Reducing Plant-Available Phosphorus in Agricultural Soils Using Water Treatment Residuals:
Current Field Trials

By Michael Potash, RMI
Andrew Carpenter and Leigh Dorsey, Northern Tilth

2017 Northeast Residuals & Biosolids Conference
Burlington, VT
Soil Phosphorus

- Environmentally significant
- Plant-Available

Often complexed with aluminum, iron and/or calcium

solution
labile
stable

From Craig Cogger, WSU, then haphazardly adulterated by Northern Tilth

2017 Northeast Residuals & Biosolids Conference
Matching Crop Needs with Biosolids N & P

- Anaerobically digested biosolids with 5.4% N, 1% NH\textsubscript{4}-N, 2.1% total P, and 24% solids content

- N \(\rightarrow 18\#\) plant-available N/wet ton (steady state for repeated use with 30%/10%/10%/5% Org N mineralization in Years 1, 2, 3 and 4, respectively)

- P \(\rightarrow 2.1\% \times 2.291 \times 24\%\) solids \(\rightarrow 23\#\) P\textsubscript{2}O\textsubscript{5}/wet ton

- Using a yield goal of 18 tons of silage corn per acre
 - 162#/acre of nitrogen
 - 90#/acre of P\textsubscript{2}O\textsubscript{5}
 - crop needs a P\textsubscript{2}O\textsubscript{5}:N ratio of 0.55:1
 - These biosolids provide a P\textsubscript{2}O\textsubscript{5}:N ratio 1.3:1

- At a steady state, if biosolids is primary source of N, this corn field is receiving approximately 180#/acre of P\textsubscript{2}O\textsubscript{5} each year (if the P in the biosolids is 100% available)

- Applying at agronomic rates for P would cut biosolids applications in half

While manure and biosolids are an obvious fit for boosting soil fertility while improving soil health, overuse of any of these materials can increase soil phosphorus levels to optimum levels. P:N levels in chicken manure can be especially high.

2017 Northeast Residuals & Biosolids Conference
Water Treatment Residuals

- Semi-solid residuals generated during the treatment of drinking water from surface water sources
- Alum-based WTRs have been proven effective in sorbing P in a variety of settings, and have the potential to reduce P risks to surface water in agricultural settings
 - High aluminum and iron content of alum-based WTRs help to sorb/bind P

2017 Northeast Residuals & Biosolids Conference
• WTRs are low in macro-nutrients and organic matter content when compared with other commonly used soil amendments.

• Total aluminum content of alum-based WTRs is very high.

• The lack of any obvious nutrient or organic matter benefit is part of the reason that the recycling of WTRs as a soil amendment is slow to catch on.
Current Focus on using WTRs in Sensitive Areas

- Completed initial WTR field trials in 2014 that indicated that 120 – 240 tons per acre was effective in reducing plant-available P in high phosphorus agricultural fields.

- These application rates are too high to use as field-wide applications

- Makes more sense to focus on the most sensitive areas

- The focus of the current trials is to use WTRs in sensitive areas where it can have the most benefit to surface water quality.
NH and VT Field Trials

- Northern Tilth, in partnership with RMI, received an NRCS – CIG grant to further research the effectiveness of using WTRs to reduce the risk of P run-off.

- Four corn silage fields were selected for trials from three farms, two farms in NH and one in VT.

- All fields had a long history of using manure and/or biosolids as primary sources of soil fertility.
Brief Methodology

- Plots were selected in environmentally sensitive areas (generally close to surface waters)
- 9 plots 70’ x90’ were set up on each field and referenced by GPS
- Plots were split into sets of 3 (for replication) and WTRs were applied at rates ranging from 25 to 75 dry tons per acre in the plots (95 to 250 wet tons per acre)
- For the next two cropping years each plot received the same fertilizer treatment from the farmer; no changes in fertilizer regimen from the remainder of the fields
- Soil samples were taken for metals, nutrients, and PSNT annually
- Yield and tissue analyses were conducted in each plot
Spreading WTRs in Field Plots
Corn Growth
Mid-Season and at Harvest
Harvest – Yield and Tissue Analysis
Lot of data to crunch when completed

For field plots

- Total P, Al, Fe (total regulated metals for VT field plots)
- Modified Morgan, Mehlich III, and Oxalate Extractable P, Al and Fe
 - Which will provide data needed to determine Phosphorus Saturation Index (PSI) and Phosphorus Saturation Ratio (PSR)
- Standard Soil Fertility testing results (Cornell Soil Health Testing Results for the VT field plots)
- Crop yields and tissue analysis for two field seasons

Complimentary Soil incubations will focus on the phosphorus, aluminum and iron by all of these extractions only
Modified Morgan Phosphorus - Soil Incubations

Soil P by Modified Morgan Extraction - New Hampshire Plots
Harvest Data

Corn Yields on WTR Field Plots - Year 1

- **Control**
- **Low Application Rate**
- **High Application Rate**

Yield in tons/acre

- NH MD
- NH HV
- VT ES
- VT WI

Legend:
Concluding Remarks

Manure and biosolids are excellent sources of plant nutrients and organic matter, but application rates should take into account the nutrient balance in these soil amendments.

In particular, the ratio of phosphorus: plant-available nitrogen is higher in poop than the ratio taken up by most crops, leading to a potential excessive of phosphorus in soils when applying these materials in accordance with nitrogen uptake rates of the crops.

Water treatment residuals can play an important role in helping protect water quality in agricultural areas with high soil P levels.