</td>
<td>74</td>
<td>6239</td>
<td>1119</td>
<td>38</td>
<td>605</td>
<td>26</td>
</tr>
<tr>
<td>December</td>
<td>6.5</td>
<td>69</td>
<td>37</td>
<td>74</td>
<td>4239</td>
<td>2299</td>
<td>56</td>
<td>1203</td>
<td>52</td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>3.5</td>
<td>62</td>
<td>39</td>
<td>60</td>
<td>6740</td>
<td>1874</td>
<td>37</td>
<td>752</td>
<td>38</td>
<td>11663</td>
</tr>
<tr>
<td>Minimum</td>
<td>1.9</td>
<td>51</td>
<td>37</td>
<td>39</td>
<td>4239</td>
<td>1119</td>
<td>21</td>
<td>326</td>
<td>23</td>
<td>5055</td>
</tr>
<tr>
<td>Maximum</td>
<td>6.5</td>
<td>71</td>
<td>43</td>
<td>74</td>
<td>11067</td>
<td>3044</td>
<td>56</td>
<td>1517</td>
<td>67</td>
<td>23513</td>
</tr>
</tbody>
</table>
Increased Gas Production Alternatives

- Improve Mixing
- Add More Septage, Food Waste, Oil & Grease
- Maintain 4 – 6% TS Feed Daily
- Add/Withdraw Daily Similar Amount of Sludge
Energy Efficiency Improvements

• Improve Digester Insulation
• Replace Digester Boiler
• Install Dual-Fuel Burner in Boiler for Domestic Heating/Hot Water
Digester Gas Use for Energy Production

- Use Digester Gas to Generate Electricity via Combined Heat & Power System
- Essex Junction, VT, & Fairhaven, MA
- Possible Future Option for St. Johnsbury
5 – Digester Mixer Design Considerations
Digester Mixer Design Considerations

- Mixer Components
- Mixer Design Criteria
- Structural Analysis of Covers
- Heat Exchanger Size on Mixer
- Digester Cover Modifications
- Internal Piping/Piping Support Modifications
- Taking Digesters Offline
Mixer Components

[Diagram of Mixer Components]
Mixer Design Criteria

- Propeller Diameter: 24”
- Motor Size: 7.5 hp
- Pumping Capacity: 9,000 gpm
- Draft Tube Diameters: 27” & 28.5”
- Digester Turnover Time: 30 minutes
- Heat Exchange Transfer: 360,000 BTU/hr
- Warranty: 5 yrs.
Structural Analysis of Covers

- Support Added Weight of Mixer
- Complete Structural Analysis of Covers for Added Load
Heat Exchanger Size

- Larger Heat Exchanger
- More Capital Cost
- More Efficient Heat Transfer
Cover Modifications

- New Pipe Penetrations
- New Cover Mounting Plates for Mixers
- Attic Insulation
- Floating Cover Ballast Adjustment
Piping Changes

- Hot Water Piping & Pipe Supports
- Gas Piping, Including Flexible Piping
Taking Digesters Off-Line

- Work Plan to Take Down 1 Digester at a Time
- Clean Digester
- Remove Equipment
- Install Equipment
- Start Up Digester
- Repeat Sequence for 2nd Digester
6 – Current Status

• Design/Bidding Complete
• Construction Start Date – 9/5/17
• Construction End Date – 9/30/18
• Engineer’s Estimate for Digester Mixer-Related Improvements - $1,290,000
QUESTIONS?