1. Generate equivalent fractions to get like units. Then, subtract.

 a. \(\frac{1}{2} - \frac{1}{3} = \)

 b. \(\frac{7}{10} - \frac{1}{3} = \)

 c. \(\frac{7}{8} - \frac{3}{4} = \)

 d. \(1\frac{2}{5} - \frac{3}{8} = \)

 e. \(1\frac{3}{10} - \frac{1}{6} = \)

 f. \(2\frac{1}{3} - 1\frac{1}{5} = \)

 g. \(5\frac{6}{7} - 2\frac{2}{3} = \)

 h. Draw a number line to show that your answer to (g) is reasonable.
2. George says that, to subtract fractions with different denominators, you always have to multiply the denominators to find the common unit; for example:

\[\frac{3}{8} - \frac{1}{6} = \frac{18}{48} - \frac{8}{48}. \]

Show George how he could have chosen a denominator smaller than 48, and solve the problem.

3. Meiling has \(1\frac{1}{4}\) liter of orange juice. She drinks \(\frac{1}{3}\) liter. How much orange juice does she have left? (Extension: If her brother then drinks twice as much as Meiling, how much is left?)

4. Harlan used \(3\frac{1}{2}\) kg of sand to make a large hourglass. To make a smaller hourglass, he only used \(1\frac{3}{7}\) kg of sand. How much more sand did it take to make the large hourglass than the smaller one?