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1 Introduction

In a previous paper, Bhandari (2013a) studied a redistribution problem with heterogeneous
beliefs, heterogeneous information and aggregate �uctuations. A Pareto planner assigned
consumption to two uncertainty averse agents who di�ered in their initial priors over a
common set of forecasting models of aggregate endowment. One of the agents received a
privately observed taste shock. The analysis exploited two key features, presence of aggregate
risk and the multiplicative nature of taste shocks. In this paper we study implications of
model misspeci�cation in environments with no aggregate risk and additive un-insurable
idiosyncratic income risk. Absent other forms of heterogeneities, under complete markets,
risk sharing scheme implies constant consumption for all the agents. In the paper we study
the consequences of two forms of market incompleteness.

First we restrict agents such that they can only trade a risk-free bond. The key �nding
is that in contrast to the results of this paper, relative pessimism is diminishing in wealth,
a result that is not dependent on the value of IES. Having a large amount of wealth in
assets that yield non-contingent return, lowers the volatility of consumption and consequently
concerns for misspeci�cation for richer agents.

Next we study Pareto optimal risk sharing schemes under the restrictions that individual
incomes are private information. Working with ex ante identical but �nite agents, we impose
an additional restriction that transfers to individuals only depend on the reports of histories
of their incomes. This rules out trivially optimal allocations where the planner can impose
the �rst best by using reports from one agent to punish possible misreports by the second
agent.

Within the class of such restricted allocations, the e�cient risk sharing scheme without
the concerns for misspeci�cation have a property that either one of the two agents is driven to
immiseration. This comes from the dynamics of continuation values associated with e�cient
incentives. Since agents linearly aggregate continuation values a mean zero perturbation
of continuation values (from a static risk sharing scheme) delivers the same ex ante value
but relaxes incentive constraints. The insight in Atkeson Lucas (1992) suggests that such
perturbations are always pro�table and optimal incentives would imply that continuation
values will spread. With enough bad shocks, some agent can drift towards immiseration.
However, as we show in this paper, when there are concerns for uncertainty, agents with lower
continuation values are relatively more pessimistic and consequently over-estimate the states
when they have lower continuation values. The planner alters the risk sharing arrangement
by reducing the amount by which continuation values are lowered. This generates a force
away from immiseration.

2 Setup

1. Agents : There is a �nite set I = 2 of in�nitely lived agents. Each type i has a unit
mass of identical individuals. Henceforth i = 1, 2 refers an arbitrary individual of type
i.

2



2. Technology : For most of the analysis, I study an exchange economy 1. There is a
Lucas tree that yields a constant amount of aggregate endowment ȳ. This output is
randomly split into the 2 agents with shares st ∈ S ⊂ ∆ = {s ∈ R2

+ :
∑

i si = 1}.
Every individual of type i has the same endowment : yi,t = ȳsi,t.

3. Information: Individual incomes yi,t are privately observed. In section 3, we will
study a bond economy that corresponds to assuming hidden savings as well.

4. Models: We allow for the approximating model to be speci�ed as a prior over a set
of modelsM

� M be the cardinality of the Model Space

� M = {αm}m≤M is the Model Space

Given a model we have P (s∗|s,m) = PS[αm]. We can have the model space evolving
(like regime changes) as a Markov process {M,PM , π0

M} 2. With this setup we have
the following state-space

mt+1|mt ∼ PM
st+1|st,mt ∼ PS(αmt)

5. Preferences : Following Hansen and Sargent [2007] the preferences of the agent are
described by 2 sets of objects,

� Ambiguity ∀i ∈ I,
(a) Approximating Models : 〈P i

M , P
i
S, π

i〉
(b) Entropy Penalty - θij where j = 2 captures the doubts about the parameter

m and j = 1 about the s∗ given s

� Time and Risk :

(a) Risk Aversion - γi

(b) Subjective discount factor - δi

The agents can have potentially di�erent preferences but I will mostly concentrate on the
cases where the only di�erences in the agent is their endowment stream.

1In section 4 , I extend some results to a production economy with technology linear in labor and agents
endowed with productivities. The main reason for the departure is to study the temporal properties of �tax�
wedges.

2This allows me interpret type (II) ambiguity as concerns for unknown parameters when PM = I and
regimes otherwise.

3



3 Bond Economy

This section describes a bond economy without aggregate risk. The agents are identical
with respect to the their endowment shocks and di�er in the initial asset holdings. I �rst
begin with a static (partial equilibrium) example explaining how the resolution of model
uncertainty depends on the asset levels. In particular note that γ plays a minimal role here
in driving the results.

3.1 Static Example

Consider an agent with a risky endowment y. The support for y is such that consumption is
non-negative even for the worst income shock. The agent has risk free assets which pays b.

c(y, b) = y + b

V R(b) = min
m

Em[u(c) + θ log(m)]

such that Em = 1

Proposition 1. For every b there exists a threshold ȳ(b) such that ∂m(y,b)
∂b

> 0i�y > ȳ(b)

Since p̃(y) = p(y)m∗(y, b) we have that the richer the agent over weights �su�ciently�
good realizations of y. The intuition is that with higher b the relative �uctuations in y
are not large enough to distort the distribution of y. Large assets provide the bu�er for
self-insurance and hence reduce concerns for model uncertainty.

Figure 1 shows an example with θ = 1 and γ = .5 and a risky endowment y that has
a density proportional to a standard normal. The solid line depicts the density under the
approximating model. The two dotted lines show how the worst case density �shifts� we
change the asset levels. In particular the dotted red line being closer to the benchmark
illustrates the self-insurance e�ect of high assets. Figure 2 shows how the threshold ȳ(b)
�attens out as b increases. The shaded region are the realizations of y that are relatively
over weighted by the marginally `rich' agent.

3.2 Dynamic case

This section describes the bond economy without aggregate risk : Y = {ȳ} and normalizing
aggregate supply of bonds to zero. The shocks s instead of a�ecting the tastes of Agent 2
a�ect the share of endowments. The beliefs of the agents are given by initial priors on a
�nite set of Markov models for s denoted by M = {PS(s∗|s,m)}m and π0

i ∈ ∆(M). The
endowments of Agent 1 and Agent 2 are ys, y(1− s) respectively3.

With the zero aggregate supply of bonds and common initial priors - π0, the su�cient
state variables for this economy are (B1, s, π) :- The assets of Agent 1, current realization of
the distributional shock and the common prior over the set of modelsM

3Note that s is not an idiosyncratic shock as all agents of type i have the same endowment. This allows
us to aggregate symmetric decisions over individual types of agent and keep track only of how wealth is
distributed across types.
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Figure 1: This �gure shows the reference and worst case models for two levels of assets in the

static example with θ = 1,γ = 0.5

Figure 2: This �gure plots ȳ(b) for the static example with θ = 1,γ = 0.5. The shaded region are

realizations of y for which m∗b(y, b) > 0
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3.2.1 Agents problem

Given bond prices q, let Qi(b, B1, s, π) be the value of Agent i with assets b and aggregate
state (B1, s, π)

Q1(b, B1, s, π) = max
c,b∗

u(c) + δTθ2T1
θ1,m,s

Q1(b∗, B1∗, s∗, π∗) (1)

subject to
c+ qb∗ = ys+ b (2a)

π∗ ∝
∑
m

PS(s∗|s,m)π(m) (2b)

b∗ ≥ b1(s) (2c)

Where b1(s) is the natural debt limit for Agent 1 in state s
Similarly we can describe Agent 2's problem as

Q2(b, B1, s, π) = max
c,b∗

[
u(c) + δT2

θ2
T1
θ1,m,s

Q2(b, B1∗, s∗, π∗)
]

(3)

subject to
c+ qb∗ = y(1− s) + b (4a)

π∗ ∝
∑
m

PS(s∗|s,m)π(m) (4b)

b∗ ≥ b2(s) (4c)

Where b2(s) is the natural debt limit for Agent 2 in state s.

Remark 1. Along equilibrium paths market clearing will impose upper limits on asset posi-
tions of individual agents too

3.2.2 Equilibrium

Given q, the interior solutions to these problems pin down the consumption savings decisions
of both agents. Let Bi[b, B1, π, s, q] be the savings of Agent i.

B1(b, B1, s, π, q) : quc[ys+ b− qb∗]− δẼ1
sQ

1
b(b
∗, B1∗, s∗, π∗) = 0 (5a)

B2(b, B1, s, π, q) : quc[y(1− s) + b− qb∗]− δẼ2
sQ

2
b(b
∗, B1∗, s∗, π∗) = 0 (5b)

The expectations are taken with respect to the worst case model averaged marginals∑
m π̃i(m)P̃ i

S(s∗|s,m). Like before π̃i and P̃ i
S can be computed using the value functions

Qi for each agent.
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3.3 A Minimally Stochastic case

We �rst analyze the equilibrium under special dynamics for s which reduces the problem
essentially to a 2 period version that can be quickly solved and study how wealth di�erences
a�ect the worst case beliefs of agents. The simple economy is constructed under the following
dynamics for {st}t>0 given s0

1. s1|s0 ∼ PS[s∗|s,m]

2. st+1 = st for t ≥ 1

This is a minimally stochastic case which features an absorbing state for st from t = 1.
The value of the agent can now be computed backwards - Let Qi∗ be the value of Agent i
from period 1 onwards and Qi0 denote the value after s0 has been realized. The stationary
environment after period 1 implies that

� Q1∗[b, B1, s, π] = u[ys+(1−δ)b]
1−δ and B1∗[b, B1, s, π] = b

� Q2∗[b, B1, s, π] = u[y(1−s)+(1−δ)b]
1−δ and B2∗[b, B1, s, π] = b

� q(B1, s, π) = δ

Now we can derive the objects in t = 0 using the above as terminal conditions. The
following proposition states that there exist an inverse relationship between assets and the
weights that agents give to states when they have low income.

Let z1(B1, s, π) =
∑
m π̃1(m)P̃ 1(s|s0,m)∑
m π(m)PS(s|s0,m)

be Agent 1's (equilibrium) worst case likelihood ratio.

Proposition 2. There exists ȳ(b) and B1
−1,0[s, π] such that lim

b→B1

−1,0

B1,0(b,B1
−1,0, s, π, q) =

− ysl
1−δ and lim

b→B1

−1,0

ȳ[B(b,B1
−1,0, s, π, q)] = ysl. Further we have,

∂z1(B1, s, π)

∂B1
> 0 i� y1(s) > ȳ(b)

as long as we have ysl < ȳ[B(B1, s, π, q)] < ysh

3.4 Long-run Dynamics of Heterogeneous Beliefs

I solve for the recursive competitive equilibrium using the algorithm detailed in Appendix
6.1. For the results in this section I use the following parameter values for technology and
preferences. The results below depict two cases 1) Transient learning (PM = I) and 2)
Permanent learning where the models switch with probability .1

Description
Agggregate Income (y) 1.00

Agent 1 low share (sl) 0.30

Agent 1 high share (sh) 0.70

Probability of switching - Model 1 (1-αS) 0.50

Probability of switching - Model 2 (1-αS) 0.10

Risk aversion (γ) 0.50

Subjective discount factor(δ) 0.95

Ambiguity - Observable State (θ1) 1.00

Ambiguity - Hidden State (θ2) 1.00
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With incomplete markets the history dependence encoded in state variable B1 yields a non-
degenerate ergodic distribution on wealth. Agent 1 accumulates (decumulates) assets in sh
(sl) shocks. Figure 3 depict the change in the level of assets of Agent 1 : B1−B1 as a function
of his initial wealth level. Since precautionary motives are strong when either Agent 1, Agent
2 has very low wealth, interest rates are low at extremes.
Figure 5 shows how relative pessimism diminishes with wealth. The top (bottom) row depicts
the distorted transition probabilities (P̃ 1(s∗|s)) for s∗ conditional on s = sl (s = sh). The
dotted (solid) line is the probability of low income state for Agent 1 in the next period.
The pessimistic twisting implies that as long the Agent is facing some risk, he will over
estimate the persistence of the shock in bad times. However as his assets grow, the self-
insurance mechanism starts kicking in. The non-contingent part of his income - interest on
savings rises and the realized consumption risk is lower. This makes the dotted line line slope
downwards towards the common reference probability as his wealth rises. Figure ?? depicts
how Agent 1 re-asses his estimation of the hidden state m. The top (bottom) panel shows
Agent 1's pessimistic twisting for the Bayes prior (at π = .5) as a function of his assets B1.

Note that the curves in both the panels are very di�erent. In particular p̃i
1
is not monotonic.

Since the agent over-estimates the persistence when s = sl, his worst case models are very
similar. This has an unusual e�ect of minimizing the e�ect of errors in estimation of m. In
other words since concerns for errors in the transition matrices o�set concerns for errors in
the parameters. However in the bottom panel the worst case models are su�ciently di�erent.
In this case, concerns for consumption risk decline with wealth and the distorted priors are
closer to the Bayes estimate when Agent 1 has high wealth.
After computing the decision rules and the value functions using the algorithm above I
simulate the economy for 25000 periods with the starting value (B1, π, s) = (0, .5, 1) 4.
Figure ?? and 8plots the ergodic distribution of assets and prices in the two cases. Let

π̃gap = |π̃1−π̃2|
π̃

lastly, I plot in �gure 9 the ergodic distribution of di�erences in model priors
when learning is permanent.

Figure 3

4The ergodic wealth distribution is invariant to the starting value
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Figure 4: The �gure plots averaged bond prices as a function of Agent-1's level of assets.

Figure 5: The plots above depict P̃ 1(s∗|s,m). The left (right) column is the IID (NonIID) model

and the dotted(solid) line refers to s∗ = sl (sh). The top (bottom) panels refer to s = sl(sh)

Figure 6: This plots p̃i
1
given π = 1

2 . The top (bottom) panel is s = sl (s = sh)
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(a) Transient Learning (b) Permanent Learning

Figure 7: The �gure plots the ergodic wealth distribution of B1. The left panel is the transient

learning case with IID model and the right panel refers to PM 6= I

(a) Transient Learning (b) Permanent Learning

Figure 8: The �gure plots the ergodic wealth distribution of bond prices. The left panel is the

transient learning case with IID model and the right panel refers to PM 6= I
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Figure 9: This plots the ergodic distribution of π̃gap = |π̃1−π̃2|
π̃

3.5 E�cient Allocations with Asymmetric Information

In this section I will study an example without aggregate risk and but further restrict the
ability of the Planner to redistrubte consumption across agents and states. In particular
individual incomes will be private information and the Planner has to design a risk sharing
arrangement that mandates consumption to individuals depending only on his reported
income. 5

Within these class of allocations, presence of misspeci�cation concerns a�ect the nature
of incentive compatible schemes and the long run dynamics of consumption shares. On one
hand, in absence of concerns for misspeci�cation, the economy features an ever growing
spread in consumption shares while activating these doubts keeps the long run inequality
bounded.

I will characterize the (constrained) e�cient allocations recursively by modifying problem
?? so that it accounts for the additional restrictions that capture incentive compatibility.

In the this section, I will describe the problem recursively for two agents with the following
simplifying restrictions to the setup

1. Y = {ȳ}and S = {(sl, sh), (sh, sl)} s.t sl < sh sl + sh = 1 . Thus there is no
aggregate risk and the individual incomes can take two values yi ∈ {yl = slȳ , yh = shȳ}
for each of the two agents

2. P i(st+1|st) = P (st+1) : The agents have common priors about the distributional shock
that is I.I.D over time

All agents are ex-ante identical and Planners choice can be described by a report contigent
{Tt(yti)}t that speci�es a transfer to an individual at time t depending on the history of his
reported income.

5 I have two types, so knowing the income reports of one agents and the aggregate endowment, in principle
one can �gure out the income of the other agent. I ignore schemes that use this information and restrict
consumption of an individual to be a function of only his idiosyncratic reports. This allows me to retain
the forces similar to environments like Atkeson and Lucas (1994) with a parsimonious state space. Allowing
richer mechanisms open up strategic concerns that I leave for future work.
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Next I de�ne a reporting strategy which is a collection of history contingent functions on
the set of possible individual histories.

De�nition 1. A reporting strategy σ = {σt(yti)}t such that

σt(y
t
i) = ỹt

De�nition 2. A reporting strategy σ∗ is said to be truth-telling if σ∗t (y
t
i) = yi,t for all

individual histories

Let σt(yti) = ỹti to be the collection of reports up to time t, given a T ,σ we can de�ne the
actual consumption as c(σ) = {Tt(σt(yti)) + yi,t}t and the value to any individual of {T ,σ}
is given by

V−1[T ,σ] = V−1[c(σ)]

The e�cient allocation solves for T such that

V−1[T,σ∗] (6)

subject to ∑
i

T (yti) = 0 ∀t (7)

σ∗ ∈ argmaxσV−1[T , σ] (8)

3.5.1 Recursive Formulation

As before we can characterize the e�cient allocation recursively. It is useful to de�ne the
ex-ante version of Q - The maximum value to Agent 1 (Q0) given a promised value v to
Agent 2

Q0(v) = max
ci(yi),v̄∗(y2),Q(y1)

Tθ {(1− δ)u[c1(y1)] + δQ(y1)} (9)

Let ∆(yi, ỹi) = yi − ỹi be the short run gains misreporting

Incentive Constraints :

Tθ {(1− δ)u[c2(y2)] + δv̄∗(y2)} ≥ v0 (`PK') (10a)

(1− δ)u[c1(y1)] + δQ(y1) ≥ (1− δ)u[c1(ỹ1) + ∆(y1, ỹ1)] + δQ(ỹ1) (10b)

(1− δ)u[c2(y2)] + δv̄∗(y2) ≥ (1− δ)u[c2(ỹ2) + ∆(y2, ỹ2)] + v̄∗(ỹ2) (10c)

Feasibility :

c1(y1,l) + c2(y2,h) = c1(y1,h) + c2(y2,l) = ȳ (10d)

ci(yi) + ∆(yi, ỹi) ≥ 0 (10e)
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Q0(v̄∗(ȳ − y1)) ≥ Q(y1) (10f)

vmax ≥ v̄∗(y2) (10g)

Let C = {0, ȳ(sh−sl)} and C̄ = {ȳ(1−sh+sl), ȳ}, we have vmin, v
max satisfy the following

vmin = Tθ {u[C]}
vmax = Tθ

{
u[C̄]

}
A couple of remarks regarding this recursive formulation. As in Atkeson and Lucas

(1994) lemma 3.1-3.2, the temporary incentive constraints imposed in the recursive problem
are su�cient for sequence problem.

The Bellman equation is ex-ante but the incentive constraints are ex-post. Although
the concerns for model uncertainty manifest indirectly through the presence of Q0 in the
constraints, their key role will be in how the agents value various incentive compatible risk
sharing arrangements. The Planner incorporates this link between di�erent contracts and
the associated endogenity in beliefs with respect to which these contracts are values. Given
the solution of this problem, one can generate an allocation by iterating on the policy rules,
Bellman equation using the history of reported shocks

Suppose we start time 0 with v0, Agent 1's allocation can be obtained by

c1,t(y
t
1) = c1(y1,t|vt−1)

where
vt−1 = v̄∗(ȳ − y1,t−1|vt−2)

and so on, where v0 is the initial condition. Similarly we can get Agent 2's allocation
I assume agents start with equal Pareto wts., or Q0(v0) = v0 then c1 = c2

Let µis(y) denote the multiplier on incentive constraint for agent i in state s and λ on the
promise-keeping constraint.

3.6 Optimal Contracts : Static

To build the key forces, consider the static case when δ = 0. The following proposition
summarizes the main features of the optimal allocation with concerns for misspeci�cation
when the agents essentially care for one period.

Proposition 3. In the static case with δ = 0, all incentive constraints bind. Further the
optimal contract features has the following shape

ci[λ(v0)] = ci[λ(v0), s̃] + ∆i(s, s̃)

Let c∞i be the corresponding contract when the agents are not concerned about misspeci�cation(θ →
∞). There exists a λ̄ such that

c2[λ, s] ≥ (≤)c∞2 [λ, s] λ < λ̄ y2(s) ≤ (≥)y2(s̃)

c1[λ, s] ≥ (≤)c∞1 [λ, s] λ > λ̄ y1(s) ≤ (≥)y1(s̃)

Further λ̄ = 1 if shocks are equally likely
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Note that this proposition compares the outcomes with benchmark keeping λ ��xed�.
This puts the consumption plans in both the economies on a comparable scale as the state
variable - v is measured in `utils' and is not invariant to changes in θ. This proposition states
that agents with low (implied) Pareto weights are relatively (as compared to θ =∞) better
o� in the state when they are unlucky.

1. The IC constraint pins down the gap between consumption levels across states to be
the amount agents can garner if they misreport. Since these constraints are ex-post in
nature they hold independently of attitudes towards model misspeci�cation

2. As compared to the benchmark, there are two forces which distort the optimal insur-
ance scheme with concerns for misspeci�cation.

� Let s be such that y2(s) = yl or Agent 2 is unlucky. His consumption diminishes
as his relative Pareto weight λ becomes smaller

λ→ 0 =⇒ c2(s)

y − c1(s)
→ 0

However the IC constraint restricts the consumption plan to be [c2(s), c2(s))+∆].

� Since utility is concave, u(c+ ∆)− u(c) diminishes with c for a �xed ∆. In terms
of distorted beliefs this means that agents with low Pareto weights relatively over
estimate the probability of the state in which they have low incomes. In particular

p̃2(s) > p(s) > p̃1(s)

� Optimal insurance requires the Planner to allocate higher consumption to agents
who perceive the given state more likely. However this channel only appears with
endogenous beliefs when agents fear model misspeci�cation. So given everything
else as λ→ 0 Agent 2's consumption in states s is higher than what he would get
in the benchmark. Since the agents are otherwise symmetric, the converse is true
when λ→∞.

With incomplete markets as above, when consumption goes to zero, the spread in consump-
tion remains at ∆. Thus the prediction that relative pessimism is decreasing in average
consumption shares is more robust to shapes of utility functions at zero. This also empha-
sizes why shutting of aggregate risk was helpful.

Figure (10) illustrates this in a numerical example with θ = 1, γ = .5, ∆
y

= .3.

In the dynamic setting with δ > 0, the Planner faces a choice of how to provide incentives
: he can either distort menu of current consumption or promises to future consumption. In
general it is optimal to use both of these instruments. However, concerns for misspeci�cation
makes the costs of �uctuating future promises sensitive to current inequality as measured in
λ or dispersion in consumption shares.
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Figure 10: The plot depicts consumption of Agent 1 in t = 1, state s : y1(s) = yl. The dotted line

is the benchmark without concerns for model ambiguity.

3.6.1 Optimal Contract : Dynamic

In this section I will analyze the dynamic contract with δ > 0. Now the Planner chooses
a contract : U(v0) as a menu of report contingent consumption for both the agents and
(ex-ante) promised values for Agent 2 6,

U(v0) = 〈c1(s), c2(s)v̄∗(s)〉
Before discussing the properties of the optimal contract, I will highlight a special class

of dynamic incentive feasible contracts - repeated static contracts. These dynamic contracts
are constructed by a sequence of static contracts discussed in the previous section. Given
v0, let css(v0) solve the following equation

exp

{
−v

0

θ

}
=

[
exp

{−u(y − c1)

θ

}
P (sl) + exp

{−u(y − c1 −∆)

θ

}
P (sh)

]
The repeated static contracts are given by

U(v0) =
〈
css, css + ∆, ȳ − css, ȳ − css −∆, v0, v0

〉
It is easy to see that they are incentive-feasible. The Planner loads all the incentives with

across state consumption variation. These contracts are 'absorbing' in nature as the ex-ante
promised values are constant and in general suboptimal except at (v0) ∈ {vmin, vmax}. The
value of these contracts gives a reasonable lower bound to the value function. The upper
bound can be constructed using the benchmark with no informational frictions.

QCM(v0) = u
(
y − u−1

[
v0
])

(11)

Thus the optimal value satis�es

Tθu[css1 ] ≤ Q[v0] ≤ u
(
y − u−1

[
v0
])

6The promised values for Agent 1 are implicitly chosen through the Bellman equation
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Let ∆̃i,c = ci(yh) − ci(yl) and ∆̃v = v(sl) − v(sh). The Planner ideally wants to provide
insurance by giving more consumption in the low income states but this makes the agent
misreport in periods of high income. The contract features incentive constraints which are
slack in the periods when the agent has low income. This property is similar to that seen in
environments similar to Thomas and Worral (XXX) where these are termed as downward
binding incentive constraints.

Proposition 4. With δ > 0, incentive constraints are slack in the periods when agent i has
low income.

However, in this environment both constraints can be slack if the agent has low Pareto
weight. Together with the constraints on bounds for consumption we have

� ∆̃ ≤ ∆ and ∆̃v ≥ 0

� The IC and Feasibility constraints e�ectively partition the state space

c1(sl) = y −∆, µ1
sh
> 0, µ2

sl
= 0 v ∈ {vmin, vx} (12)

µ1
sh
> 0, µ2

sl
= 0 v ∈ {vx, vy}

µ1
sh
> 0, µ2

sl
> 0 v ∈ {vy, vyy}

µ1
sh

= 0, µ2
sl
> 0 v ∈ {vyy, vxx}

c1(sh) = ∆, µ1
sh
> 0, µ2

sl
= 0 v ∈ {vxx, vmax}

b b

vmin vx vy vyy vxx vmax

c1(sl) = y −∆ c1(sh) = ∆

µ1
sh > 0

µ2
sl > 0

Figure 11: This �gure shows how the set of optimal contracts partition the endogenous state -

ex-ante promised

Figures 12 and 13 plot the optimal consumption menu and �gure 14 shows gap in con-
tinuation values

At both the edges when the promised value to Agent 2 is either low enough or high
enough, the bounds on consumption 10e are active. In particular for v ≤ vx(v ≥ vxx) we have
c1(yl) = y −∆(c1(yh) = ∆). This gap is decreasing (increasing) in v in the aforementioned
constrained regions. In the interior of [vx, vxx], the gap in the consumption is low and
stable. This region is where the Planner achieves maximal risk sharing. The additional lever
whereby the (ex-ante) continuation values can be varied takes care of incentives and allows
the Planner to reduce the spread in current consumption. Thus e�ectively the Planner uses
the potential to vary consumption over time to reduce the spread between consumption
over states. The Planner could always repeat the static contract with ∆̃i,c = ∆i and no
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spread in continuation values as discussed previously . The variation in continuation values
allows the Planner to overcome short-run temptations to mis-report by implementing long-
run (dynamic) punishments to the agent whose incentive constraint is binding. The recursive
version of the problem chooses these punishment optimally. Like before the promised values
can be mapped back to e�ective Pareto weights λ and we can interpret the variation in
promised values as variation in Pareto weights.
Another point of distinction from the static case is that some incentive constraints are slack.
Typically the constraint is slack for the agent with low Pareto weight and binds for the state
when the Agent with high Pareto weight has a high income shock. In an subset of the region
between vx and vy, the incentive constraints are binding for both the agents.

To summarize, the Planner manipulates two wedges to provide insurance respecting in-
centives : The gap in consumption menu ∆̃i,c and the gap in continuation values ∆̃v. With
IID shocks it can be shown that ∆̃i,c ≤ ∆ and ∆̃v ≥ 0. Figures 12 and 13 plot the optimal
consumption menu and �gure 14 shows gap in continuation values

Figure 12: This plots consumption levels as a function of the initial promised values

Both the wedges - the across state wedge introduced by the consumption menu and the
across time wedge introduced by variation in continuation values change with endogenous
heterogeneous beliefs. Firstly agents over-estimate the probability of (respective) the low
income state. The spread between values across states has a lower bound u(y)− u(y −∆).
This happens when both either of the bounds on consumption and incentive constraints are
binding. In this region the agent whose incentive constraint is slack is relatively (with respect
to the other agent) more pessimistic. Figure 16 plots the distorted beliefs as a function of the
ex-ante promised value of Agent 2. Since the agent with lower Pareto weight typically has
a slack IC, the relative pessimism is inversely related to Pareto weights. These di�erences
in beliefs tilts the optimal risk sharing scheme in a way that the pessimistic agent gets
more current and future consumption. Thus we have ∆̃1,c lower than what would have been
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Figure 13: This plots consumption gap for Agent 1 ∆̃1,c as a function of the initial promised values

Figure 14: This plots changes in (ex-ante) continuation values v̄∗(z)− v as a function of the initial promised values
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without concerns for misspeci�cation7. Figure 15 plots the consumption gap for both the
cases. As before, to make the contracts comparable, I align them on λ (multiplier on the
promise keeping constraint) rather than promised values v0. The �gure clearly shows that
∆̃1,c in the risk sharing phase is much lower for θ <∞.

Figure 15: This plots consumption gap ∆̃ as a function of λ(v)

The risk sharing arrangements shaped by these dynamic incentive considerations now
interact with the agents concerns for misspeci�cation and in turn a�ect the optimal risk
sharing scheme. In the benchmark case (without concerns for model uncertainty) agents
linearly aggregate their continuation utilities. Starting from from a repeated static contract,
consider a mean zero perturbation to continuation values. With expected utility, this delivers
the same value to the agent. However in an dynamic environment they can relax incentive
constraints. The insight in Atkeson Lucas (1992) suggests that this perturbation is always
pro�table and optimal incentives imply continuation values will spread. With enough bad
shocks, we can drift towards immiseration. An alternative way to interpret concerns for
model uncertainty is non-linear aggregation of continuation values. Lower continuation
values imply lower estimates of probabilities, the value from a mean zero perturbation is
generally lower. This sets up the stage for possible survival forces

The long-run dynamics of this risk-sharing arrangement are captured by changes in ex-
ante promised values ∆̃v as a function of v. Without concerns for model uncertainty, the
continuation values spread in a way that v̄∗(sl) ≥ v0 ≥ v̄∗(sh), with strict equality at the
absorbing contract. The negative adjustment in s : y2(s) = yl corresponds to a promise
of lower future consumption to Agent 2 when his income is low and vice versa. The FOC
conditions can be re-arranged to emphasize the two forces namely, endogenous heterogeneity

7It can also change signs: ∆c is negative when cost of providing incentives through varying current
consumption is lower than varying future consumption.
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Figure 16: This plots distorted beliefs for both Agents as a function of the initial promised values

in beliefs and optimal incentives that interact in how Pareto weights move over time.

λ(st) = λ(st−1)
P̃ 2(st)

P̃ 1(st)︸ ︷︷ ︸
Heterogeneous Beliefs


1 + µ2(st)− P̃ 2(s′t)

P̃ 2(st)
µ2(s′t)

1 + µ1(st)− P̃ 1(s′t)

P̃ 1(st)
µ1(s′t)︸ ︷︷ ︸

Incentives


For low promised values for Agent 2 (i.e low λ), taking into account the slack incentive

constraints, the one period ahead growth rate of λt is given by

Gλ(y2,h) =
P̃ 2(y2,h)

P̃ 1(y1,l)

 1

1− P̃ 1(y1,h)

P̃ 1(y1,l
µ1(y1,h)

 (13)

Gλ(y2,l) =
P̃ 2(y2,l)

P̃ 1(y1,h)

(
1

1 + µ1(y1,h)

)
First consider the case when θ =∞, we have P̃ i = P and since µ1(sh) > 0,

lim
λ→0

log (Gλ(y2,h)) > 0 (14)

lim
λ→0

log (Gλ(y2,l)) < 0

The negative growth rate in s : y2(s) = yl or the states when Agent 2 is unlucky means
that with enough bad shocks v(st) → vmin. This is the Atkeson Lucas (1994) force oper-
ating in our simple setup. Moving away from this benchmark and activating concerns for
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misspeci�cations (measured by θ <∞), there is a countervailing force to the incentives and
if it is strong enough, it can potentially push the Agent 2 towards the center. For low θ's
(or if utility is unbounded below), we can show that the agent with high Pareto weights has
�bounded� pessimism, while the other agent puts arbitrarily high weights on the states he is
unlucky

Proposition 5. If limλ→0 P̃
2(y2,l) = 1 then limλ→0 logGλ ≥ 0 almost surely.

Proof. As λ → 0, Agent 1's distortions are bounded. Using the his IC and the bounds on
consumption, the limiting probabilities are given by

P̃ 1 → {p(∆), p̄(∆} (15)

where p(∆) = 1

1+
P (yh)

P (yl)
exp{u(y−∆)−u(y)

θ } . This is the distortion associated with the static

contracts and we can rely on the concavity argument to see that when ∆
ȳ
is low, it would

make him distort his reference model rather moderately.
At the lower bound , if Agent 2's assessments of the states when he has low income

shocks is arbitrarily close to unity, we can show that µ1(y1,h) approaches
p(∆)

p̄∆
This follows

from the FOC with respect to v∗(y2,h). A small increase in the continuation value for Agent
2 in these states s : y2(s) = yl is equivalent to a λ(s) fall in value for Agent 1. However this
perturbation also relaxes his incentive constraint s = sh. Thus equating the marginal gains
and bene�ts we have P̃ 1(sl)λ(sl) = λ(sl)µ

1(sh)P̃
1(sh). This implies that Gλ → 1 and the

continuation values rise almost surely.

Towards low values of v0, Agent 2 cares a lot about the states where he has a low
endowment i.e s = sh. Thus the Planner optimally reduces the downward adjustment to
v̄∗[sh] in these periods. This e�ectively speeds up the transition of the ex-ante promised
values away from the absorbing contract. The �gure 17 plots the growth rate of Lagrange
multipliers for the two cases θ < ∞ and θ = ∞. We see in the bottom panel without
concerns for misspeci�cations, the limiting growth rates are negative for low income states
of Agent 2. However in the top panel they approach zero.

Thus endogenous beliefs pave a way of the necessary immiseration implied by e�ciency.
In related work Farhi and Werning [?] show that adding a paternalistic Planner (whose is
more patient than the agents) can also give long run survival with e�ciency in presence of
asymmetric information

This proposition used the fact that P̃ 2(y2,l) went arbitrarily close to 1. With bounded
utility, this is not necessarily true, hence whether or not the limiting force is strong enough
to outweigh the incentives is a priori not clear and depends on the limiting value of µ1(y1,h).
So far, I don't have the precise characterization of the limλ→0 µ

1(y1,h). However numerical
calculation show that for low enough θ, this growth rate is arbitrarily close to zero. Although
exacerbating the concerns for misspeci�cations increases both the level of the multiplier and
P 2(y2,l)

P 2(y1,h)
, they seem to grow at di�erent rates and the net e�ect in favor of heterogeneous

beliefs for low enough θ. Figure 18 plots limλ log Gλ(y2,l) for a range of θ to emphasize this.
To allow a �θ = ∞� value the x-axis is modi�ed in log scales. The long run drop in the
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Figure 17: This plots changes the (one-period ahead) growth rate of λ∗ as a function of the λ . The dotted line refers to
states when Agent 2 has low income. The top (bottom) panel is θ <∞(θ =∞)

Figure 18: This plots limiting growth rate Gλ(y2,l) as a function of log(θ)
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growth rate of Lagrange multiplier is negative around 5% and sharply drops to values close
to zero around θ = 1.

Naturally this raises the question of �what does θ = 1 mean ?�. Although the setup is far
from any reasonable calibration exercise, one can make sense of value of θ, by mapping it to
the familiar detection error probability. These were introduced in section ?? and basically
refer to the threshold the agent puts on detection errors in �nite samples done via a likelihood
ratio test between his reference model and the worst case model that he builds in his mind
accounting for the potential misspeci�cations. Computing these probabilities is a bit tricky
in a setup with heterogeneous agents and history dependence in distortions. The way I do it
here is as follows : Take a sample length T . Initialize the model with λ0 = 1 which is roughly
the mean of the ergodic distribution of Pareto weights. Draw N samples of length T from the
reference IID model and compute the casesM ≤ N where the Agent would wrongly conclude
that the sample came from his wort case beliefs. Let r1 = M

N
. Now do the reverse, i.e draw

samples from the worst case distribution and test it against the approximating model to get
r2 similarly. In both cases the worst case likelihood is computed using the one-period ahead
conditional likelihoods given the past history. The detection error probabilities naturally
decline to zero with T . Keeping rest of the parameters unchanged, for a T = 50, θ of 1 maps
to detection error probability of 15%.

Lastly I examine some long run properties of the model by simulating sample paths. In
particular, asymptotically the ergodic distribution of values clusters in the region between
[vy, vyy]. The right panel of �gure 20 plots the ergodic distribution of v 8. We see that with
θ <∞, we have almost no mass on the constrained region. . Figure 19, plots the conditional
exit times for both the cases - Prob{v̄t+S = vmin|vt = v} and Prob{v̄t+S = vmax|vt = v}
for large S Figure 21 plots a typical sample path of Agent 1's consumption for the same
sequence of shocks 9.

4 Skill shocks

So far, I studied a stylized two agent exchange economy to explore long run properties of
Pareto optimal risk sharing outcomes. The key �nding was uncovering how endogenous
asymmetries for misspeci�cations concerns a�ected survival outcomes in alternative settings
.In a stark contrast with benchmark where agents trust their priors , both settings 1) asym-
metric priors - symmetric informations and 2) symmetric priors- asymmetric information
feature survival forces.

This appendix replaces the endowment shocks with a technology linear in labor and
shocks to skill distribution. The goal is use the model to study the patterns of the intra and
inter temporal wedges embedded in constrained e�cient allocations when agents fear model
uncertainty. Related settings have been used in the NDPF literature for examining optimal
taxation from �rst principles.

The main �nding is that as compared to the benchmark, these wedges are higher and

8This is computed from a simulating a long sample using the law of motion v̄∗[z|v]. The ergodic density
is then obtained using the smooth kernel (Gaussian) on the last half of the sample

9The initial values are adjusted such that for both cases Agent 1 starts with the same consumption in
period 1
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Figure 19: This plots conditional exit probabilities as a function of initial promised values

Figure 20: This plots ergodic distribution of continuation values and consumption for Agent 1

24



Figure 21: This plots typical sample paths of consumption for Agent 1 with di�erent initial conditions

increase sharply with inequality. Thus long run equality is achieved by progressive (in wealth)
labor and saving wedges.

4.1 Model

The environment is extends the basic setup in section 3.5 and I will outline the key di�erences.
The two types of in�nitely lived agents are now subject to stochastic skill shocks. The
preferences are extended in a natural way by replacing u(c) by u(c, y

θ
). I will focus on

functional forms where utility from consumption and leisure is additively separable. The
problem as before is to characterize constrained e�cient allocations when skills and labor
inputs are private information, however individual output produced is veri�able The skills of
these agents are given by a stochastic process measurable with respect to s denoted by ρi(s).
I retain the IID-binary restriction on shocks which imply that skills are perfectly negatively
correlated across agents.

We can modify the previous de�nitions in the obvious way to de�ne feasibility, incentive
compatibility and (constrained) e�ciency. I proceed to the recursive characterization in the
next section

4.2 E�cient Allocations

Extending the previous Bellman equation 9, let Q(v0) represent the maximum ex-ante dis-
counted value that can be delivered to Agent 1 given a promise of v0 to Agent 2.

Q(v0) = max
c1(s),c2(s),y1(s),y2(s),v(s)

Tθ
{

(1− δ)u
(
c1(s),

y1(s)

ρ1(s)

)
+ δQ(v(s))

}
(16)
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subject to

Tθ{(1− δ)u
(
c2(s),

y2(s)

ρ2(s)

)
+ δv(s′)} ≥ v0 (17a)

c1(s) + c2(s) = y1(s) + y2(s) (17b)

(1− δ)u(c1(s),
y1(s)

ρ1(s)
) + δQ(v(s)) ≥ (1− δ)u(c1(s′),

y1(s′)

ρ1(s)
) + δQ(v(s′)) ∀s, s′ (17c)

(1− δ)u(c2(s),
y2(s)

ρ2(s)
) + δv(s) ≥ (1− δ)u(c2(s′),

y2(s′)

ρ2(s)
) + δv(s′) ∀s, s′ (17d)

The allocation achieves two goals in this setting - optimal consumption risk sharing and
e�cient labor allocation. Given a multiplier on the promise keeping constraint λ, the �rst
best allocations are characterized by the following

P̃ 1(s)u1
c(s) = λP̃ 2(s)u2

c(s) intra-temporal risk sharing

− u1
l (s)

u1
c(s)ρ1(s)

=
u2
l (s)

u2
c(s)ρ2(s)

= 1 production e�ciency

P̃ 1(s)λ∗(s) = λP̃ 2(s) inter-temporal risk sharing

c1(s) + c2(s) = y1(s) + y2(s) resource constraint

For a given λ, subject to the resource constraints, the e�cient allocation is characterized
by a zero labor wedge and split of the output across the two agents that makes equalizes
probability weighted marginal utilities of consumption today and in future . Production
e�ciency requires output to be relatively higher for agents that are more productive and
compensating transfers to insure lower income in unproductive states. 10

With incentive constraints the optimal allocation is characterized with two state depen-
dent wedges for each agent: a labor wedge and savings wedge that summarize the di�erences
from the �rst best.

10When agent have complete trust in their models, inter-temporal e�cient risk allocation will imply that
λ is constant. With doubts, since aggregate output is not constant presence of this small non diversi�able
risk will induce �uctuations beliefs if the agents have unequal wealth. This channel is was completely shut
down in section 3.5 with no aggregate risk.
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P̃ 1(s)u1
c(s) = λP̃ 2(s)u2

c(s)


1 + µ2(s)− P̃ 2(s′)

P̃ 2(s)
µ2(s′)

1 + µ1(s)− P̃ 1(s′)

P̃ 1(s)
µ1(s′)︸ ︷︷ ︸

Relative savings wedge

 (18)

− uil(s)

uic(s)ρi(s)
=

1 + µi(s)− P̃ i(s′)

P̃ i(s)
µi(s′)

1 + µi(s)− P̃ i(s′)

P̃ i(s)
µi(s′)

[
ρi(s)
ρi(s′)

]1+γ

︸ ︷︷ ︸
Agent i's labor wedge

(19)

P̃ 1(s)λ∗(s) = λP̃ 2(s)


1 + µ2(s)− P̃ 2(s′)

P̃ 2(s)
µ2(s′)

1 + µ1(s)− P̃ 1(s′)

P̃ 1(s)
µ1(s′)︸ ︷︷ ︸

Relative savings wedge

 (20)

c1(s) + c2(s) = y1(s) + y2(s) (21)

µi(s) ≥ 0 (22)

µi(s)ICi(s) = 0 (23)

(24)

As in the exchange economy, the incentive constraints are slack in states when the agents
have low labor income

Lemma 1. µi(s) = 0 when ρi(s) < ρi(s
′)

Proof. The proof is a standard perturbation argument. WLOG, if µ1(sl) > 0, we have
IC1(sl) = 0 and IC1(sh) ≥ 0 for any feasible perturbation ∆c1(sl),∆y1(sl), we have

uc[c1(sl)]∆c1(sl) +
ul[ y1(sl)

ρ1(sl)
]

ρ1(sl)
∆y1(sl) ≥ uc[c1(sl)]∆c1(sl) +

ul[ y1(sl)
ρ1(sh)

]

ρ1(sh)
∆y1(sl)

Thus we can �nd a perturbation that increases the utility of Agent 1 in state s = 1 and leave
all other constraints satis�ed.

Before exploring how the wedges move over time, we note a few properties.

Lemma 2. 1. Positive labor wedge when productivity is low

τ li (ρl) > 0

2. Zero labor wedge when productivity is high

τ li (ρh) = 0
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3. Positive savings wedge when productivity is low

τ si (ρl) > 0

4. Negative savings wedge when productivity is high

τ si (ρh) < 0

5. Zero mean property on savings wedges

Ẽiτ si = 0

6. Monotonic relationship between savings and labor wedge

τ li (ρl) =
τ si (ρl)(ē− 1)

1 + τ si (ρl)ē

Where τ li (ρl), τ
s
i (sl) are the respective wedges implied by the optimal allocation and ē =(

ρl
ρh

)1+γ

Typically the incentive constraint when a particular agent is productive. The Planner
ideally wants to insure the agent's bad draw by giving him higher consumption (and leisure)
but is restricted by the possibility that this insurance would make him misreport his produc-
tivity in good times. This introduces a positive labor wedge and a negative savings wedge.
These wedges are related to each other, in particular larger the savings wedge (in absolute
value), larger is the labor wedge. These savings wedges di�er in sign and are mean zero from
the perspective of the distorted models of each agent.

Figures 22 depict how these wedges (for Agent 2) vary with λ, his implied Pareto weight.
The red (black) line plots re�ects the wedge in the when agents trust (do not trust) their
reference models. At low λ, the incentive constraints are slack and the wedges are zero in
both cases. However, the spread between the wedges increases as λ becomes large. Thus we
have two general properties, �rstly wedges increase λ and concerns for misspeci�cation make
them larger in magnitude.

The cost of incentives is largest when the Planner has a high Pareto weight on a particular
agent, since his desired consumption is high. As the wedges re�ect how restrictive the
incentive constraints are , the magnitude of these wedges increases with the relative Pareto
weight. A simple corollary of the above is that a utilitarian planner who cares about both
the agents equally generates lowest average wedge.

Limited insurance implies that agents have low values in states when they are un-
productive. The concerns for misspeci�cation make them twist the reference model in a
way that they over-estimate these states. Since in this setup, agents are symmetric, they
distort in opposing directions generating heterogeneous beliefs from the lens of their worst
case models. Concavity of the utility function imparts lower distortion when agents have
high average consumption (or leisure). Thus relative pessimism (or the probability either
agent assigns to the state he is unproductive, relative the other agent) is declining in Pareto
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Figure 22: The plot depicts the labor (left)and savings (right) wedges for Agent 2 as a function of

λ. The red (black) line is case without (with) concerns for model uncertainty

weights. This heterogeneity in beliefs, requires a tilt to the desired optimal insurance. How-
ever implementing this extra tilt to insurance is restricted by the same incentive constraints
and thus misspeci�cation concerns exacerbates the cost of incentives. The resulting distor-
tions are higher.

The next issue is what happens to this economy in the long run. These large wedges
at extreme values of λ hint at what would happen in this economy if we ever approached
situations where inequality was high. Similar to the exchange economy we have a force
towards drifts towards the center. The FOCs with respect to v(s) help us elaborate this.
The state variable ex-ante promised value - v is linked to λ by an Envelope condition.
Equations 19 and 21 imply that λ is also the ratio of (past) marginal utilities and has the
following law of motion

λ(st) = λ(st−1)
P̃ 2(st)

P̃ 1(st)︸ ︷︷ ︸
Heterogeneous Beliefs

1− τ 2
s (st)

1− τ s1 (st)︸ ︷︷ ︸
Incentives

(25)

From an initial condition that yields λ0 = 1, �gure ?? shows how inequality spreads in
the case where agents have no concerns for model uncertainty.

Asymptotically the long run wedges are active on on both the agents , are similar in
magnitudes and display low volatility. In a way with time the Planner becomes utilitarian
with about equal weights on both the agents. In the benchmark, as inequality increases, the
wedges are active on a subset of agents (those with high Pareto weights) and display large
volatility since the cost of incentive is high with higher inequality.
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5 Proofs

Proposition 2

Proof. We �rst derive some properties of how distortions to priors depend on wealth

Lemma 3. Suppose consumption was given by c(y, b) = y + b and z solves

V R(b) = min
z,Ez=1

Ez[u(c) + θ log(z)]

For every b there exists a threshold ȳ(b) such that ∂m(y,b)
∂b

> 0 i� y > ȳ(b)

Proof. The choice for z∗

z∗(y, b) ∝ exp

{−(y + b)1−γ

θ(1− γ)

}
taking logs and di�erentiating with respect to b we have

∂ log z∗(y, b)

∂b
= −(y + b)−γ

θ
+

E exp
{
− (y+b)1−γ

(1−γ)θ

}
(y + b)−γ

θ1E exp
{
− (y+b)1−γ

(1−γ)θ

}

De�ne p̃(y) = p(y)
exp

{
− (y+b)1−γ

(1−γ)θ

}
E exp

{
− (y+b)1−γ

(1−γ)θ

} we have

∂d log z∗(y, b)

∂b
= −(y + b)−γ − Ẽ(y + b)−γ

θ
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Let ȳ(b) be such that the numerator is zero

ȳ(b) =
(
Ẽ(y + b)−γ

)− 1
γ − b

Since y + b ≥ 0 as y > ȳ(b) we have

∂d log z∗(y, b)

∂b
> 0

Lemma 4. There exists a B1
−1,0[s, π] such that lim

b→B1

−1,0

B1,0(b,B1
−1,0, s, π, q) = − ysl

1−δ . Fur-

ther we also have
lim

b→B1

−1,0

ȳ[B(b,B1
−1,0, s, π, q)] = ysl

As B1,0 approaches − ysl
1−δ , marginal utility of consumption of Agent 1 in s∗ = sl diverges

to∞. For an interior solution, the FOC would require his current consumption to go to zero
as well. This means that b−1,0[s, π] will satisfy

b0,1 ≈ q
ysl

1− δ − ys

and from Agent 2's FOC along with market clearing we have that q is

q ≈ δ
ẼQ2∗

b ( ysl
1−δ ,−

ysl
1−δ , s

∗, π∗)

uc(y)

This suggests b−1,0[s, π] = δ

(
ẼQ2∗

b (
ysl
1−δ ,−

ysl
1−δ ,s

∗,π∗)

uc(y)

)(
ysl
1−δ

)
− ys

Following steps in lemma 3, the threshold for Agent 1's income to ensure that relative
optimism rises with assets satis�es

ȳ[b∗] =
(
Ě1
s[ys

∗ + b∗(1− δ)]−γ
)− 1

γ − (1− δ)b∗

Note that the likelihood ratio m(b∗, s∗) =
∑
m π̃1(m)P̃ 1

S(s∗|s,m)∑
m π(m)PZ(s∗|s,m)

The numerator can be sim-

pli�ed to  exp{−u[ys∗+b∗(1−δ)]
θ1

}∑
m exp{−δT

1
θ1,m

[u(ys∗+b∗(1−δ))]
θ2

}

∑
m

π(m)PS(s∗|s,m)F 1(m)

and F 1(m) = exp
{(

θ2−δθ1
θ1θ2

)
T1
θ1,m

[u(ys∗ + b∗(1− δ))]
}

The derivative ∂ log[z(b∗,s∗)]
∂b∗

is given by

−
(

1− δ
θ1

)
[ys∗+b∗(1−δ)]−γ+(1−δ)

∑
m

Ẽ1
m,s[ys

∗+b∗(1−δ)]−γ
(
δ

θ2

π̃1(m) +

(
− δ

θ2

+
1

θ1

)
π̂∗(m)

)
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where π̂∗(m) ∝ π(m)PS(s∗|s,m)F 1(m)

Multiplying by θ1
1−δ , we can de�ne π̌∗ as δθ1

θ2
π̃1 +

(
1− δθ1

θ2

)
π̂∗.

Now ∂ log[z(b∗,s∗)]
∂b∗

≥ 0 if and only if ysh ≥ ȳ[b∗] ≥ ysl

ȳ[b∗] =
(
Ě1
s[ys

∗ + b∗(1− δ)]−γ
)− 1

γ − (1− δ)b∗

Now as b→ B1
0,−1[s, π] and b∗ = B1,0[b, s, π]→ − ysl

1−δ

ȳ

(−ysl
1− δ , s

∗
)

= ysl

As long as we have ysl < ȳ[B(B1, s, π, q)] < ysh implies a negative association of assets levels
and pessimism.

Proposition 3

Proof. The FOC imply c1(sl) = c(λ) such that

P̃ 1(sl)uc[c]− P̃ 2(sl)λuc[y − c)]
(1− P̃ 1(sl))uc[c+ ∆]− λ(1− P̃ 2(sl))uc[y − c−∆]

= −1 (26)

Further c∞1 (sl) = c∞(λ) solves

uc[c]− λuc[y − c]
uc[c+ ∆]− λuc[y − c−∆]

= −1− P (sl)

P (sl)
(27)

Now λ̄ is such that c∞1 (λ̄) = c1(λ̄)
Using 26 and 27 λ̄ will satisfy

P̃ 1(sl)uc[c
∞
1 (λ̄)]− P̃ 2(sl)λuc[y − c∞1 (λ̄)]

(1− P̃ 1(sl))uc[c∞1 (λ̄) + ∆]− λ̄(1− P̃ 2(sl))uc[y − c∞1 (λ̄)−∆]
= −1 (28)

Let

F 1(c) = uc(c)− uc(c+ ∆) (29)

F 2(c) = uc(y − c−∆)− uc(y − c) (30)

This implies

(P̃ 1(sl)− P (sl))F
1[c∞1 (λ̄)] + λ̄(P̃ 2(sl)− P (sl))F

2(c∞1 (λ̄)) = 0 (31)

De�ne χ(λ) as the residual for the equation 31

(P̃ 1(sl)− P (sl))F
1[c∞1 (λ)] + λ(P̃ 2(sl)− P (sl))F

2[c∞1 (λ)] = χ(λ) (32)

Note that,

lim
c→0

F 1(c) = lim
c→0

[
uc(c)− uc(c+ ∆)

c
c

]
= −uc,c[∆][lim

c→0
c] = 0
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lim
c→y−∆

F 1(c) = [uc(y −∆)− uc(y)] ≈ −∆uc,c[y] > 0

lim
c→y−∆

F 2(c) = 0

Since
∂c∞1 (λ)

∂λ
< 0, we have

sgnχ(∞) = sgn(P̃ 2(sl)− P (sl))

sgnχ(0) = sgn(P̃ 1(sl)− P (sl))

Since P̃ 1(sl) > P (sl) > P̃ 2(sl) and the opposite for s = sh , there exists a λ̄ such that

χ(λ̄) = 0

De�ne cM = y−∆
2
. We have

cM = y − cM −∆

c = cM and P (sl) = 1
2
imply that

1. c̄(1) = cM

2. F 1(cM) = F 2(cM)

3. P̃ 1(sl) + P̃ 2(sl) = 1

From eq 31 we have that λ̄ is pinned down by

(P̃ 1(sl)− P (sl))F
1[c̄(λ̄)] + λ̄(P̃ 2(sl)− P (sl))F

2(c̄(λ̄)) = 0

F (cM)(P̃ 1(sl) + P̃ 2(sl)− 1) = 0

P̃ 1(sl) =
P (sl) exp

{
−u[c]

θ

}
P (sl) exp

{
−u[c]

θ

}
+ (1− P (sl)) exp

{
−u[y−c]

θ

}
P̃ 2(sl) =

P (sl) exp
{
−u[y−c]

θ

}
P (sl) exp

{
−u[y−c]

θ

}
+ (1− P (sl)) exp

{
−u[y−c−∆]

θ

}
At c = cM and P (sl) = 1

2
we have

P̃ 1(sl) + P̃ 2(sl) =
exp

{
−u[cM ]

θ

}
+ exp

{
−u[y−cM ]

θ

}
exp

{
−u[y−cM ]

θ

}
+ exp

{
−u[cM ]

θ

} (33)

or
P̃ 1(sl) + P̃ 2(sl) = 1

Proposition 4
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Proof.

Lemma 5. Let ∆̃c = c(sh)− c(sl) and ∆̃v = v(sl)− v(sh)the optimal contracts has

∆̃ ≤ ∆&∆̃v ≥ 0

Proof. Adding IC1
sl
and IC1

sh
we have

u[c1(sh)] + u[c1(sl)] ≥ u[c1(sl) + ∆] + u[c1(sh)−∆]

Suppose ∆̃c > ∆, the spread between the menu {c1(sl), c1(sh)} on the LHS is greater than
{c1(sl) + ∆, c1(sh)−∆}. Since u is concave we have a contradiction.

Next suppose v̄∗(sl) < v̄∗(sh), the incentive constraint of agent 2 in state sl implies that

u[c2(sh) + ∆]− u[c2(sl)] ≤ δ[∆̃v] < 0

Using the resource constraint and monotonicity of u, this yields the contradiction

∆̃c > ∆

Lemma 6. @v0 such that µi(, v
0, s) > 0 for all i, s.

Proof. Ignoring the non-negativity constraints, the �rst order conditions for problem 9 are
as follows

P̃ 1(s)u1
c [c1(s)] = λP̃ 2(s)u2

c [c2(s)]


1 + µ2(s)− P̃ 2(s′)

P̃ 2(s)

uc[c2(s)+∆2(s,s′)]
uc[c2(s)]

µ2(s′)

1 + µ1(s)− P̃ 1(s′)

P̃ 1(s)

uc[c1(s)+∆1(s,s′)]
uc[c1(s)]

µ1(s′)︸ ︷︷ ︸
static wedge



P̃ 1(s)λ∗(s) = λP̃ 2(s)


1 + µ2(s)− P̃ 2(s′)

P̃ 2(s)
µ2(s′)

1 + µ1(s)− P̃ 1(s′)

P̃ 1(s)
µ1(s′)︸ ︷︷ ︸

dynamic wedge


c1(s) + c2(s) = ȳ

µi(s) ≥ 0

µi(s)ICi(s) = 0

Suppose there exist. Since all incentive constraints bind, we have

u (c1(sl))− u (c1(sl) + ∆) = u (c1(sh)−∆)− u (c1(sh)) (34)

u (ȳ − c1(sl))− u (ȳ − c1(sl) + ∆) = u (ȳ − c1(sh)−∆)− u (ȳc1(sh)) (35)
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These are two equations in two unknowns. I will argue that all roots to the above system
lie on the subspace N (x, y : x − y = ∆). For a given c1(sl), the LHS of both the equations
is �xed. Since u is concave , the RHS is a (strictly) monotonic function of c1(sh). Consider
equation ?? for instance, uc (c1(sh)−∆) > uc (c1(sh)) for all c1(sh) as long as ∆ > 0. Thus
for a given c1(sl) there exists a unique c1(sh) = c1(sl) + ∆ that solves the equation. Going
back to the IC, we have v(sl) = v(sh). Thus the only feasible contract is the static contract.
This provides a converse the observation in Proposition 3 which stated all constraints bind
in the static contract with δ = 0.

Now the FOC provide the connection between the static wedge and the dynamic wedge
under the optimal contract. First consider s = sl

P̃ 1(sl)

P̃ 2(sl)

(
uc (c1(sl)))

λuc (y − c1(sl)))

)1 + µ2(sl)− P̃ 2(sh)

P̃ 2(sl)

uc[c2(sl)+∆2(sl,sh)]
uc[c2(sl)]

µ2(sh)

1 + µ1(sl)− P̃ 1(sh)

P̃ 1(sl)

uc[c1(sl)+∆1(sl,sh)]
uc[c1(sl)]

µ1(sh)

 <

1 + µ2(sl)− P̃ 2(sh)

P̃ 2(sh)
µ2(sh)

1 + µ1(sl)− P̃ 1(sh)

P̃ 1(sl)
µ1(sh)

 =
P̃ 1(sl)

P̃ 2(sl)

or

λ >

(
uc (c1(sl)))

uc (y − c1(sl)))

)
Now at the static contract, c1(sh) = c1(sl) + ∆ , further using concavity of u

we have

λ >

(
uc (c1(sl)))

uc (y − c1(sl)))

)
>

(
uc (c1(sl) + ∆))

λuc (y − c1(sl)−∆))

)
With similar steps, we can order the wedges for s = sh and obtain

λ <

(
uc (c1(sh)))

uc (c2(sh))

)
This yields the contradiction.

Lemma 7. We need to only consider µ1(s) > 0, µ2(s′) > 0 for s 6= s′

Proof. Since the previous lemma 6 that the ICs for any agent cannot bind in both states holds
for all v0. We can rule out the cases where there is switching i.e from µi(s) > 0 to µi(s

′) > 0
as we change v0. If there was then for some v0, the IC constraints would bind for both
states contradicting the previous lemma. Further µ1(s) > 0, µ1(s) > 0 for some s is also not
possible. The agents are symmetric and reverse the role with respect to shocks as we go from
a low v0 to high v0. If there was a s such that ICs for both agents were binding, then there
would exist a λ such that it would bind for the other shock too. Thus again contradicting the
previous lemma. The only possibilities then remain are µ1(s) > 0, µ2(s′) > 0 for s 6= s′

Suppose this was not the case then by virtue of lemma 7 , they would bind in the states
both the agents have high income and be slack in the other periods. This implies that

1− µ2(sh)
P̃ 2(sh)

P̃ (sl)

1 + µ1(sl)
< 1
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and similarly
1 + µ2(sh)

1− µ1(sl)
P̃ 1(sl)

P̃ 1(sh)

> 1

This implies that

P̃ 1(sl)λ[sl]

P̃ 2(sl)λ[sh]
>
P̃ 1(sh)

P̃ 2(sh)

However , from lemma 5 we know that

v[sl] ≥ v[sh]

Further pessimistic twisting implies that

P̃ 1(sl)

P̃ 2(sl)
≥ 1 ≥ P̃ 1(sh)

P̃ 2(sh)

Thus we have a contradiction.

6 Numerical algorithm and diagnostics

6.1 Bond Economy

1. De�ne a grid on b, π

2. Guess some prices qks (b, π) and a non-negative function for the consumption policy rule

Ck(j)
s (b, π)[i] where s = sl, sh

3. Obtain the policy for savings using the budget constraint

Bk(j)
s (b, π)[1] =

b+ ys− Ck(j)
s [b, π][1]

qks (b, π)

Bk(j)
s (b, π)[2] =

−b+ ys− Ck(j)
s [b, π][2]

qks (b, π)

4. Get an approximation for Qj[i] by iterating on

Qk(j+1)
s (b, π)[i] = T2

θ,2

[
u(Ck(j)

s [b, π][i]) + δT1
θ,mQ

k(j)
s∗ (Bk(j)

s (b, π), π∗)[i]
]

5. Now use the FOC to update Ck(j+1)[i]

Ck(j+1)
s [b, π][1] = Ẽs

(
δCk(j)(Bk(j)

s , π∗)−γ[1]

qks (b, π)

)− 1
γ
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Ck(j+1)
s [b, π][2] = Ẽs

(
δCk(j)(Bk(j)

s , π∗)−γ[2]

qks (b, π)

)− 1
γ

Where Ẽ is computed using π̃[i],P̃ [i] using Qj[i]

6. Now update qk+1

qk+1
s (b, π) = qks (b, π) + υ

[
Bks (b, π)[1] + Bks (b, π)[2]

]
6.2 Dynamic Private Information

[TBA]
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