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Abstract

External and histological examination of the photophores of the linebelly swallower

Pseudoscopelus sagamianus reveal three epidermal layers of cells that form the light-

producing and light-transmitting components of the photophores. Photophores

among the examined photophore tracts are not significantly different in structure but

the presence of mucous cells in the superficial layers of the photophore suggest con-

tinued function of the epidermal photophore in contributing to the mucous coat. This

is the first evidence of intrinsic bioluminescence in primarily epidermal photophores

reported in ray-finned fishes.
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Bioluminescent organs evolved at least 27 times in teleosts and

include multiple instances of the evolution of both bacterial and intrin-

sic bioluminescent organs (Davis et al., 2014, 2016; Hastings, 1983;

Herring, 1987). Known bacterial bioluminescent organs in fishes

include a folded epithelial chamber derived from the alimentary tract

or the epidermis, such as organs derived from the oesophagus

(Chakrabarty et al., 2011), the intestine (Dunlap & Nakamura, 2011;

Poulsen et al., 2016), the perianal proctodeum (Ghedotti et al., 2018;

Haneda, 1957; Somiya, 1977) and the epidermis (Bassot, 1968; Munk,

1999; Okada, 1926). Cases where the bioluminescent bacteria are primar-

ily intracellular are not known in fishes (Labella et al., 2017). Intrinsic biolu-

minescence evolved in a more diverse range of tissues of origin, including

muscle (Johnston & Herring, 1985; Merrett et al., 1973), the hepatopan-

creas (Ghedotti et al., 2015), the intestine (Herring, 1977) and the dermis

(Hansen&Herring, 1977; Lawry, 1973;Mallefet et al., 2019; Nichol, 1957,

1958; Poulsen, 2019). In a few clades of fishes, the anatomical basis of

their bioluminescence has not been established (Davis et al., 2016).

The photophores of Pseudoscopelus Lütken 1892 were first

described by Lütken (1892) as serial mucous pores. Beebe (1932) was

the first to recognise these as bioluminescent when he observed blue-

green light in fresh specimens. Haneda (1950) recognised Pseudoscopelus

as having photophores that are similar to those in the Myctophiformes,

Stomiiformes and the batrachoidiform genus Porichthys Girard 1854 in

being serial and emitting light directly, but he did not discuss the anatom-

ical structure of the photophores in Pseudoscopelus spp. The patterns of

the serial photophores in Pseudoscopelus spp. subsequently have been

important in the taxonomy of the group (Melo, 2010; Melo et al., 2007;

Prokofiev, 2014; Spitz et al., 2007), but their anatomical structure has

not been determined and whether bioluminescence in Pseudoscopelus

spp. is intrinsic or bacterial has not been established (Davis et al., 2016).

The fact that they have cutaneous, serial photophores has led to the

assumption that their bioluminescence is intrinsic as it is in other well-

studied taxa with directly-emitting serial photophores (Herring, 1987;

Paitio et al., 2016; Priede, 2017).
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The purpose of this study was to determine the structure of the

bioluminescent organs in Pseudoscopelus spp. In particular, we seek to

test the hypothesis that they produce light intrinsically using tissues in

the dermis as in those other taxa with serial photophores that have

been closely studied anatomically (Lawry, 1973; Mallefet et al., 2019;

Nichol, 1957). We used preserved museum specimens and did not

collect or work with live animals. We borrowed specimens from the

ichthyological collections of the University of Washington, Burke

Museum of Natural History (UW) and the University of Minnesota,

Bell Museum of Natural History (JFBM) that included Chiasmodon

braueri Weber 1913 (JFBM 49398), Chiasmodon subniger Garman

1899 (UW 45303; UW 48713 cleared and stained), Kali kerberti

(Weber 1913) (UW 47237) and Pseudoscopelus sagamianus Tanaka

1908 (UW 115214). We grossly examined photophores and the homol-

ogous skin in non-bioluminescent taxa with a Leica MZ 12.5 stereomi-

croscope (www.leica-microsdystems.com). We used the photophore

terminology of Prokofiev and Kukuev (2005) as modified by Melo

(2010). We photographed whole specimens using a Canon EOS Rebel

T3i camera with macro lens (www.canon.com).

We took c. 1.0 × 0.25 cm histological samples of the maxillary,

pectoral and anal-fin photophore series (Figure 1a) with adjacent skin

from the right side of P. sagamianus (UW 115214, 52 mm standard

length; LS) and similar skin samples from C. braueri (JFBM 49398,

121 mm LS). We dehydrated samples in an ethanol series, followed by

clearing in xylene, embedding in paraffin wax, sectioning every 10 μm

on a rotary microtome and mounting on slides (Humason, 1979). We

stained every other slide using a standard haematoxylin-eosin proce-

dure modified with alcian blue staining (HE+A) to identify acidic poly-

saccharides (Charman & Reid, 1972) and the Masson's trichrome

(MT) procedure to differentiate muscle and collagen (Bancroff & Ste-

vens, 1982; Sheehan & Hrapchak, 1980). We examined slides with a

Leica DM 2500 compound microscope and took digital images with

an attached Q Imaging MicroPublisher 5.0 RTV photodocumentation

system (www.qimaging.com). We prepared photos by increasing

brightness and contrast evenly across the images and eliminating dis-

coloration in the mounting medium outside the tissues using image-

editing software.

Examination of the photophore tracts in P. sagamianus reveals

regular photophores that are morphologically similar among tracts.

The tracts are composed of irregularly arranged, small, round to oval

photophores c. 0.05–0.20 mm in width and height (Figure 1b,c). The

centre of each photophore is white to light tan in colour and the mar-

gins are darkly coloured, in some cases with the ventral margin appe-

aring lighter with dark colour extending ventrally from the anterior

and posterior margins of the photophore. The photophores did not

differ substantially among tracts except that those in the maxillary

and pectoral tract were more likely to be arranged in a single row than

the other tracts where multiple rows in tracts were more common.

Maxillary
photophores (mxf)(a) (b)

(f)(e)(d)(c)
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*
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*ctct ct

m

Anal-fin
photophores (saf)

Maxilla

F IGURE 1 Anatomical structure of maxillary and anal-fin photophores. (a) Pseudoscopelus sagamianus (UW 115214; 53 mm standard length)
showing the location of external photos of portions of labelled tracts in white boxes. Scale bar = 1 cm. (b) Anal-fin photophore tract showing

irregular arrangement of photophores, often with more than one in dorsal-ventral stack. Scale bar = 1 mm. (c) Maxillary photophore tract showing
irregular arrangement of photophores, more frequently in a single row. Scale bar = 1 mm. (d) Maxillary photophore cross section; Masson's
trichrome (MT) stain. Scale bar = 0.1 mm. (e) Maxillary photophore cross section; haematoxylin-eosin procedure modified with alcian blue staining
(HE+A). Scale bar = 0.1 mm. (f) Anal-fin photophore and adjacent skin cross section; MT stain. Scale bar = 0.1 mm. Pectoral-fin photophore
structure is similar to the maxillary photophores and is not depicted. For histological sections, lateral at left: *, probable photogenic cells; ct,
collagen-rich connective tissue; m, acidic-polysaccharide containing mucous cell; mxf, maxillary photophore series; s, likely protein-containing
serous mucous cell; saf, anal-fin photophores. Standard photophore abbreviations from Prokofiev and Kukuev (2005) as modified by Melo (2010)
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Examination of the same areas in non-bioluminescent chiasmodontids

revealed scaleless skin with scattered dark chromatophores and an

irregular surface with small prominences that is similar to the skin

adjacent to the photophores in P. sagamianus (Figure 1b,c).

Histological cross sections demonstrate consistent similarity of the

photophores among all three examined tracts, with the photogenic and

overlying cells derived from and continuous with the epidermis. The

photophores are conical to cup shaped with a cluster of dense, roughly

cuboidal cells with granular inclusions at the deepest point. There are no

identifiable chambers containing bacterial cells in the bioluminescent

organ. The cuboidal cells at the deepest point of the photophore are

overlain by a layer of compressed to squamous cells that are themselves

more superficially overlain by another layer of compressed to cuboidal

cells that include acidic polysaccharide-containing mucous cells and

serous cells (Figure 1d,f). The mucous cells stained blue in the HE+A

preparations (Figure 1e) and are represented by the clear oval areas in

this same layer on the MT-stained slides. The serous cells are large,

consistently-staining cells with granular inclusions in the MT preparation

that are not stained by alcian blue in the HE+A sections. The photophore

serous cells stain and appear generally similar to, though usually smaller

than, the serous cells in the contiguous epidermis outside the photo-

phores (Figure 1f) and the serous cells in the non-bioluminescent taxa.

The surface of the photophore in many preparations appears to be shed-

ding multiple large cells, but this is probably an artefact due to surface

abrasion during capture or histological processing. The only dermal com-

ponent appears to be the dark chromatophores that form the pigmented

cup deep to the rest of the photophore in a capillary-rich region of the

superficial dermis. If photophores in P. sagamianus are structured analo-

gously to the photophores in other taxonomic groups with serial photo-

phores (Lawry, 1973; Mallefet et al., 2019; Nichol, 1957), then, from

deep to superficial, the dermal chromatophores form the pigment cup or

reflector, followed by epidermal photocytes, filter and lens.

This structure of the bioluminescent organs of P. sagamianus and

the absence of bacteria-containing chambers indicate that these organs

are probably intrinsic with the photocytes and overlying cells derived

from and continuous with the epidermis. This epidermal continuity was

contrary to our initial expectation that the photophores would be com-

posed primarily of structures in the dermis. The photophores exhibit a

structure typical of many intrinsically bioluminescent taxa with overly-

ing tissues serving as a filter or lens (Ghedotti et al., 2015; Hansen &

Herring, 1977; Lawry, 1973; Mallefet et al., 2019; Nichol, 1957, 1958;

Poulsen, 2019). The photophores also lack the obvious bacteria-

containing chambers present in all other known bacterially biolumines-

cent fish taxa (Bassot, 1968; Chakrabarty et al., 2011; Dunlap &

Nakamura, 2011; Ghedotti et al., 2018; Haneda, 1957; Munk, 1999;

Okada, 1926; Poulsen et al., 2016; Somiya, 1977) (Figure 1d,f). The

continuity of the likely photogenic and overlying cells with the epider-

mis and the absence of any possible photogenic cells in the collagen-

rich dermis indicate an epidermal identity (Figure 1f).

The epidermal structure of the bioluminescent organ suggests

potentially fewer static roles for at least some of the component cells.

The typical transit of cells from basal to apical positions within the epithe-

lium followed by slow shedding in the typical stratified teleost epidermis

(Fishelson, 1996; Henrikson & Matoltsy, 1968a, 1968b) suggests either a

much less actively dividing epithelium or a more dynamic involvement of

cells within this type of photophore. In this case, function may vary

over a cell's lifespan or a more regionalised pattern of division of the

basal layer occurs. The presence of mucous and serous cells in the

photophore also suggest that the photophores, like the epidermis

generally, contribute to the mucous coat. This also is consistent with

Lütken's (1892) initial identification of the photophores as mucous

pores.

Epidermal involvement in photophore structure is more typical of

bacterial bioluminescent organs where bacteria must be acquired from

the environment, but in these cases the epidermal epithelium forms a

chamber to house obvious groups of bacteria (Chakrabarty et al., 2011;

Ghedotti et al., 2018; Munk, 1999; Somiya, 1977). Although serial pho-

tophores in other taxa may also have a developmental origin from gen-

eralised ectoderm like the epidermis, in the adult these structures are

restricted to the dermis (Lawry, 1973; Mallefet et al., 2019; Nichol,

1957). This study provides evidence of a bioluminescent photophore

that is probably intrinsic in a continuous epidermal tissue in ray-finned

fishes, it expands the range of tissues that probably function in intrinsic

bioluminescence and it increases the number of inferred independent

acquisitions of intrinsic bioluminescence to 11 (Davis et al., 2016).
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