Climate-independent paleoaltimetry using stomatal density in fossil leaves as a proxy for \(CO_2 \) partial pressure

Jennifer C. McElwain Department of Geology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, Illinois 60605, USA

ABSTRACT

Existing methods for determining paleo-elevation are primarily limited by (1) large errors (±450 m), (2) a reliance on incorrect assumptions that lapse rates in terrestrial temperature decrease with altitude in a globally predictable manner, and/or (3) are inherently climate dependent. Here I present a novel paleoaltimetry tool, based on a predictable, globally conserved decrease in \(CO_2 \) partial pressure (\(pCO_2 \)) with altitude, as indicated by increased stomatal frequency of plant leaves. The approach was validated using historical populations of black oak (\(Quercus kelloggii \)). These analyses demonstrate highly significant inverse relationships between stomatal frequency and \(pCO_2 \) (\(r^2 > 0.73 \)), independent of ecological or local climatic variability. As such, this is the first paleobotanical method to be globally applicable and independent of long-term Cenozoic climate change. Further, tests on modern leaves of known elevations indicate that species-specific application to the fossil record of \(Q. kelloggii \) (= \(Q. pseudoalyrata \)) will yield paleo-elevation estimates within average errors of ±300 m, representing a significant improvement in accuracy over the majority of existing methods.

Keywords: paleo-elevation, stomatal density, California, paleoaltimeter, carbon dioxide, \(Quercus \).

INTRODUCTION

Despite advances in paleoaltimetry (Forest et al., 1995; Rowley et al., 2001; Sahagian et al., 2002; Spicer et al., 2003; Mulch et al., 2004), uncertainties and limitations associated with current methods hamper our ability to test hypotheses on the links among tectonic uplift, paleo-elevation and paleoclimate. Theoretical basis for a \(pCO_2 \) paleoaltimeter

The volume percentage of \(CO_2 \) (mole fraction) in the atmosphere remains almost constant with increasing elevation (Gale, 1972). The partial pressure (i.e., mass per volume) of \(CO_2 \) decreases with decreasing barometric pressure [\(pp(z) \) in pascals]:

\[
pp(z) = 101,325 \left(\frac{m_{\text{air}}}{R} \right) \frac{z}{p_{\text{CO}_2}},
\]

where \(m_{\text{air}} \) is the molecular weight of air \((28.964 \times 10^{-3} \text{ kg mol}^{-1})\), \(z \) is altitude in meters, \(g \) is acceleration due to gravity \((9.806 \text{ m s}^{-2})\), \(R \) is the universal gas constant \((8.3145 \text{ J mol}^{-1} \text{ K}^{-1})\) and \(t \) is mean July temperature \((\text{in Kelvin})\). Under the assumptions that (1) globally averaged atmospheric pressure at sea level \((101,325 \text{ Pa})\) has not changed significantly over the Cenozoic, as atmospheric mass has been relatively invariant (Tajika and Matsui, 1993), and (2) available estimates of molar volume of \(CO_2 \) at sea level (from here on referred to as sea-level \(CO_2 \)) from paleo-\(CO_2 \) proxies (Royer et al., 2004) are sufficiently accurate for the Cenozoic, it follows that change in \(pCO_2 \) with elevation is globally predictable for any time over the past 65 m.y. according to:

\[
cd_2(z) = \frac{pp(z)}{101,325} cd_1(z),
\]

where \(cd_2 \) and \(cd_1 \) are \(pCO_2 \) (Pa) at altitude \(z \) (m) and sea level, respectively. The latter assumption is dependent on the proxy or indicator method employed. The stomatal proxy method (Woodward, 1987) has been used to estimate Quaternary \(CO_2 \) within ±1 to ±3 Pa of ice-core measurements (McElwain et al., 2002) and has an accuracy range of ±1 to ±4 Pa in the Tertiary (Royer et al., 2004). Therefore, a \(pCO_2 \) based paleoaltimeter can be developed by using the well-established stomatal \(CO_2 \) proxy method by solving equation 2 for paleoaltitude \(z \) as follows (Beerling and Royer, 2002; McElwain, 2002):

\[
(z) = \ln \left(\frac{cd_2}{cd_1} \right) R \frac{t}{-m_{\text{sat}} g},
\]

where \(cd_2 \) and \(cd_1 \) are the estimated \(pCO_2 \) calculated by using the stomatal proxy \(CO_2 \) method of a high-altitude fossil plant taxon from paleoaltitude \(z \) (in meters) and an isochronous sea-level taxon, respectively.

© 2004 Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or editing@geosociety.org.

Geology; December 2004; v. 32; no. 12; p. 1017–1020; doi: 10.1130/G20915.1; 4 figures; Data Repository item 2004162.
Material and methods
To investigate the potential sensitivity of this new paleoaltimeter approach, the rates of change in SD and SI with elevation were investigated by using georeferenced herbarium specimens of *Q. kelloggii* collected from multiple populations across California between 1934 and 1935. *Q. kelloggii* has one of the widest elevation ranges (60 to ~2440 m) of deciduous angiosperm trees in North America (Burns and Honkala, 1990) and, as *Q. pseudolatina* (Condit, 1944), is well represented in high-elevation Miocene–Pliocene fossil floras of California and Oregon. Herbarium leaf samples were first divided into subsets of “sun” and “shade” leaves on the basis of the degree of undulation of their epidermal cell anticlinal walls, as light intensity in addition to *p*CO₂ can influence stomatal development and hence SD and SI (Lake et al., 2001), although much less so than CO₂ (Kürschner, 1997; Sun et al., 2003). SD and SI were calculated from five randomly sampled areas per leaf cuticle using a Leica DMLB epifluorescence microscope following standard protocols (McElwain et al., 2002).

Leaf stomatal frequency change with elevation
Highly significant, but nonlinear, positive correlations were observed between “shade leaf” ($r^2 = 0.88$, $P \leq 0.001$) and “sun leaf” ($r^2 = 0.77$, $P \leq 0.001$) SD and elevation (Fig. 1). The analysis also indicated that the strength of the relationship was driven primarily by the SD of leaves collected at higher elevations (>1000 m) (Fig. 1). Further analysis of SD and elevation for both sun ($r^2 = 0.88$, $P \leq 0.001$) and shade ($r^2 = 0.74$, $P \leq 0.001$) morphotypes confirmed the presence of highly significant linear correlation above 1000 m (Figs. 1C, 1D). The observed SD increases with elevation in *Q. kelloggii* (Fig. 1) most likely reflect the effects of decreasing *p*CO₂ on stomatal initiation, the nonlinearity of which is expected, as numerous experimental and historical observations demonstrate diminished SD response rate with increasing CO₂ (Kürschner et al., 1997). Increased cloudiness with elevation in California diminishes the possibility that the observed SD increases with elevation are due to increasing light intensity in either shade or sun leaves. Significant increases in SI ($r^2 = 0.59$, $P \leq 0.001$; not shown) with elevation also preclude the alternative possibility, that decreased mean annual temperature with increasing elevation resulted in a reduction in epidermal cell area and/or number, thereby indirectly increasing SD (Kürschner, 1997; Lake et al., 2001).

Next, *p*CO₂ at the elevation of original collection of each herbarium sample was calculated by applying equation 2 to measurements of ambient sea-level CO₂ for 1934 and 1935 (30.6 Pa) from the Siple Station ice core (Neftel et al., 1994). Stomatal density (sun: $r^2 = 0.52$, $P \leq 0.001$; shade: $r^2 = 0.72$, $P \leq 0.001$) and SI (sun: $r^2 = 0.35$, $P \leq 0.05$; shade: $r^2 = 0.52$, $P \leq 0.001$) showed strong inverse linear relationships with *p*CO₂ changes above 1000 m elevation (Fig. 2) and significant, nonlinear inverse relationships when the entire SD data set for elevations >0 m were regressed (sun: $r^2 = 0.75$, $P \leq 0.0001$; shade: $r^2 = 0.88$, $P \leq 0.001$). Stable carbon isotopic analyses of the same leaves revealed consistently more negative δ¹³C values (<28%) in the three lowest elevation samples compared with those of higher elevation (>27%) indicative of reduced stomatal conductances in these samples. These δ¹³C differences suggest that physiological responses to perhaps higher temperatures or poorer water availability are likely responsible for the observed nonlinearity of the SD response below 1000 m.

A weaker relationship between sun leaf SI and *p*CO₂ (Fig. 2B), in comparison to that of shade leaf SI (Fig. 2D), is consistent with expectations, if *p*CO₂ decline rather than increasing light intensity is the primary controlling factor of SD and SI. Shade leaves typically have lower maximum stomatal conductances than sun leaves because of shade leaves’ light-limited and moister microenvironments. Hence, decreasing *p*CO₂ with elevation would be expected to exert a stronger physiological pressure on shade leaves to maximize stomatal conductance (via increased SD and SI) in order to maintain a positive carbon balance and a lesser pressure on “sun leaves” owing to the negative physiological impact such anatomical responses would have on their water-use efficiencies. The marked curvilinearity of sun leaf SD responses to *p*CO₂ at lower elevations (Fig. 2B) compared with that of shade leaves also suggests that analysis of fossil shade leaf SD (not SI), in conjunction with δ¹³C (to identify any possible low-elevation
physiological outliers indicated by more negative δ¹³C values), will yield the most accurate paleoelevation estimates in future application of the stomatal paleoaltimeter to fossil floras.

TEST OF CLIMATE INDEPENDENCE

The climate independence of a pCO₂ paleoaltimeter relies on two important prerequisites: (1) decreases in pCO₂ with elevation are globally predictable and relatively insensitive to changes in local or global July temperatures (r; equation 3) and (2) the relationship between SD and SI with pCO₂ is not influenced by regional differences in terrestrial temperature lapse rates or climate.

The first prerequisite is supported by the observation that the pCO₂ decrease with elevation is relatively insensitive to deviations in mean July temperature (equation 2) irrespective of differences in ambient sea-level CO₂ (data not shown). For example, a mean July paleotemperature estimate for an Eocene high-elevation fossil flora with an error of ±10 °C would result in a paleoelevation error of only ±50 m.

To test the second prerequisite, SD and SI were collected from an additional independent set of Q. kelloggii herbarium specimens for which historical climate records (Karl et al., 1990) were available within 0.15° latitude of the specimen for the year of leaf growth (Data Repository Table DR1). Stomatal densities and indices of both sun and shade leaf samples collected between 1898 and 1964 and spanning wide latitudinal temperature (33°14’W to 41°21’W) and longitudinal (116°43’N to 122°17’N) precipitation gradients showed no significant correlations with mean spring or summer temperature or mean annual or spring precipitation (r² = 0.22, 0.009, 0.015, 0.011). When regressed with sea-level CO₂, however, SD showed the expected inverse relationship (r² = 0.69). These results support the conclusion that a new partial pressure–based paleoaltimeter, using SD as a proxy for pCO₂, will be independent of long-term Cenozoic climatic cooling when applied to the fossil record.

LIMITATIONS AND PROJECTED PALEOELEVATION ERRORS

Both the magnitude and rate of SD response by plants to pCO₂ are highly species specific (Beerling and Royer, 2002). Therefore, it is unlikely that this method of estimating paleoelevation can be applied to fossil floras not containing extant species, limiting the method to Eocene and younger fossil floras. Further, as most species occupy relatively narrower elevation ranges than Q. kelloggii, they are unlikely to be present in both high-elevation and coeval sea-level fossil floras. In such cases, estimation of both high-elevation (cd₂; equation 3) and sea-level (cd₁; equation 3) CO₂ will be necessary from different extant fossil species calibrated independently with their respective species-calibration data sets.

More critical is the observation that stomatal frequency responses by plants to pCO₂ are often nonlinear and show a tendency to saturate with increasing sea-level CO₂ (Kürschner et al., 1997). This observation has important implications for application of a stomatal pCO₂ paleoaltimeter to periods characterized by more elevated sea-level CO₂ than that of the present day. To explore this potential limitation further, Q. kelloggii SD responses to pCO₂ for three different historical intervals—(1) 1891–1900, (2) 1934–1935, and (3) 1936–1940, characterized by similar sea-level CO₂ (29.5, 30.6, and 30.7 Pa, respectively)—were compared with those from 2003 when sea-level CO₂ (37.5 Pa) was >20% higher because of higher fossil fuel use (Neftel et al., 1994). The data are encouraging, as no saturation in the SD response to sea-level CO₂ is apparent. However, although the slopes of the SD re-

sponses are very similar, the intercepts are significantly different (Fig. 3), suggesting that differences in sea-level CO₂ between a modern SD calibration data set and that of the fossil flora for which paleoelevation is being estimated may introduce a potentially large paleoelevation error.

To estimate the magnitude of this potential error, the elevations of 11 widely geographically spaced trees of Q. kelloggii (Table DR2; see footnote 1), collected at precisely known elevations from California in summer 2003, were estimated by using the SD calibration data set from 1934 to 1935 to calculate cd₂ (equation 3). As expected, owing to differences in the SDs of SD vs. pCO₂ between 1934–1935 and 2003 (Fig. 3), the average elevation error was large (~±2000 m; data not shown). However, because the slopes of the SD response to pCO₂ for both 1934–1935 and 2003 are so similar (Fig. 3), application of a simple correction factor to cd₂, taking into account differences in the intercepts (calculated as the difference in cd₂ [equation 3] between 2003 and the 1934–1935 calibration data set), reduced the average error of estimated elevation to ~±300 m (Fig. 4). Application of this new pCO₂ paleoaltimeter to high-elevation fossil floras will thus require correction of cd₂ in equation 3 by adding or subtracting (cd₂(fossil) − cd₂(calibration)). Use of this correction factor will ensure more accurate paleoelevation estimates from fossil-leaf SD during intervals when sea-level CO₂ was both higher as in the Eocene (~56 Pa) and lower as in the Miocene (~22.5–32.5 Pa) than that of the present day (~37 Pa).

CONCLUSIONS

Although these results are preliminary and further exploration of biological and environmental factors influencing the stomatal paleoaltimeter is required, it is projected from the analyses carried out here that application to the fossil record of Q. pseudolotyra n will yield paleoelevation estimates within average errors of ~±300 m, whether linear or nonlinear transfer functions are used to estimate cd₂ from SD (Fig. 4). Such errors are lower than those associated with the majority of existing paleoaltimeters. However, as demonstrated in Figure 4, because of the nonlinearity of SD responses to pCO₂, results indicate that paleoelevations of ~<1000 m are likely to be underestimated, whereas those above 2000 m are more likely to be slightly overestimated. De-
Oak Ridge, Tennessee, Oak Ridge National Laboratory, Information and Analysis Center, Environmental Science Division Publication 3404, 389 p.

Woodward, F.I., 1987, Stomatal numbers are sensitive to increase in CO₂ from preindustrial levels: Nature, v. 327, p. 617±618.

Manuscript received 21 June 2004

Revised manuscript received 1 September 2004

Manuscript accepted 4 September 2004

Printed in USA
Climate-independent paleoaltimetry using stomatal density in fossil leaves as a proxy for CO₂ partial pressure

Jennifer C. McElwain

Geology 2004;32:1017-1020
doi: 10.1130/G20915.1