Initial Co-Digestion Feasibility Study at the Rockland WWTP

October 17, 2019 – Springfield, MA
Agenda

- Definition and Motivation
- Planning Considerations
- Rockland, MA Case Study
Rockland, MA WRRF

- Managed by Town of Rockland Sewer Dept (SUEZ contract ops)
- Avg. Annual Flow: 2.5 MGD
- One of six WRRFs with AD in Mass
MassCEC Organics-to-Energy Program

• Supports the development of facilities that convert source-separated organic materials and sewage sludge into heat, electricity and/or compressed natural gas

• Published >10 studies since program creation in 2012

• Three stages of funding
 • **Feasibility Study** Max Grant Level: $60K
 • Technical Study
 • Implementation and Pilot Project
Co-digestion opportunities at smaller WRRFs

Electricity generation from WRRF sludge with MAD + ICE

2.5 MGD / 2.5 DTPD +65 kW

<table>
<thead>
<tr>
<th>WRRF Electricity Usage, kWh/MG</th>
<th>Remaining Electricity Demand (Annual Avg), kW</th>
<th>Trucks /d to achieve 100% Elec. Neutrality*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,200</td>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td>1,500</td>
<td>95</td>
<td>1.5</td>
</tr>
<tr>
<td>1,800</td>
<td>125</td>
<td>2</td>
</tr>
</tbody>
</table>

* Assumes 6k gallon tanker truck, FOG liquid waste at 5% TS
Co-digestion opportunities at smaller WRRFs

Electricity generation from WRRF sludge with MAD + ICE

2.5 MGD / 2.5 DTPD

+65 kW

<table>
<thead>
<tr>
<th>WRRF Electricity Usage, kWh/MG</th>
<th>Remaining Electricity Demand (Annual Avg), kW</th>
<th>Trucks /d to achieve 100% Elec. Neutrality*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,200</td>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td>1,500</td>
<td>95</td>
<td>1.5</td>
</tr>
<tr>
<td>1,700</td>
<td>100</td>
<td>1-2</td>
</tr>
<tr>
<td>1,800</td>
<td>125</td>
<td>2</td>
</tr>
</tbody>
</table>

Rockland

* Assumes 6k gallon tanker truck, FOG liquid waste at 5% TS
Looking past increased gas production

- **Feedstock / Offloading**
- **Screening / Degritting**
- **Sewage Sludge**
- **Energy Recovery**
- **Disposal / End Use**
- **Recycle**

Process Flow:
1. **Feedstock / Offloading**
2. **Screening / Degritting**
3. **Sewage Sludge**
4. **Blending**
5. **Anaerobic Digestion**
6. **Dewatering**
7. **Disposal / End Use**
8. **Recycle**

Key Terms:
- **Capital Investments**
- **Process Impact**
- **O&M**
Co-digestion feasibility study framework
Plant Operations
Current Conditions/Benchmarking

45-ft dia. Digesters (0.46 MG)

- Primary Digester
- Secondary Digester No. 2

Out of Service: Tilted cover

35-ft dia. Digesters (0.11 MG)

- Primary Digester No. 1
- Secondary Digester No. 1

Out of Service: Suspected tank crack

Co-settled primary and waste activated sludge

Overflow to head of WWTP

Flare

Boiler

BFP
Residuals Management
Limited by existing state of equipment

- Current residuals generation: ~5 wtpd at 19%TS using belt filter press
- Difficult to maintain digestion temperatures required for Class B requirements
 - Co-settled PS and WAS feed is relatively thin (~2.4% TS) and variable given seasonal loading
- Hauled under long-term agreement to multiple disposal sites (incineration and landfill)
 - At time of study: $100/ton, has since increased to $111/ton
Plant Operations
State-of-good-repair projects required

• Mechanical WAS Thickening
 • Unlock digester capacity, control heat load

• Digester Rehabilitation
 • Covers, heat, mixing

• Digester Gas Management
 • Update to design codes and standards
 • Provide short-term storage
 • Change out all CS piping

• Blend tank
 • Homogenize loading to digester
Plant Operations
Project scope evaluated at varying scales

<table>
<thead>
<tr>
<th>Alternative A</th>
<th>Alternative B</th>
<th>Alternative C</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Organics</td>
<td>Moderate Org. (17k gpd)</td>
<td>Aggressive Org. (35k gpd)</td>
</tr>
<tr>
<td>0 trucks/d</td>
<td>3 trucks/d*</td>
<td>6 trucks/d*</td>
</tr>
<tr>
<td>80 kW gen.</td>
<td>300 kW gen.</td>
<td>500 kW gen.</td>
</tr>
</tbody>
</table>

Legend
- New Construction
- Modify Existing

* Assumes 6k gallon tanker truck, FOG liquid waste at 5% TS
Targeted outreach to 16 potential, liquid HSW sources

- **Primary Generators**: production/manufacturing facilities
- **Indirect Sources**: hauling companies/brokers

Typical Liquid HSW Sources

- Hydrophilic – Non Oily
 - Expired soda, whey, food/beverage production
- Hydrophobic – Oily
 - DAF waste, dairy/meat processing waste, FOG
Tipping Fees
Positive response from 16 potential sources

• Interest gauged on specific drivers
 • Cost reduction
 • Disposal reliability
 • Sustainability initiatives

• Results
 • Significant interest – current market for rate of disposal of organic wastes ranges from $0.06 to $0.10 per gallon, depending on waste type
Biogas Utilization
Universe of Alternatives

Generate Power and Heat On-Site
- Gas Turbine Generators
- IC Engine Generators
- Fuel Cells
- Microturbines
- Stirling Cycle Engines
- Organic Rankine Cycle

Other On-Site Uses
- Boiler/Heat (hot water, steam)
- Product drying (via steam, hot air/oil/water)

Off-Site Sale/Use
- “As-Is” Unscrubbed
- Scrub CO$_2$, biomethane pipeline injection
- Scrub CO$_2$, Vehicle Fuel (rCNG)
Biogas Utilization
Kilowatts, therms, gallons ... How do you compare value?

Relative value of energy (adjusted for conversion efficiency)

Rockland goal: onsite power generation
- Gas upgrading introduced too many variables at this stage
Biogas Utilization
Projecting value of onsite power generation

• Parse apart usage charge from power bill ($0.14/kWh)
 • Disregard non-bypassable and standby charges
 • Potential to limit demand charge

• Calculate value from electricity export
 • National Grid has met net metering quota in area
 • Electricity sold back at wholesale rate of $0.035/kWh

• Consider opportunities for regional and state incentives
 • National Grid Power Offset: $0.075/kWh
 • REC value determined under Renewable Portfolio Standard
Biogas Utilization
Renewable Portfolio Standard

- Requirement on retail electric suppliers to provide a minimum percentage or amount of their retail load with eligible sources of renewable energy
- Renewable energy certificate (REC) program to facilitate compliance
- NE states participate in a single power pool

REC value projected at all-time low at time of study ($0.005/kWh). MA and ME have since increased RPS targets/demand.
First Cut Financial Evaluation
20-Yr NPV shows counter-intuitive results

- 17k gpd HSW
- 30k gpd HSW
- 0 gpd HSW

Bar chart showing financial evaluation for different capacities.
What’s limiting O&M benefits?
Residuals Management Costs increase

<table>
<thead>
<tr>
<th>tens of millions</th>
<th>PB</th>
<th>Alt A</th>
<th>Alt B</th>
<th>Alt C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solids Hauling and Disposal</td>
<td>$0.0</td>
<td>$0.0</td>
<td>$0.4</td>
<td>$0.6</td>
</tr>
<tr>
<td>Natural Gas Cost</td>
<td>$0.2</td>
<td>$0.2</td>
<td>$0.2</td>
<td>$0.2</td>
</tr>
<tr>
<td>Electricity Costs</td>
<td>$0.4</td>
<td>$0.4</td>
<td>$0.6</td>
<td>$0.6</td>
</tr>
<tr>
<td>Polymer Costs</td>
<td>$0.4</td>
<td>$0.4</td>
<td>$0.6</td>
<td>$0.6</td>
</tr>
<tr>
<td>Contract/Annual Maintenance</td>
<td>$0.0</td>
<td>$0.0</td>
<td>$0.0</td>
<td>$0.0</td>
</tr>
<tr>
<td>Labor</td>
<td>$0.2</td>
<td>$0.2</td>
<td>$0.2</td>
<td>$0.2</td>
</tr>
</tbody>
</table>

60% increase
140% increase
Impact of Revenue
Limited with electricity export

<table>
<thead>
<tr>
<th>Revenue</th>
<th>Planning Baseline</th>
<th>Alt A: No Organics</th>
<th>Alt B: Moderate Organics</th>
<th>Alt C: Aggressive Organics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Avg. Production</td>
<td>0</td>
<td>80 kW</td>
<td>300 kW</td>
<td>500 kW</td>
</tr>
<tr>
<td>Electricity Offset/Sale</td>
<td>$0</td>
<td>$220,000</td>
<td>$440,000</td>
<td>$580,000</td>
</tr>
<tr>
<td>Organics Tipping Fees</td>
<td>$0</td>
<td>$0</td>
<td>$370,000</td>
<td>$770,000</td>
</tr>
</tbody>
</table>

These are rough estimates based on experience. The ultimate values may vary a little or moderately depending on regulatory impacts, inflation or local impacts.
Tipping fee increases provide better alignment

$0.06/gal

$0.08/gal
Substantial swing in economics available with improved residuals management costs

Comparison of Alt C (30k gpd) to Do-Nothing

<table>
<thead>
<tr>
<th>Feedstock %VS / %VSR</th>
<th>Residuals Management Cost ($/wet ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$100 (Raw disposal)</td>
</tr>
<tr>
<td>85% / 85%</td>
<td>+$4.9M</td>
</tr>
<tr>
<td>90% / 90%</td>
<td>+$1.6M</td>
</tr>
<tr>
<td>95% / 95%</td>
<td>-$1.8M</td>
</tr>
</tbody>
</table>
Conclusions

• Plant Operations
 • Co-digestion requires integration with state-of-good-repair projects

• Tipping Fees
 • Economics impacted by HSW disposal market; saw interest in project with some variability in pricing

• Biogas Utilization
 • With power generation, revenue limited with electricity export

• Residuals Management
 • Improved residuals management rate with readily degradable feedstocks required for favorable economics at increased HSW loading
Acknowledgements

Brown and Caldwell
Chris Muller Principal Engineer
Natalie Sierra Senior Review
Tracy Chouinard Process Model Lead
Alison Nojima Energy Lead
Camilla Kuo-Dahab Sidestream impacts

Town of Rockland
John Loughlin Superintendent
Rick Kotouch Plant Ops PM (SUEZ)
Ed Mcauliffe Plant Ops (SUEZ)
Thank you

John Ross, PE
jross@brwncauld.com
T 978.983.2030 | C 617.383.4962