Internal distribution of Li and B in serpentinites from the Feather River Ophiolite, California, based on laser ablation inductively coupled plasma mass spectrometry

Cin-Ty Aeolus Lee, Masaru Oka, and Peter Luffi
Department of Earth Science, Rice University, MS-126, 6100 Main Street, Houston, Texas 77005, USA
(ctlee@rice.edu)

Arnaud Agranier
Department of Earth Science, Rice University, MS-126, 6100 Main Street, Houston, Texas 77005, USA
Institut Universitaire Europeen de la Mer, Universite de Bretagne Occidentale, UMR6538, CNRS, F-29238 Brest CEDEX 3, France

[1] Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of B and Li in serpentinized peridotites from the Feather River Ophiolite (California) indicates that B is enriched in serpentine minerals compared to the whole-rock and less altered olivine grains, while Li in serpentine is depleted or comparable to whole-rock Li. The high B contents of serpentine minerals correlate with the relatively enriched whole-rock B contents. The low Li contents of serpentine minerals are consistent with the relatively low Li whole-rock contents and suggest that only small amounts of Li were added during serpentinization or that some Li was even leached out. A simple model of partial melting shows that Li/Yb increases with increasing melt depletion (and clinopyroxene depletion) in the peridotitic residue because Li is most compatible in olivine while Yb is most compatible in clinopyroxene. Thus, high Li/Yb ratios in peridotites by themselves do not indicate secondary enrichments in Li. However, Li/Yb and Yb contents of many of the Feather River Ophiolites plot above the melt depletion curve in Li/Yb versus Yb space, indicating that these serpentinites experienced subtle and preferential enrichments in Li during serpentinization. If serpentinized oceanic lithospheric mantle, as represented by the Feather River Ophiolite, is important in subduction recycling, then recycled mantle domains having a serpentinite protolith might be characterized by strong B enrichments but only small Li enrichments.

Components: 8156 words, 5 figures, 1 table.

Keywords: lithium; boron; serpentinite; serpentine; ultramafic; ophiolite.

Index Terms: 1065 Geochemistry: Major and trace element geochemistry.

Received 28 April 2008; Revised 20 October 2008; Accepted 28 October 2008; Published 6 December 2008.

1. Introduction

[2] When ultramafic rocks (olivine + pyroxene), such as peridotites, react with water at low to intermediate temperatures (<700°C), the end product is a rock composed of various hydrous magnesium silicates, such as serpentines, brucites, talc, and chlorites [Evans, 1977; Seyfried and Dibble, 1980; Bonatti et al., 1984; Janecyk and Seyfried, 1986]. Such rocks are generically called serpentinites. Serpentinites can form in many types of geologic environments. In ocean basins, low-temperature serpentinization (<100°C) in the form of weathering occurs where lithospheric mantle peridotites are exhumed directly to the seawater-crust interface (e.g., in the form of abyssal peridotites [Snow and Dick, 1995]), such as might occur in slow-spread ing ridges and along fractures [Escartin et al., 1997]. Serpentinization can also occur by hydrothermal (>100°C) circulation or penetration of seawater deep (kilometer-scale) into the oceanic lithosphere at mid-ocean ridges and along fracture zones and faults [Seyfried and Dibble, 1980; Janecyk and Seyfried, 1986]. These serpentined lithospheres appear to be recycled back into the mantle when the oceanic lithosphere subducts [Hacker et al., 2003; Ranero et al., 2003; Li and Lee, 2006; Brudzinski et al., 2007]. Finally, deep serpentinization can also occur in the corner of the mantle wedge when dehydrating fluids released from the top of the subducting slab infiltrate the base of the overriding lithosphere [Bostock et al., 2002].

[3] The presence of serpentinites may be important in the evolution of planets with a watery surface, such as Earth [Lee and Chen, 2007; Lee et al., 2008]. For example, serpentined oceanic lithospheric mantle may represent the primary mechanism by which water is transported into the Earth’s deep interior [Rüpke et al., 2004]. Water, in turn, lowers the viscosity of the Earth’s mantle and promotes melting at subduction zones [Hirth and Kohlstedt, 1996; Hirth and Kohlstedt, 2004; Grove et al., 2006] and hence is critical to our understanding of mantle convection and the genesis of continental crust. Serpentinites are also unusual in that they are considerably less dense and much weaker than their unhydrated peridotite protoliths [Hilairet et al., 2007]. The lower density means that extensive serpentinization of oceanic lithosphere could partially compensate for the thermally imparted negative buoyancy of subducting oceanic lithosphere while the weak rheology means that serpentined layers and zones in oceanic or continental lithospheres could serve as weak fault zones along which deformation is accommodated [Cooper et al., 2006; Hilairet et al., 2007; Lee and Chen, 2007; Lee et al., 2008].

[4] Serpentine minerals dehydrate upon heating and break down into strong, nominally anhydrous minerals, such as olivine. For example, the most stable serpentine mineral, antigorite, breaks down at ~600–700°C [Evans, 1976; Evans, 1977], which means that the “lubricating” properties of serpentinites can only operate at temperatures lower than this breakdown temperature. This property led some of us to hypothesize that serpentinites were instrumental in making the thick continental lithospheric mantle (~200 km) underlying Archean cratons [Lee et al., 2008]. We hypothesized that the upper serpentined zone of oceanic lithospheric mantle allowed for the development of a weak fault zone, which then facilitated oceanic lithospheres to be thrust-stacked upon each other. However, once the fault zones heat up by thermal diffusion, the serpentinites break down, strengthening and healing the fault zone. This combination of initially weak properties followed by strengthening could explain how thick cratonic mantle is formed [Cooper et al., 2006]. Although still speculative, the notion of serpentine playing a role in continent formation appears to be growing [Canil, 2008].

[5] All of the above proposed roles for serpentinites in deep Earth processes need to be tested. One way to test for the past role of serpentinites is to identify those geochemical signatures that are imprinted during hydrothermal serpentinization but might survive the dehydration reactions associated with metamorphism during subduction or tectonic emplacement. For example, serpentinization is known to modify major and trace element systematics due to dissolution of certain major elements and to reaction and contamination of the ultramafic protolith by seawater [Bonatti et al., 1984; Snow and Dick, 1995; Leeman and Sisson, 1996; Seyfried and Dibble, 1998; Tenthorey and Hermann, 2004; Li and Lee, 2006; Agranier et al., 2007]. Serpentinization may lead to oxygen isotopic signatures that deviate significantly from the mantle [Bonatti et al., 1984; Gao et al., 2006]. Serpentinites may also be highly enriched in B and Li because these elements are enriched in seawater and hydrothermal fluids due to their high solubilities in aqueous fluids [Bonatti et al., 1984; Scambelluri
Interestingly, Scambelluri et al. [2004] showed that not only have serpentinized ophiolites been enriched in B and Li, but much of this B and Li was retained during prograde metamorphism, that is, beyond antigorite breakdown at $\approx 600^\circ$C. If some of the original serpentine B and Li can be retained, then B and Li could be used to identify peridotites that have had a serpentinization history. To expand on these suggestions, we combine micron-scale distributions of B and Li in partially serpentinized peridotites from the Feather River Ophiolite in northern California with previously published whole-rock compositions on the same rocks. Our results are consistent with B being elevated in serpentine minerals to levels far in excess of unaltered olivines and pyroxenes. In contrast, we show that the least altered olivines and pyroxenes have equal or higher Li contents than serpentine minerals, suggesting that Li is not always as good a tracer of serpentine as B. Nevertheless, serpentinites are still enriched in Li and we provide some guidelines for quantifying these enrichment levels.

2. Feather River Ophiolite, California, and Sample Descriptions

The Feather River ophiolite (FRO) is a north-south trending belt of variably serpentinized ultramafic rocks, which form part of the Sierran metamorphic foothills along the west flank of the Sierra Nevada batholith in California [Day et al., 1985; Hacker and Peacock, 1990; Mayfield and Day, 2000]. The peridotitic precursors of the serpentinites were mostly residual harzburgites based on high MgO contents, low Al$_2$O$_3$ contents, high Cr/(Cr+Al) ratios, and extremely depleted light rare earth abundance patterns [Li and Lee, 2006] (Figure 1a). The degree of serpentinization varies from $\approx 50\%$ to 100% serpentinization based on petrographic examination; samples that have not been completely serpentinized preserve some relatively unaltered olivine and pyroxene grains set within a serpentinite matrix but even these relict
grains show microscopic evidence for serpentine alteration in the form of serpentinized cracks or inclusions [Li and Lee, 2006]. Serpentine minerals are probably dominated by lizardite and chrysotile (based on the presence of asbestos texture and lack of massive, blocky serpentine in field outcrop), suggesting that metamorphic temperatures did not exceed the breakdown temperature of chrysotile (~350°C).

[7] Although the FRO has been interpreted to represent both subarc and oceanic lithospheric mantle, in a recent petrologic and geochemical study of the FRO in the vicinity of the Sugar Pine Reservoir area [Mayfield and Day, 2000], we reported a seawater trace element signature (enrichments in Cs, U, Sr) rather than those (e.g., low Nb/La ratio) thought to be typical of arcs [Li and Lee, 2006]. It was also shown that the serpentinitization process of the FRO differed fundamentally from the low-temperature weathering serpentinitization characterizing abyssal peridotites [Li and Lee, 2006]. Weathering serpentinitization is associated with direct exposure of ultramafic rocks to the ocean, resulting in high integrated water/rock ratios, extensive loss of Mg, and complete over-printing by seawater Os isotopes. In contrast, the FRO serpentinites show much less disturbance in major element and Os isotopic compositions, which led to the hypothesis that the FRO serpentinites instead formed by infiltration of seawater.

Figure 2. Technical details. (a) Example of a time-resolved signal for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), including background and sample analysis (sample NB22). (b) Example of internal standard-normalized elemental signals after subtracting background for same sample as in Figure 2a. Parallel nature of each isotope signal implies homogeneity on the length-scales of ablation (100 microns). (c) External calibration curve for Figure 2b using two obsidian glass standards. (d) Major and minor element data for U. S. Geological Survey BCR2g (basaltic glass) and olivine (Grand Canyon mantle xenoliths) as determined by medium mass resolution LA-ICP-MS and calculated by assuming elemental oxides add up to 100%. Diagonal line represents 1:1 line between measured/calculated and accepted compositions based on electron microprobe analyses.
into the deep lithosphere along fractures [Agranier et al., 2007].

Agranier et al. [2007] argued that serpentinitized ophiolites, instead of serpentinitized abyssal peridotites, might be more representative of the types of serpentinites being subducted into the Earth’s interior because weathering serpentinitization is likely to be confined to a thin (<5 km?) layer at the uppermost part of the oceanic lithosphere, whereas serpentinitization along fractures could extend deeper than 10 km. Agranier et al. argued that the FRO peridotites were enriched in B and Li (Figures 1a, 1c, and 1d). Whole-rock B contents are much higher than any estimates of primitive mantle (Figure 1d) [cf. Chaussidon and Jambon, 1994; Leeman and Sisson, 1996]. Whole-rock Li contents are not distinctly elevated relative to primitive mantle estimates, but whole-rock Li/Yb ratios are elevated (Figure 1c). Li and Yb are commonly thought to behave similarly during mantle melting because the Li/Yb ratios of mid-ocean ridge basalts (MORBs) are constant and only slightly lower than primitive mantle [Ryan and Langmuir, 1987; McDonough and Sun, 1995]. Thus, anomalously high Li/Yb ratios, such as seen in arc magmas, peridotite xenoliths, peridotite massifs, and abyssal peridotites, are often explained by preferential re-enrichment of Li by high temperature metasomatic fluids or seawater [Ottolini et al., 2004] (see Figures 1b and 1c). Ryan and Langmuir, however, pointed out that Li is most compatible in olivine unlike Yb, which is known to be most compatible in clinopyroxene. Thus the apparent constancy of Li/Yb in MORBs is due to the bulk partition coefficients of lherzolite melting being roughly equal for Li and Yb. While high Li/Yb values in many arc magmas likely the result of preferential Li enrichment by fluids [Ryan and Langmuir, 1987], high Li/Yb ratios in peridotite residues must be interpreted with caution. We will return to this issue in section 5.

3. Methods

Samples were prepared as polished thick sections (>300 microns) and represent a subset of a larger sample set previously investigated for whole-rock chemistry. All samples were washed and ultrasonicated in ethanol. In situ measurements were done by LA-ICP-MS using a New Wave 213 nm laser ablation system coupled to a ThermoFinnigan Element 2 magnetic-sector ICP-MS at Rice University. Spot sizes of 110 microns were used in order to homogenize large areas of fine-grained serpentinite groundmass. We used a laser energy density of 15 J/cm² with a repetition rate of 10 Hz. The ablated material was carried out of the ablation cell with helium gas and then mixed with argon gas before entering the torch. Measurements were made in medium mass resolution mode (m/Δm = 3000) to resolve isobaric interferences of doubly charged 26Ne and 22Ne on 10B and 11B (although sensitivity drops by a factor of ~10 relative to low mass resolution) as well as interferences on the major and minor elements (Mg, Ca, Si, Na, K, Fe, Mn). Sensitivity of the instrument in medium mass resolution was 4000 cps/ppm (on La) for a spot size of 55 microns and the above laser operating conditions. Mass calibration drift was corrected for in real time by monitoring the mass offset of the 40Ar40Ar⁺ dimer and correcting the total mass calibration accordingly. Both B isotopes were measured for quality control and are reported in Table 1. Peak dwell time for 7Li, 10B, and 11B was 0.06 s. Analyses consisted of 8 to 10 measurements (~20–30 s) of the gas background followed by 30–50 measurements (2–3 min) during ablation of the sample (Figures 2a and 2b). Gas background signals were subtracted from sample signals and background-subtracted signals were then normalized to an internal standard (30Si). USGS glass standards BHVO2g, BCR2g and BIR1g were used as simultaneous external standards for all elements [Gao et al., 2002] except for B, where we used three obsidian glasses whose B contents were previously determined by solution standard addition (M3–33 = 26 ppm, M3–86 = 61 ppm, and M3–79 = 23 ppm; samples are available upon request). External calibration to three different USGS standards (and obsidian glasses) departs from the traditional approach of LA-ICP-MS wherein only one external standard is used. However, the simultaneous use of several calibration standards helps to bracket the concentrations in the sample unknowns, decreasing errors associated with matrix-dependent elemental fractionations and extrapolation of calibration curve. The accuracy of the external calibrations for B is shown in Figure 2c. Concentrations determined from both B isotopes are shown in Table 1. Slight discrepancies between the two are within the error of the measurements. We attribute the slight differences to instabilities of the mass calibration in medium mass resolution where peak shapes are narrow and pointed (instead of flat-topped). We take the average of the two as representative of B concentrations. In most cases, the differences are less than 10%.
Table 1 (Sample). Individual Ablation Points [The full Table 1 is available in the HTML version of this article at http://www.g-cubed.org]

<table>
<thead>
<tr>
<th></th>
<th>NB22</th>
<th>NB10b</th>
<th>NB24</th>
<th>NB10b</th>
<th>NB24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li Li7 ppm</td>
<td>2.6</td>
<td>2.2</td>
<td>2.7</td>
<td>2.4</td>
<td>2.6</td>
</tr>
<tr>
<td>B B10 ppm</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>B B11 ppm</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>P P31 ppm</td>
<td>11</td>
<td>9</td>
<td>11</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>K K39 ppm</td>
<td>72</td>
<td>65</td>
<td>78</td>
<td>56</td>
<td>75</td>
</tr>
<tr>
<td>Sc Sc45 ppm</td>
<td>24</td>
<td>17</td>
<td>19</td>
<td>25</td>
<td>16</td>
</tr>
<tr>
<td>Ti Ti49 ppm</td>
<td>141</td>
<td>88</td>
<td>149</td>
<td>108</td>
<td>167</td>
</tr>
<tr>
<td>V V51 ppm</td>
<td>119</td>
<td>71</td>
<td>126</td>
<td>83</td>
<td>115</td>
</tr>
<tr>
<td>Cr Cr52 ppm</td>
<td>5770</td>
<td>4140</td>
<td>5320</td>
<td>5350</td>
<td>5930</td>
</tr>
<tr>
<td>Mn Mn55 ppm</td>
<td>660</td>
<td>1040</td>
<td>837</td>
<td>625</td>
<td>759</td>
</tr>
<tr>
<td>Co Co59 ppm</td>
<td>22</td>
<td>45</td>
<td>32</td>
<td>24</td>
<td>33</td>
</tr>
<tr>
<td>Ni Ni60 ppm</td>
<td>454</td>
<td>637</td>
<td>555</td>
<td>472</td>
<td>413</td>
</tr>
<tr>
<td>Cu Cu63 ppm</td>
<td>1.8</td>
<td>2.2</td>
<td>2.4</td>
<td>1.9</td>
<td>2.4</td>
</tr>
<tr>
<td>Zn Zn66 ppm</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>oxides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO2 Si30 wt.</td>
<td>48.8</td>
<td>45.6</td>
<td>47.9</td>
<td>48.3</td>
<td>50.3</td>
</tr>
<tr>
<td>Al2O3 Al27 wt.</td>
<td>1.9</td>
<td>1.3</td>
<td>1.3</td>
<td>2.2</td>
<td>1.8</td>
</tr>
<tr>
<td>Cr2O3 Cr52 wt.</td>
<td>0.84</td>
<td>0.61</td>
<td>0.78</td>
<td>0.87</td>
<td>0.76</td>
</tr>
<tr>
<td>TiO2 Ti49 wt.</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>MgO Mg25 wt.</td>
<td>26.8</td>
<td>37.0</td>
<td>30.8</td>
<td>26.6</td>
<td>32.6</td>
</tr>
<tr>
<td>MnO Mn55 wt.</td>
<td>0.09</td>
<td>0.13</td>
<td>0.11</td>
<td>0.08</td>
<td>0.11</td>
</tr>
<tr>
<td>FeO Fe57 wt.</td>
<td>1.5</td>
<td>2.7</td>
<td>1.5</td>
<td>1.9</td>
<td>1.6</td>
</tr>
<tr>
<td>CaO Ca43 wt.</td>
<td>20.0</td>
<td>12.8</td>
<td>17.4</td>
<td>20.6</td>
<td>13.0</td>
</tr>
<tr>
<td>Na2O Na23 wt.</td>
<td>0.3</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>P2O5 P31 wt.</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.003</td>
<td>0.003</td>
</tr>
</tbody>
</table>
Most LA-ICP-MS analyses require an internal standard, which is an element whose concentration in the sample is known. Because the serpentinite matrices are heterogeneous, we could not a priori obtain an internal standard concentration for every ablation spot. For these reasons, all major and minor elements were analyzed. After elemental ratios were corrected using external standards, their oxides were assumed to sum to 100% (on an anhydrous level because volatiles were not analyzed). This approach allowed us to calculate the major and minor element concentrations of every ablation spot. The Si content determined in this way was then used as an internal standard to convert trace element signals into concentrations (Figure 2c). The accuracies of our major element compositions are within 5% (Figure 2d) for glasses and ultramafic minerals (olivine and pyroxene), indicating that our multistandard calibrations reduce matrix biases sufficiently for investigating fine-grained ultramafic materials, such as serpentine. One concern in analyzing serpentinite matrices is the high degree of heterogeneity. To minimize heterogeneity effects, we used a 110 micron spot size for the laser. Figures 2a and 2b represent examples of an ablation analysis of a serpentinized pyroxene. Relatively constant internal standard-normalized signal ratios as a function of time signify relative homogeneity on the 110 micron scale (Figure 2b). In some cases, 11B/30Si ratios are not constant with time. Such cases are likely to be the result of surface contamination of the thin section; these data were discarded or remeasured after washing the thick section again by ultrasonication with ethanol.

Detection limits for the analytical protocols described above are as follows. For Li, detection limits (defined as 3 times the standard deviation of the blank background signal divided by the sensitivity) were 0.01 ppm. This is sufficiently low to investigate Li in ultramafic minerals and serpentinites. Detection limits for B were more difficult to assess. On the basis of the blank backgrounds, the theoretical detection limits for B were 0.1 ppm. However, when we analyzed standard reference materials with B contents known to be less than 1 ppm, we consistently obtained B concentrations in the range of 1–1.5 ppm. Thus, we consider 1.5 ppm to be the true detection limit of B for our laser ablation setup. The difficulty in analyzing low B concentrations is well-known [Marshall and Ludwig, 2004]. These poor detection limits are usually attributed to surface contamination of the samples themselves. We believe this is not the case in our samples because our samples have been repeatedly cleaned. Instead, we suspect that during laser ablation, B is liberated from the sample tubing (which contains a memory of previous B measurements) connecting the laser ablation cell to the ICP-torch because replacement of this tubing with clean tubing appears to decrease detection limits slightly. Sticky B on the tubing apparently is not liberated when simply running a gas background without ablation. The high B detection limits prevent us from measuring the B contents of primary ultramafic minerals, such as olivines, as B contents in olivines are often below 0.1 ppm [Kent and Rossman, 2002; Herd et al., 2004; Ottolini et al., 2004; Kaliwoda et al., 2008]. For this study, however, the B contents in the serpentine minerals and moderately altered olivines and pyroxenes were well above our detection limit of 1.5 ppm. Finally, in addition to individual ablation spots, we also ran several laser traverses across the samples. Laser operating conditions and spot sizes were as described above, but the laser was swept across a predefined transect at 8 microns per second. In order to smooth out the data, every three consecutive instrument measurements (magnet scans) were averaged and treated as one measurement. Raw signals were converted into concentrations as described above. Examples of laser traverses are shown in Figure 3.

External precision for individual spot measurements and traverse measurements are difficult to quantify because the heterogeneous nature of the samples precluded us from analyzing the same material repeatedly. Internal precision (standard error; SE) for a spot analysis is determined first by calculating the standard deviation of the ratio between the background-corrected count rates of the element of interest normalized to the count rate of the internal standard and then dividing this standard deviation by the square root of the number of measurements in a given laser run (typically 30–40). For most elements, including B and Li, the precision was within 5% (2 SE). Internal precision for laser traverses were calculated in the same way as spot measurements by averaging three consecutive measurements and taking the standard deviation of the three measurements. Precision for laser traverse measurements were at least an order of magnitude poorer than spot measurements (2SE for Li \sim 40%, B \sim 30%).

Whole-rock data are compiled from Agranier et al. [2007] for B and from Li and Lee [2006] for major elements and all other trace elements. Ana-
lytical details and uncertainties are provided in those papers.

4. Results

4.1. Line Traverses

[14] In Figure 3a, we provide an example of a line traverse (sample CT23) across a dark serpentinite vein (data for line scans in CT23 and CT10 are shown in the auxiliary material).1 Every point in the line scan (each point represents the average of three consecutive measurements in the laser traverse) is also shown in Figures 3b–3c in the form of an element versus element plot. The darkness of the vein is caused by the presence of tiny magnetite crystals, which represent one of the byproducts of the serpentinization of olivine or pyroxene: serpentine minerals can only incorporate small amounts of Fe, so much of the original silicate-bound Fe is oxidized and converted into magnetite. These dark magnetite-rich veins represent zones where dissolved Fe was preferentially transported and precipitated, as evidenced by the low Mg # (<0.85) compared to the whole-rock Mg # of 0.9–0.91 (Mg # = molar Mg/(Mg + Fe)). In contrast, the borders of the veins are serpentine rich and characterized by very high Mg # (up to 0.95) due to loss of Fe to the veins during serpentinization. We also observed small (<1 mm) Fe-rich pockets that have no obvious association with magnetite-rich veins. The Fe-rich pockets are often associated with high Ca content (Figure 3b) and may represent local precipitation of Ca-bearing silicates from Ca- and Fe-rich fluids (serpentine minerals do not incorporate Ca into their structures); these Ca- and Fe-rich pockets might be microscopic analogs of rodingite veins. Li and B contents along the line scan are shown in Figure 3a. Li is generally depleted

1Auxiliary materials are available in the HTML. doi:10.1029/2008GC002078.
(<0.4 ppm) in the serpentinized veins or pockets relative to the whole rock (~0.4 ppm). In contrast, B is enriched in serpentine-rich zones (10–20 ppm) relative to relict olivine (<1 ppm [Kent and Rossman, 2002; Kaliwoda et al., 2008]), but there is no appreciable difference between whole-rock measurements and individual data points on the line scan. Individual (averaged of three passes) data points for other scans are shown in Figure 4.

4.2. Individual Spot Measurements

The results of individual spot measurements for five different rock samples (NB22, NB10B, NB24, CT10 and CT23) are shown in Figure 4 (colored symbols) along with the combined results of line traverses from CT10, CT23 and NB10B (data are presented in Table 1). Whole-rock B and Li from Agranier et al. [2007] and Li and Lee [2006] corresponding to these samples are also shown for reference. We have denoted with a gray box the region corresponding to the B, Li, and Mg # expected for unaltered (e.g., not serpentinized or metasomatized) peridotites [Ryan and Langmuir, 1987; Chaussidon and Jambon, 1994; McDonough and Sun, 1995; Leeman, 1996; Seitz and Woodland, 2000; Tomascak, 2004; Woodland et al., 2004]. Whole-rock Li contents (0.08–0.2) are similar or only slightly elevated with respect to unaltered peridotites (0.1–1 ppm). However, whole-rock B contents (~10 ppm) are elevated by at least an order of magnitude relative to unaltered peridotites (<1 ppm [Agranier et al., 2007]). Individual spot measurements for B show that serpentine minerals (identified by high Mg #, e.g., Mg # > 0.92) are very rich in B (up to 55 ppm), suggesting that the dominant hosts of B in the FRO serpentinites are the serpentine minerals themselves. In contrast, individual spot measurements of Li indicate that serpentine-rich zones often have Li contents lower than the unaltered peridotitic minerals. In a similar study by Decitre et al. [2002], most of the serpentinite minerals had higher Li contents than the relict minerals. However, in the FRO serpentinites, relict olivines and pyroxenes seem to hold as much and sometimes more Li than the serpentine minerals. Magnetite-rich zones (veins and rodingite pockets) do not seem to show any significant enrichments or depletions in B relative to the whole-rock.

5. Discussion

5.1. B Enrichment in Serpentinites

The in situ and whole-rock B contents confirm that serpentine minerals are the dominant host of B in serpentinized rocks (Figures 1d and 3). The FRO peridotites, although serpentinized under much lower water/rock ratios than abyssal peridotites, have much lower whole-rock B contents (3–15 ppm) than serpentinized abyssal peridotites, which have hundreds of ppm B (Figure 1d) [Savov et al., 2005a, 2005b]. The lower B contents of the FRO peridotites are due to lower initial B contents imparted by different styles of serpentinization (low water/rock ratio versus high water/rock ratio) or to loss of B during tectonic obduction onto the continent. Regardless of why the FRO peridotites have lower B contents than serpentinized abyssal peridotites, the B contents of the FRO peridotites are still much higher (by a factor of 10–20) than any estimates of
the upper mantle’s B content (<0.3 ppm [McDonough and Sun, 1995; Leeman and Sisson, 1996; Ottolini et al., 2004]). According to Tenthorey and Hermann [2004] and Scambelluri et al. [2004], significant amounts of B may be retained in olivine during prograde metamorphism and dehydration of serpentine. High B contents in peridotites could thus signify a serpentinite protolith.

5.2. Variable Enrichments and Depletions in Li

FRO whole-rock Li contents (~2 ppm [McDonough and Sun, 1995; Leeman and Sisson, 1996; Ottolini et al., 2004]) are lower to only slightly higher than estimates of the upper mantle [McDonough and Sun, 1995; Leeman and Sisson, 1996; Ottolini et al., 2004] and are thus lower than serpentinitized abyssal peridotites (<4 ppm; Figure 1c) [Benton et al., 2004; Niu, 2004]. A similar result was found by Decitre et al. [2002] for oceanic peridotites from slow-spreading ridges: whole-rock Li contents were mostly <5 ppm. In any case, despite the lack of obvious enrichments in whole-rock Li, the FRO serpentinites have super-primitive mantle Li/Yb ratios (primitive mantle Li/Yb of 3–4 from McDonough and Sun [1995]) (Figure 5). In part, this could be because the whole-rock Yb contents in the FRO serpentinites are very low due to extensive (~20–30%) melt depletion [Li and Lee, 2006]. Are the lower Li contents in the FRO peridotites compared to serpentinitized abyssal peridotites due to preferential loss of Li during prograde metamorphic processes or are they low because of an initially lower enrichment in Li during the formation of serpentinite? Our LA-ICP-MS measurements indicate that some serpentinite minerals can have higher and lower Li than the host whole-rock and the less altered olivines (Figure 4), but for the most part, the relict olivines appear to retain most of the Li budget in the whole-rock. At face value, the low Li contents in some serpentinite minerals seems peculiar as it implies that Li may have been locally leached out of the system during serpentinization (but net leaching is unlikely because Li contents in some samples are still higher than primitive mantle). In addition, in the study of Decitre et al. [2002], serpentinite minerals tended to have higher concentrations of Li than relict olivines and pyroxenes, but they noted that some serpentinite minerals had lower Li contents than relict olivines, particularly in the more harzburgitic lithologies. These observations collectively indicate that Li incorporation into serpentinite minerals is complicated. One explanation is that Li has different affinities for serpentinite minerals of different origin. Serpentine minerals can form from olivines, clinopyroxenes, and orthopyroxenes, but we were not able to distinguish confidently between the different serpentine origins due to the very fine-grained nature of these rocks. We speculate that the serpentine fractures and inclusions in the relict olivines are probably significant reservoirs of any secondary Li added to the peridotite during hydrothermal alteration.

Like B, the Li contents in the FRO peridotites are clearly lower than abyssal peridotite B and Li contents. The important difference is that B contents of the FRO are still an order of magnitude higher than the B content of the mantle and thus indicate unequivocal enrichment (Figures 1d and 4a). However, the Li contents are no more than a factor of two higher than the Li content of model primitive mantle. Given that the FRO peridotites are harzburgites, it is reasonable to expect that they have experienced Li depletion during the high degrees of melt extraction required to generate harzburgites. If so, the relatively fertile levels of Li suggest that the harzburgites may have been slightly reenriched in Li. In section 5.3, we discuss how to quantify the level of Li reenrichment.

5.3. Detecting Li Enrichment Using Li/Yb-Yb Plots

Because the Li enrichments in serpentinitized ophiolitic rocks may be subtle, as exemplified by the FRO peridotites, detecting the Li enrichment...
signal requires that we understand baseline Li contents imparted during partial melting processes in the mantle. Although it is commonly thought that the bulk partitioning behaviors of Li and Yb during mantle melting are similar (since Li/Yb ratios in primitive mid-ocean ridge basalts are constant and only slightly lower than that of primitive mantle), measurements of Li contents in peridotitic minerals indicate that olivine is the main carrier of Li [Ryan and Langmuir, 1987; Seitz and Woodland, 2000; Ottolini et al., 2004]. On the basis of the Li contents in olivine, orthopyroxene, and clinopyroxene in spinel peridotite xenoliths, the mineral/melt partition coefficients follow the sequence: $D_{\text{Li}}^{\text{ol}} > D_{\text{Li}}^{\text{opx}} \sim D_{\text{Li}}^{\text{cpx}}$ [Seitz and Woodland, 2000]. In contrast, clinopyroxene is the dominant host of Yb such that $D_{\text{Yb}}^{\text{cpx}} > D_{\text{Yb}}^{\text{opx}} > D_{\text{Yb}}^{\text{ol}}$. Because progressive melt extraction leads to exhaustion of clinopyroxene and an increase in olivine proportion, the bulk partitioning (bulk partition coefficient is the average whole-rock/melt partition coefficient weighted according to the weight percent of each mineral mode) ratio of Li to Yb ($D_{\text{Li}} / D_{\text{Yb}}$) increases such that harzburgitic residues will eventually evolve to low Yb and Li contents, but more importantly to high Li/Yb ratios because Li becomes more compatible than Yb at higher degrees of melting. If Li/Yb is examined alone, the high Li/Yb ratios might give the impression of Li enrichment [Ottolini et al., 2004]. The apparent similarity of Li and Yb behavior in mid-ocean ridge basalts is probably due to a coincidence of bulk partition coefficients at low melting degrees [Ryan and Langmuir, 1987], but the similarity breaks down once clinopyroxene is exhausted.

[20] To model the evolution of Li/Yb during melting, we adopted a fractional melting model with bulk partition coefficients, which varied as the mineralogy of the peridotitic residue (e.g., nonmodal) changed with progressive melt extraction (approximated from pMELTs [Ghiorso et al., 2002] for isobaric 1.5 GPa melting; see Table 1 in the work of Lee et al. [2003] for modal abundances of minerals as a function of melting degree). The following mineral/melt partition coefficients for olivine (ol), orthopyroxene (opx), clinopyroxene (cpx), and spinel (sp) were assumed: $D_{\text{Li}}^{\text{ol}} = 0.3$, $D_{\text{Li}}^{\text{opx}} = 0.05$, $D_{\text{Li}}^{\text{cpx}} = 0.10$, $D_{\text{Li}}^{\text{sp}} = 0$ [Seitz and Woodland, 2000], $D_{\text{Yb}}^{\text{ol}} = 0.015$, $D_{\text{Yb}}^{\text{opx}} = 0.14$, $D_{\text{Yb}}^{\text{cpx}} = 0.5$, and $D_{\text{Yb}}^{\text{sp}} = 0$ [Hauri et al., 1994; Lee et al., 2007]. For a fertile lherzolite (opx = 28.1, cpx = 19.2, ol = 49.6, sp. = 3.1%), this yields bulk partition coefficients of 0.18 for Li and 0.14 for Yb, yielding $D_{\text{Li}} / D_{\text{Yb}} = 1.3$. Beyond 30% melting, wherein the residue is a clinopyroxene-free harzburgite (opx = 35.5, cpx = 0, ol = 62.9, sp. = 1.6%), the bulk partition coefficient is 0.22 for Li and only 0.05 for Yb, yielding $D_{\text{Li}} / D_{\text{Yb}} = 4.4$, which implies that Li becomes nearly 4 times more compatible than Yb.

[21] Figure 5 shows how Li/Yb varies with Yb in peridotite residues as a function of melting degree. Li/Yb ratios increase with increasing melt extraction implying that high Li/Yb ratios in peridotites do not by themselves indicate Li enrichment. Although our melting curve can be further refined with more accurate partitioning data, Figure 5 indicates that Li enrichment has occurred if the data in Li/Yb-Yb space plot above the melting curve. In the case of serpentinized abyssal peridotites [Niu, 2004], nearly all samples plot above the melt depletion line, implying unequivocal Li enrichment. In the case of the FRO peridotites, some of the harzburgitic lithologies have Li/Yb values plotting above the melt depletion line, but more fertile lithologies, such as lherzolites plot close to the melt depletion line. The apparent susceptibility of harzburgites to incompatible-element enrichment is commonly observed and is easily explained by the fact that the concentrations of incompatible trace elements like Li in harzburgites is very low, hence addition of even small amounts of contaminants have a large influence on the trace element composition of the harzburgite. Lherzolites are not as depleted in such elements and therefore are not as sensitive to contamination. We conclude from Figure 5 that some of the FRO peridotites have experienced secondary addition of Li after initial depletion by partial melt extraction. The fact that the Li/Yb ratios of these Li-reenriched harzburgites are far higher than typical MORBs, indicates that Li, not Yb, was preferentially introduced. This decoupling of Li from Yb suggests the involvement of aqueous fluids. In the case of the FRO, this is likely associated with serpentinization. In mantle xenoliths, high-temperature metasomatic effects would have to be considered.

[22] In conclusion, plots of whole-rock (or reconstructed whole-rock) Li/Yb versus Yb can be helpful in identifying whether Li enrichment has occurred in ultramafic lithologies, particularly in harzburgitic residues. In addition to serpentinization, there are many other ways to get secondary Li enrichments. For example, mesomatism by carbonatite melts and subduction-related fluids can give rise to Li enrichments [Cooper et al., 1995; Brenan...
et al., 1998a; Brenan et al., 1998b; Ottolini et al., 2004; Halama et al., 2007].

6. Conclusions and Implications

[23] Feather River ophiolites (FRO) are enriched in B relative to unaltered peridotites, though not to the extent seen in abyssal peridotites. Serpentine minerals are highly enriched in B, indicating extensive introduction of B during serpentinization. In contrast, whole-rock Li contents in the FRO are relatively low compared to typical abyssal peridotites, which are thought to have undergone weathering serpentinization. In addition, serpentine minerals often have low Li contents compared to the whole-rock and unaltered peridotite minerals, which implies either that Li was lost during serpentinization or only small amounts were added. High whole-rock Li/Yb ratios in harzburgites can in part be explained by the increasing bulk compatibility of Li compared to Yb with progressive exhaustion of clinopyroxene and increase in olivine mode during partial melting. This implies that high Li/Yb ratios in ultramafic lithologies do not, by themselves, imply preferential metasomatic enrichment in Li. However, peridotite residues that plot above the Li/Yb versus Yb melt depletion curves may have experienced Li reenrichment (by serpentinization or other metasomatic processes) superimposed on a previous Li depletion associated with melt extraction. Recycling of serpentinites back into the mantle should generate a wide spectrum of B and Li element signatures owing to the large diversity of B and Li enrichments seen in serpentinites ranging from abyssal peridotites to oceanic lithospheric peridotites. However, if oceanic lithospheric peridotites, such as the Feather River Ophiolites, are the dominant types of serpentinite subducted back into the mantle, pronounced B enrichments and only subtle Li enrichments would be expected.

Acknowledgments

[24] This work was supported by NSF and Packard Foundation grants to Lee. We thank W. P. Leeman for obsidian glass standards. Most of the laser ablation analyses were done by Oka, whose summer undergraduate experience was supported by the above-mentioned funds. We are indebted to critical reviews by P. Tomascak and J. Ryan and the editorial suggestions of V. Salters.

References

Rüpke, L. H., J. P. Morgan, M. Hort, and J. A. D. Connolly (2004), Serpentine and the subduction zone water cycle,