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Abstract

This paper studies an insurance problem where agents doubt their forecasting models. Using
Hansen-Sargent multiplier preferences, these doubts are represented as sets of probability dis-
tributions that are statistically hard to discriminate. Agents differ endogenously in two aspects
- their forecasting models and the extent of doubts surrounding these models. This heterogene-
ity gives rise to a new insurance channel that depends on sensitivity of marginal utilities to
changes in consumption. We show how introducing a small amount of doubts can keep long
run inequality bounded in settings when agents have exogenous heterogeneous beliefs or het-
erogeneous information about private insurance needs. The transient wealth dynamics delivers
countercyclical prices of risk and generates motives for trading on news shocks.
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1 Introduction

This paper studies an insurance problem where agents doubt their forecasting models. These
doubts capture the notion that past data may not be informative about all features of uncertainty
that matter to the agents. We consider an environment where agents endogenously disagree 1

with each other. This endogenous heterogeneity comes from adopting a more general represen-
tation of agents’ beliefs that uses sets of statistically close probability distributions. These sets
are constructed using continuation values of agents and encode general equilibrium effects.

The main contribution of the paper is to study a new insurance motive in such environments
and show how it interacts with other motives present in cases where agents have exogenous
heterogeneous beliefs or heterogeneous information about private insurance needs.

The baseline environment is an exchange economy with aggregate fluctuations. It is popu-
lated by two agents who trade in complete markets. The setup is later extended to incorporate
publicly observed news shocks and privately observed taste shocks. To formally capture the
idea that historical data is informative about some but not all features of uncertainty, we use
two layers - learning and doubts. Agents begin with a prior 2 over a finite set of models that
describe the stochastic evolution of aggregate endowment. Both agents apply Bayes rule to
address the learning problem and construct an approximation to the true data generating pro-
cess. The second layer - “doubts” - is represented as a set of probability distributions around
the approximating model. The paper studies more general ways of integrating learning and
doubts by allowing agents to consider alternatives to Bayesian posteriors and the individual
model specifications differently.

To explain the main insurance mechanism, we need to elaborate on how are doubts are
modeled and why the extent of doubts differ across agents. We use Hansen-Sargent multiplier
preferences to construct these sets. Through a min-max problem, agents decide two things a)
size of the sets subject to a cost and b) actions that maximize expected valuations as-if data is
generated from the worst outcome of this set. These costs introduce a trade-off between how
unlikely the misspecifications to the approximating model are and how undesirable they would
be to the agent in terms of his valuations. Larger the potential for utility losses relative to the
costs, bigger is the size of the set.

As to the second issue of how these sets vary across agents, there is a wealth effect that arises
because marginal costs of belief distortions are constant. The agents are effectively translating
fluctuations in consumption to fluctuations in their utilities. We can roughly decompose fluctu-
ations in utility as fluctuations in consumption times marginal utility of average consumption.
In presence of non diversifiable aggregate risk, increasing wealth share of an agent increases
both the mean and variance of his consumption. However, these have opposite effects on fluc-
tuations in utilities. The higher volatility of consumption increases the volatility of utility but
higher average consumption means lower marginal utilities. Which force dominates crucially de-
pends on the elasticity of marginal utilities with respect to consumption. For example, consider
an iso-elastic utility function. When IES>1, marginal utilities are less sensitive to changes in
consumption. In such a scenario, the first force coming from higher volatility of consumption
dominates. Richer agents explore a larger set of misspecifications. In terms of their worst case
beliefs - these are the beliefs that ex-post rationalize their decisions - they are relatively more

1A large literature in macro-finance uses exogenous heterogeneous beliefs to explain trade in securities. See
Scheinkman and Xiong(2003) for a survey.

2The priors may differ across agents but heterogeneity of initial priors is common knowledge. This avoids the
application of No-Trade Theorems, for example see Milgrom and Stokey (1982)
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pessimistic. With complete markets, this introduces an additional motive for them to exchange
insurance for returns with the poor agents.

The paper uses a Pareto planner’s problem to obtain efficient allocations. The characteriza-
tion of the optimal allocation illustrates the separate roles that learning and doubts play in the
dynamics of consumption shares. Using the mechanism described earlier, we can elaborate the
main findings.

The first result documents how the effects of doubts driven insurance motives accumulate
through time. This is summarized by the changing wealth distribution. In absence of doubts
limiting inequality only depends on the heterogeneity in initial priors. As predicted by Fried-
man’s market selection hypothesis, agents who put higher weight on the data generating process
do well in the long run3. Things are different with doubts. Overtime learning eliminates the
initial heterogeneity in priors and agents have a common approximating model. However, if
wealth shares are unequal at this point, the extra motive for insurance still affects dynamics of
wealth distribution. In line with the intuition before, when IES>1, richer agents purchase costly
insurance from poor agents and hence lose wealth on average, the economy converges to perfect
equality irrespective of initial conditions. With IES< 1, things flip and doubts exacerbate in-
equality. When IES= 1, these preferences coincide with the homothetic Epstein-Zin case. With
this the economy converges to an interior wealth distribution that depends on the sequence of
shocks. Thus, the enduring nature of doubts dominates the effects of transient learning.

The outcome that one has either perfect equality or complete inequality (except for Epstein-
Zin case) crucially depends on the fact that over time learning aligns the approximating models
for the agents. The paper also studies the other extreme situation when agents have dogmatic
initial priors. This means that their approximating models are always apart from each other
since they do not learn. As one can expect, in this case the long run outcomes depend not
only on the IES but also the gap between the approximating models. Suppose IES > 1 or the
agents who have lower wealth share distort less. In this environment doubts enlarge the space
of asymmetries in the approximating models between the two agents that is consistent with an
interior wealth distribution. The only way to have an interior wealth distribution with dogmatic
beliefs but no doubts is if both the agents have their approximating models equally far from the
data generating process.

The framework is flexible to incorporate other motives for insurance. We study a case where
agents have identical initial priors but one of the agents (say Agent 2) faces unobservable taste
shocks. In absence of doubts, the efficient allocation provides insurance to Agent 2 by increasing
his consumption in periods of high taste shocks but lowering his continuation values. This is
necessary to preserve incentives. One way to look at this arrangement is an annuity contract
where Agent 2 borrows money from Agent 1 in periods of high taste shocks and pays it back
by lower expected level of consumption. In line with the intuition in Thomas and Worrall
(1990) or Atkeson and Lucas (1992), a series of bad luck or high taste shocks accumulates these
annuities and drives this agent to immiseration. However, when agents have doubts, there is
an additional reason why continuation values adjust over time - heterogeneity in worst case
beliefs about aggregate shocks. Along the paths that threaten Agent 2 to immiseration, (a) the
fluctuations due to optimal incentives are dampened because the contract converges to the first
best and (b) the disagreements across agents about future aggregate endowment, measured with
respect to their worst case beliefs, are maximized. Agent 1 buys “expensive” insurance against
bad aggregate outcomes. This for Agent 2 more than offsets the annuities payments coming

3Blume and Easley (2006) examine this conjecture in a similar environment by shutting down doubts.
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from high taste shocks and prevents immiseration.
Besides inequality, we study asset pricing implications. As compared to standard models,

the dynamics of market price of risk are also affected by endogeneity in worst case beliefs.
Irrespective of IES, this channel explains why recessions feature increasing market price of risk.
To see why this happens consider the case with IES>1. In recessions the insurance contracts
materialize in favor of the rich agents. As their wealth increases they become more concerned
about misspecifications and increase the demanded compensation for risk. With IES < 1, rich
agents loose wealth on insurance payments but this also increases the spread in their utilities as
marginal utilities are very sensitive to drops in consumption. In either case, recessions feature
increasing market price of risk due to changing inequality.

Lastly, the model has an interesting implication for how agents value news shocks. These
shocks are informative public signals about future aggregate endowment. When agents are
heterogeneous only in wealth, doubts result in trade of consumption claims that are contingent
on news shocks. Although these shocks reduce uncertainty for both the agents, the value of
this resolution differs across agents if their wealths are unequal. Thus the same bad news may
be relatively worse for one of the agent. With complete markets agents trade with each other
before such news is realized.

The paper is structured as follows: we first provide a brief overview of the literature in section
2 and introduce how the attitudes towards uncertainty are modeled in section 3. Sections 4 and
5 will setup the environment for the general risk sharing problem and sections 6 and 7 specialize
it to study the dynamics of consumption shares with symmetric and asymmetric information
respectively. Finally, sections 8 and 9 study some extensions and outline directions for future
research.

2 Literature review

This paper builds on models of decision making under uncertainty developed in Hansen and
Sargent (2001, 2005, and 2007). Concerns for misspecification are represented by versions of
“multiplier-preferences.” Macceroni, Marinacci and Rustichini (2004, 2006a, and 2006b) and
Strazalecki (2011) provide axiomatic foundations.

The closest paper to our analysis is Anderson (2005). He sets up a planning problem with
agents having similar preferences in an environment with a common approximating model, sym-
metric information and no learning. His paper identifies points in wealth distribution which are
“absorbing” and shows convergence for a class of i.i.d shock process to such points. Our paper ex-
tends the analysis by adding heterogeneity in approximating models, private information about
taste shocks and learning. With these modifications the stationary wealth distributions generi-
cally do not exist. Our paper provides conditions under which the long run wealth distribution
is bounded away from “immiseration” - a state when all aggregate endowment is consumed by
one agent4.

The asset pricing results complement findings in Hansen and Sargent (2010) 5. With simpler

4 Colacito and Croce(2010) study the condition under which the long-run equilibria in a two-good economy
when agents are endowed with multiplier preferences and differ in the preferences over the two good are non-
degenerate.

5Other papers that study asset pricing under models of multiple priors in representative agent frameworks
include Ju and Miao (2012), Collard, Mukerji and Sheppard (2011) and Epstein and Schneider (2008), Boyarchenko
(2012).
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dynamics for aggregate risk and learning, our paper extends the analysis to heterogeneous agents
economies. The key results emphasize the relationship between wealth inequality and market
price of risk.

The results on long run inequality are related to two groups of papers that study redistribu-
tion in economies with heterogeneous agents - ones that have heterogeneous beliefs and others
that have heterogeneous information.

With symmetric information Sandrioni (2000), Blume and Easely (2006) 6 study conse-
quences of efficient redistribution in stationary economies with expected utility and heteroge-
neous beliefs. Their paper provides a benchmark (in our setting this will correspond to agents
exhibiting complete trust in their models) against which some of the results in our paper can be
contrasted.

Also related are papers by Borovicka (2013), Guerdjikova and Sciubba (2013) that study
long run survival of agents with heterogeneous beliefs but preference that depart from expected
utility. In Brownian information settings, Borovicka uses Epstein-Zin preferences to emphasizes
the role of higher inter-temporal elasticity of substitution (IES) (relative to risk aversion) to
guarantee that the agent with possibly incorrect beliefs can “save” their way out of immiseration.
Guerdjikova and Sciubba (2013) study economies populated with agents who are either expected
utility maximizers or have smooth ambiguity-averse investors, as in Klibanoff, Marinacci and
Mukerji (2009). In our settings, IES will matter too. In particular, CRRA utility preferences
with IES >1 will provide bounds on utilities which generates lower distortions to approximating
models for poor agents.

The setup with heterogeneous information closely follows Phelan (1998), Thomas Worrall
(1990) and Atkeson Lucas (1990). In a wide range of economies, these papers derive conditions
which imply that long run immiseration is a necessary condition of efficient redistribution in
presence of private information. In complementary work, Farhi and Werning (2007) and Phelan
(2005) show examples where departing from the Pareto criterion can make efficient insurance
compatible with bounded inequality. They interpret these findings as a justification for progres-
sive estate taxation. In our setup, the planner maintains the Pareto criterion but endogenous
heterogeneity in ex-post beliefs generates an auxiliary force that prevents agents with unobserv-
able taste shocks be driven to immiseration.

3 Attitudes towards uncertainty

Throughout the paper, a model will refer to probability distributions over sequences of random
variables, possibly indexed by a vector of parameters. Environments characterized by Knightian
uncertainty correspond to scenarios where agents entertain multiple probability specifications
for the exogenous randomness they face. Decision making in such environments often involve
a selection rule that captures how they deal with this multiplicity. These can be distinguished
from models where agents are assumed to have unique subjective beliefs and all choices over
random payoffs are rationalized by a ranking generated via expected utility under those beliefs
7.

Consider a scenario where one begins with a state space Ω whose elements list all possible

6There is a growing literature that studies survival of irrational traders. For more details see Bhamra and
Uppal (2013), Kogan, Ross, Wang, and Westerfield (2011).

7Savage (1954) provides axioms on choices over random payoffs that guarantee existence and uniqueness of
such beliefs and an associated utility function.
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contingencies (“states of world”) and a function f : Ω → ∆(Z) 8 that maps every state of
the world to a lottery over a given set of outcomes denoted by Z. The agents are confronted
with choices amongst such mappings f . Given that there might not be enough information
to ascertain the precise likelihood over the contingencies listed in Ω, should the agents treat
mappings that deliver the same lottery for every contingency differently from mappings that
deliver a known outcome every contingency9? These two kinds of mappings capture the difference
between objective and subjective risks. The literature studying individual decision making
under uncertainty, that models departures from the expected utility benchmark, attempts to
separate attitudes towards these two types of risks. These departures have been successful in
rationalizing facts observed both in experimental settings studying individual decision making
and aggregate behavior in asset markets.

We borrow the precise formulation of these attitudes known as “multiplier-preferences ” from
Hansen Sargent (2005, 2007a, and 2007b). 10.

The decision maker starts with a possibly simple but potentially misspecified description of
the world henceforth denoted as an “approximating” model. He surrounds the approximating
model with a class of alternative probability specifications that are statistically close to it; and
evaluates outcomes under all such models. With multiplier preferences the notion of statistical
closeness corresponds to “relative entropy”. 11

Definition 1 Consider Q and P two absolutely continuous measures over a set X, the relative
entropy of Q with respect to P is defined as

EQ,P =

∫
X

log
dQ

dP
dQ

Let z = dQ
dP , we can write the above as EP [z log z]

This set is hard to discriminate using finite data, but expected valuations can differ across its
elements. The decision maker confronts this multiplicity by following a robust approach which
provides a lower bound that guards him against possible misspecifications.

To elaborate the workings, we use a simple static problem of distributing output from a risky
technology that yields Y ∈ [Y , Ȳ ] amongst K agents who value consumption by u(c) = c1−γ

1−γ .
These agents doubt the distribution of y and have pi(y) as their approximating model. They
use multiplier preferences to evaluate the consumption risk implied by an arbitrary distribution
of the endowment, η = [η1 . . . ηK ] such that

∑
ηi = 1. Here ηi is the share of Y that agent i

consumes. (One can imagine that η represents relative wealth shares)
Given ηi and some θ > 0, we describe agent i’s valuations by the following minimization

problem,

V (ηi) = min
zi≥0;Eizi=1

Eizi[u(ηiY ) + θ log(zi)]

8These mappings are called “Anscombe-Aumann acts”
9For example the Ellesberg paradox captures such thought experiments where people exhibit aversion towards

unknown risks that cant be rationalized by unique prior models.
10For the sake of completeness we provide a brief summary. For a textbook length discussion refer Hansen and

Sargent (2007).
11This is also referred to as the Kullback-Leiblar divergence. It bounds the (exponential) rate at which the

probability error in an likelihood ratio test between two distributions declines with a sample size.
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This minimization is over functions zi(y)’s that index the set of alternative probability dis-
tributions p̂i(y),

p̂i(y) = zi(y)pi(y).

The criterion function has two terms a) Eizi[u(ηiY )] which represents the valuation of agent
i’s consumption risk under p̂i(y) and b) θEizi log(zi), which is the relative entropy of p̂i(y) with
respect to pi(y) scaled by a positive constant θ.

As described before, relative entropy measures the distance of the alternative p̂i(y) from
agent i’s approximating model pi(y). It is non-negative 12 and equal to zero if zi(y) = 1.
The minimization can be interpreted as a malevolent “alter” ego who chooses the worst case
distribution for agent i subject to a cost that scales in the relative entropy.
The choice for z∗i which solves this problem is

z∗i ∝ exp

{
−η1−γ

i y1−γ

θ(1− γ)

}
(1)

Equation (1) is also referred to exponential twisting or statistical Murphy’s law. It states that
agents confront doubts about model specification by adjusting probabilities of events inversely
to their desirability. The probability distribution p̃i(y) = pi(y)z∗i (y) is the ex-post belief that
rationalizes agent i’s actions. The expression for p̃i(y) shows how heterogeneity in priors has
both the exogenous pi(y) and endogenous components (z∗i (y)). We may also refer to p̃i(y) as
agent i’s “worst case” model.
The following proposition shows how the relative pessimism depends on ηi and γ or the curvature
of the u

Proposition 1 Let ηi be the agent i’s share of y,

1. limηi→0 p̃i(Y ) = pi(Y ) γ < 1

2. limηi→0 p̃i(Y ) = 1 γ > 1

The search for alternatives balances the marginal costs of exploring new models and benefits
from recognizing potential losses in expected valuations. Scaling valuations by a factor k > 1,
will mean that for the same marginal costs, the benefits are larger. Thus agents will explore
models in a larger set as measured by relative entropy. How do fluctuations in utility scale when
ηi changes ? Consider a first order expansion of the utility function around some mean level of
consumption: c̄i = Eici

u(ci) ≈ u[c̄i] + u′[c̄i](ci − c̄i)

The volatility in utilities naturally depends on how the curvature of the utility function
translates fluctuations in consumption to fluctuations in utilities.

σ[u(c)] ≈ u′[c̄]σ[c]

12This follows from Jensen’s inequality,

−Ẽi log
p̃i(y)

pi(y)
≤ log

(
Ẽi pi(y)

p̃i(y)

)
= 0

.
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In presence of aggregate risk, as ηi increases both σ[c] and c̄ are higher. However this as opposing
effects on σ[u] since marginal utilities are decreasing. The elasticity of marginal utilities to
changes consumption determines which force dominates.

∂σ[u(c)]

∂ηi
=

σ[y]

u′[c̄i]

(
u′′[c̄i]c̄i
u′[c̄]

+ 1

)
If γ < (>) 1 marginal utilities are less (more) sensitive to changes in consumption and σ[u]

will be increasing (decreasing) in ηi
This highlights the forces that will affect relative beliefs as wealth shares move around. The

distinction between γ less than and greater than one plays an important role in how the long
run wealth distribution evolves13.

Using the version of static multiplier preferences as above, attitudes towards randomness are
captured by jointly by two parameters : (θ, γ). The typical interpretation of γ as the coefficient
of relative risk aversion is thus not alone sufficient for determining agents’ willingness to pay for
insurance against uncertain events. One could measure them separately by confronting the same
agent in (controlled) environment where random events are associated either known probabilities
or unknown probabilities and study how the certainty equivalent varies. However, in dynamic
environments where there is a no uncertainty, γ has the dual interpretation of the inverse of
inter-temporal elasticity of substitution (IES). The restriction γ < 1 then refers to IES greater
than one 14. As an alternative, detection error probabilities (See Anderson, Hansen and Sargent
(2003), Barillas, Hansen and Sargent (2009)) can be used to map a pair (θ, γ) into an average
odds that a statistician would wrongly conclude the data is generated by the worst case model if
it was in fact drawn from the approximating model (or vice versa) based on likelihood ratio tests
and a finite sample. In other words, it measures the confidence an agent has in his approximating
model. A number close to 0.5 refers to complete trust in approximating model and a number
close to zero corresponds to an individual with exceedingly high distrust of the approximating
model.

A novel mechanism present when one departs from the expected utility benchmark is the link
between risk sharing and risk perceptions. A risk sharing scheme is a state contingent plan of
outcomes for an agent. As mentioned earlier, the agent uses his utility outcomes across various
models as an input for selecting a relevant model of risk which rationalizes his actions. Thus
how risk is shared affects his ex-post beliefs, but these beliefs in turn affect how much an agent
is prepared to pay for the hedging that risk.

4 Setup

There is an exchange economy with stochastic aggregate endowment denoted by yt ∈ Y. The
demography is described by two types of agents I = {1, 2}. Agents of type 2 are subject
to unobservable “taste shocks” 15 that take values st ∈ S. The taste shocks will feature a

13The dynamic version of γ = 1 multiplier preference are equivalent to Epstein-Zin preference (with IES=1 and
risk aversion 1− θ). This is the only case in which these the two preferences coincide.

14There is large literature on whether this value is larger than unity or not. Refer Bansal Yaron (2004) , Hall
(1988), Hansen and Singleton (1982) etc.

15The specification here assumes that all agents of type 2 get the same realization of the taste shock. The
results are unaffected if we assume that there are a continuum of type 2 agents and the tastes shocks are i.i.d
across agents. Section 7.2 elaborates on this generalization.
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multiplicative adjustment to the utility of consumption at time t. We assume both Y and S to
be bounded16.

There is a finite set M of Markov kernels for endowment risk {PY (yt+1|yt,m)}m∈M with
PY (y′|y,m) > 0 for all (y, y′,m). Agents’ approximating model over sequences of endowment
and taste shocks are described by heterogeneous initial priors {π0,i ∈ ∆(M)}i∈I and a dis-
tribution PS(s) from which the taste shocks are drawn. Under the approximating model, the
taste shocks are i.i.d over time and orthogonal to aggregate endowment. The heterogeneity in
agents’ approximating models comes only from the differences in the initial priors πi,0(m) on
the specifications for the aggregate endowment.

Given a consumption stream c = {ct(yt, st)}t, let υ1
t = u(ct(y

t, st)) and υ2
t = stu(ct(y

t, st))
denote respective agents’ felicities along a particular history (yt, st). These felicities are com-
puted using u : R+ → R that maps consumption into time t utils. We assume u to be strictly
concave, satisfy Indada condition and bounded from below. The subjective time discount factor
δ ∈ (0, 1).

For some (πi,0(m), y0), let V i
t be Agent i’s value from c given history (yt, st−1). We first

describe a Bellman equation that represents these valuations when agents have complete trust
in their approximating models and then modify it to capture concerns for misspecification.

Under complete trust, valuations are computed by taking expected utility under Agent i’s
approximating model.

V i
t [c|yt, st−1] =

∑
st∈S

PS(st)

(1− δ)υit(yt, st) + δ
∑

m∈M,yt+1∈Y
πi,t(m)PY (yt+1|yt,m)V i

t+1[c|yt+1, st]


(2)

The averaging across models in M using πi,t(m) comes from applying Bayes rule,

πi,t(m) ≡ Pr{m|yt} =
πi,t−1(m)PY (yt|yt−1,m)∑
m πi,t−1(m)PY (yt|yt−1,m)

We can summarize (2) below,

V i
t [c|yt, st−1] = E

{
(1− δ)υit + δEitV i

t+1[c|yt+1, st]
}
, (3)

where Eit takes expectations using

P it (yt+1|yt) =
∑
m

πi,t(m)PY (yt+1|yt,m)

These values are computed before the taste shocks st are realized. The “outer” expectation
operator in (3) uses PS(s) to average across the possible realizations of taste shocks.

With misspecification concerns, the Bellman equation representing valuations is given by,

V i
t [c|yt, st−1] = Tθ1

{
(1− δ)υit + δRπi,t,θ2Tθ1,m,ytV

i
t+1[c|yt+1, st]

}
(4)

Recursion (4) replaces ‘inner” expectation operator Eit with two operators Riθ2,t and Tθ1,m,t
and the “outer” expectation operator by Tθ1 . These operators are parametrized by a pair
(θ1, θ2) ∈ Θ ⊂ R2

+.

16For some results we will further restrict these sets be finite valued.
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We use two operators to distinguish two sources of misspecification to P it (yt+1, st|yt, st−1) =∑
m πi,t(m)PS(st)PY (yt+1|yt,m).

• Uncertainty about PY (yt+1|yt,m) and PS(st) using Tθ1,m,yt and Tθ1 , respectively

• Uncertainty about πi,t(m) using Rπi,tθ2

In our setting, agents begin with a common set of misspecified models M. The concerns
about the Markov kernels PS(s), PY (yt+1|yt,m) capture a large set of alternatives including
low frequency changes, structural breaks, non-linearities. This would usually pose an infinite
dimensional learning problem to a Bayesian17 and are addressed here using the T operators.

On the other hand uncertainty about πi,t(m) comes from a finite dimensional learning prob-
lem and is more structured. For example each m ∈ M could represent some time invariant
parameters that describe the transition matrix of y. The agents’ approximating model is de-
scribed by a initial priors over M and is updated through time using observations of yt. The
distinction between parameter risks and endowment risk allows us to partition the class of mis-
specifications into different sets, each centered on PY (yt+1|yt,m). In this generalized setup the
agents use a two step procedure to confront misspecifications. They first surround each specifi-
cation with “cloud” of alternatives that are close to it and settle on alternative set of worst case
models. Next they address estimation uncertainty by distorting the estimate of πi,t(m) 18

We now describe in detail how these operators are used to construct valuations. These will
be the dynamic version of the example studied in section 3.

Fix a model m ∈ M. Given a bounded random variable Wt+1(yt+1, st), operator Tm,θ,y is
defined by

Definition 2

Tθ1,m,ytWt+1 = min
zmt,t+1

Emt zmt,t+1Wt+1 + θ1Emt zmt,t+1 log(zmt,t+1) (5)

s.t
Emt zmt,t+1 = 1

Operator Tθ1,m,y searches over zmt,t+1 which are time t likelihood ratios given by

zmt,t+1 =
P̃mt (yt+1|st)
PY (yt+1|yt,m)

Being Radon-Nikodym derivatives, these are constrained to have a mean of unity under the
approximating model. The minimizing likelihood ratio associated with Tθ1,m,ytWt+1 is given by

zmt,t+1(yt+1, st) ∝ exp

{
−Wt+1

θ1

}
and

Ŵt(m, st) = Tθ1,m,ytWt+1

17See Sims(1971b), Diaconis and Freedman (1983) for issues related to infinite dimensional learning problems
and consistency of Bayes rules.

18This is obtained using Bayes rule using πi,0 and {PY (yt+1|yt,m)} and the history of signals yt. Hansen
Sargent (2007b) refer to this procedure as “Robustness with no-commitment.”
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The operator Tθ1,m,yt thus takes conditional expectations of Wt+1 under the distribution
P̃Y (yt+1|yt,m) and adds the relative entropy of P̃ (yt+1|yt, st,m) with respect to PY (yt+1|yt,m)
scaled by penalty θ1. We will denote P̃mt associated with the minimizing zmt,t+1 as agents’ “ex-post
beliefs.”

Note that with θ1 → ∞, we approach the limit where the agent completely trusts the
specification m ∈ M and applies the usual conditional expectation operator Emt . In this case
the penalty for distorting the approximating model is arbitrarily high.

We now move to how the agent addresses uncertainty associated with πi,t(m). Agents apply
Bayes rule under the approximating model and express their doubts on the outcome πi,t(m).

Definition 3

Rπi,t,θ2Ŵt(m, st) = min
ht(m)

∑
m

ht(m)πi,t(m)Ŵt(m, st) + θ2

∑
m

ht(m)πi,t(m) log(ht(m)) (6)

s.t ∑
m

πi,t(m)ht(m) = 1

As before ht is given by

ht(m, st) ∝ exp

{
−Ŵt(m, st)

θ2

}
.

Let W̄t(st) = Rπi,t,θ2Ŵt(m, st). Finally, we can address uncertainty about PS(s).

Definition 4
Tθ1W̄t(st) = min

zst
Ezst W̄t(st) + θ2Ezst log(zst ) (7)

s.t
Ezst = 1

Remark 1 When θ2 = θ1 = θ, we can collapse the composite operator: Rθ,tTθ,m,t into
Tθ,t The agent reduces the compound lottery {πt(m), PY (yt+1|yt,m)}m∈M to Pt(yt+1) =∑

m πt(m)PY (yt+1|yt,m) and explores misspecification around it using

Tθ,t[Wt+1] = min
ẑt(yt+1)

∑
yt+1

Pt(yt+1)ẑt(yt+1)Wt+1 + θ
∑
yt+1

Pt(yt+1)ẑt(yt+1) log(ẑt(yt+1))

s.t ∑
yt+1

Pt(yt+1)ẑt(yt+1) = 1

The Bellman equation (4) uses these operators to iterate on V i
t . History dependence in

valuations translates into history dependence in the distortions and the specification of the
ex-post beliefs. Thus, agents explores a rich class of alternatives around the set of misspecified
models given observed histories and use fluctuations in valuations to guide which of them matter
more to them .
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Remark 2 Both beliefs and taste shocks affect the value from consumption multiplicatively. One
can combine these to be interpreted as “new” taste shock with a permanent component that is
publicly observable and transitory component which is privately observable. Suppose that the
data is generated from some P 0

t (yt, st). One can rewrite Agent 2’s preferences sequentially with
this combined taste shock. Consider the case when θ1 = θ2 =∞. Equation (3) that captures the
value recursion can be re-written as,

E0

[ ∞∑
t=0

βtϑtut

]
Denote ψt,t−1 =

∑
m πt(m)PY (yt|yt−1,m)

P 0
t (yt)

we have the following law of motion for ϑt

log ϑt+1 = log ϑt + logψt,t+1 + log st+1

Without concerns for uncertainty the dynamics of ϑt are exogenous and independent of the
underlying consumption stream. With concerns for uncertainty there is an additional term

ζt,t+1 =
P̃t(yt+1, st+1)∑

m πt(m)PY (yt+1|yt,m)PS(st+1)

such that
log ϑt+1 = log ϑt + logψt,t+1 + log ζt,t+1 + log st+1

The probabilities {P̃t}t are the Agent 2’s ex-post beliefs associated with the minimizations
in (5), (6) and (7). The dynamics coming from ζt,t+1 will be endogenous and depend on the
equilibrium consumption distribution.

The restrictions on preferences and technology allow us to give tighter characterizations of
the long run dynamics, albeit leaves interesting extensions outside the scope of this paper. Most
importantly the boundedness of Y implies a stationary process for aggregate endowment. Kogan
et all (2009) study the implications of heterogeneous beliefs in growing economies where agents
have perfect trust in their models. Their paper details the joint restrictions on preferences,
growth rate of endowment, and heterogeneity in beliefs that matter for how long run wealth
shares evolve. We conjecture that such forces will be relevant even in settings with specification
doubts, but leave a detailed analysis for future work. The assumption on the lower bound on
the utility function is important for how distortions differ across agents on paths with extreme
wealth inequalities. This point alluded to in the simple examples in section 3 and we will return
to it in more details later.

5 Efficient allocations

Our economy features non-diversifiable aggregate risk and stochastic taste shocks to Agent
2. This section will describe risk sharing arrangements that are Pareto efficient subject to
informational constraints. 19

We begin with some standard definitions.

19Is the Pareto criterion reasonable? Brunnermeier et all (2012) and Blume et all (2013) dig deeper into this
issue. Both papers approach the issue in an economy with exogenous heterogeneous beliefs but allow the planner
to evaluate social welfare under different criteria that are motivated from taking a normative stance on outcomes
like “speculation” or “immiseration” associated with belief heterogeneity under complete markets.
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Definition 5 (Allocation) An allocation c = {ci,t(yt, st)}i,t is a collection of history contin-
gent consumption functions.

Definition 6 (Feasibility) An allocation is a said to be feasible, if∑
i

ci,t(y
t, st) ≤ yt ∀t

In absence of asymmetric information, this will be the only restriction on allocations. Next we
define a reporting strategy for Agent 2,

Definition 7 (Reporting strategy) A reporting strategy σ = {σt(yt, st) ∈ S} is a collection
of history contingent reports of contemporaneous taste shocks. Denote σt = {σj(yj , sj)}j≤t as
the collection of reports up to time t.

Histories of aggregate shocks yt are observable. Given a pair (c, σ), actual consumption is
c(σ) = {ci,t(yt, σt(yt, st))}i,t. We denote truth-telling strategies by σ∗t (y

t, st) = st.

Let V i
0 [ci(σ)] be the ex-ante valuations given y0 from an allocation and strategy pair (c, σ) using

recursion (4).

Definition 8 (Efficiency) An allocation c is (constrained) efficient if there does not exist any
other incentive compatible - feasible allocation c̃ such that

V i
0 [c̃i] ≥ V i

0 [ci] i = 1, 2 (8)

V i
0 [c̃i] > V i

0 [ci] for some i (9)

and
σ∗ = argmaxσV

2
0 [c̃2(σ)] (10a)∑

i

c̃i,t(y
t, st) ≤ yt (10b)

We can index the efficient allocations by an pair of initial Pareto weights (Γ, 1−Γ) for Agent
1 and 2 respectively. The optimal allocation c(Γ) solves

max
c(Γ)

ΓV 1
0 [c1] + (1− Γ)V 2

0 [c2] (11)

subject to
c1,t(y

t, st) + c2,t(y
t, st) ≤ yt (12a)

σ∗ ∈ argmaxσV
2

0 [c2(σ)] (12b)

The valuations V i
0 encode heterogeneity in approximating models and agents doubts regard-

ing them. Equation (12b) respects heterogeneity in information by imposing restrictions on the
allocations that induce Agent 2 to truthfully report his taste shock.
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In the next section, we will characterize the set of efficient allocations recursively using ‘Dy-
namic programing squared’20. In this approach, continuation values are used as state variables
to get parsimonious representation of the consumptions dynamics under an efficient plan. In our
problem, these continuation values summarize history dependence. As alluded earlier, current
beliefs and actions of an agent depend on entire stream of future utilities which are chosen by the
planner. Thus at any given history, choices of the planner are constrained by past commitments.
A similar force is present in a context of a Ramsey problem with forward looking constraints.
21

The planner chooses a menu of current and future utilities to maximize the value for Agent
1 while achieving a given promised value for Agent 2. As with the sequential problem (11),
the solution to recursive problem characterizes all efficient allocations by tracing out the Pareto
frontier.

5.1 Recursive formulation of planner’s problem

Without loss of generality, we represent choices for consumption ct with choices for utility levels
ut by inverting the the felicity function u(ct) = ut. Let C(u) denote this inverse.22

Let π = {πi(m) ∈M}i and y denote the collection of agents’ priors overM and the current
aggregate output respectively. Let Q(π, v, y) be the maximum value the planner can achieve
for Agent 1 provided he delivers a level v of promised value to Agent 2 before the taste shocks
are realized. The planner does this by choosing a report contingent menu of current and future
utilities {u1(s), u2(s), v̄(s, y∗)} to solve the following Bellman equation,

Q(π, v, y) = max
u1(s),u2(s),v̄(s,y∗)

Tθ1 [(1− δ)u1(s) + δRπ1,θ2Tθ1,m,yQ(π∗, v̄(s, y∗), y∗)] (13)

s.t
(a) Promise keeping:

Tθ1 [(1− δ)su2(s) + δRπ2,θ2Tθ1,m,yv̄(s, y∗)] ≥ v (14a)

(b) Incentive compatibility: For all s, s′

(1− δ)su2(s) + δRπ2,θ2Tθ1,m,yv̄(s, y∗) ≥ (1− δ)su2(s′) + δRπ2,θ2Tθ1,m,yv̄(s′, y∗) (14b)

(c) Feasibility: For all s
C(u1(s)) + C(u2(s)) ≤ y (14c)

(d) Bayes Rule: For all i

π∗i (m) ∝ πi(m)PY (y∗|y,m) (14d)

(e) Bounds: For all (s, y∗)

20Refer Ljungqvist and Sargent (2013) Chp. 20-24 for a textbook treatment of a wide range of problems with
enforcement or information friction that can be analyzed using these methods.

21 For e.g.. Kydland and Prescott (1980) and Lucas and Stokey (1983), Aiyagari et al. (2002) who study
optimal taxation with commitment.

22 It is easy to check that concavity of u is equivalent to convexity of C.
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v̄(s, y∗) ≤ vmax(π∗2(y∗), y∗) (14e)

Equation (14a) is the promise keeping constraint that makes sure that the value of the
optimal contract to Agent 2 is at least higher than what was “promised” to him, v. Equations
(14b) are the incentive compatibility constraints that induce Agent 2 to reveal truthfully the
realized taste shock. These constraints are ex-post in the sense that they are evaluated for each
possible realization of s. The bounds vmax(π2, y) solves,

vmax(π2, y) = Tθ1 [(1− δ)su(y) + δRθ2,π2Tθ1,m,yv
max(π∗2(y∗), y∗)]

These bounds represent the value for Agent 2 from consuming the entire aggregate endowment
from the next period onwards.

The next proposition establishes existence of Q under the boundedness restrictions on Y, S
and felicity functions u. The arguments can be extended to handle more general cases 23

Proposition 2 There is a unique solution to the planner’s problem (13). Further Q(π, v, y) is
decreasing and concave in v

The Pareto frontier is thus downward sloping. The solution to the Bellman equation (13)
gives us a law of motion for the state variables (π, v) and policy rules that map (π, v, y) to
respective consumptions for both the agents. We can use these to construct an efficient allocation
allocation c.

Suppose we start time 0 with some level of ex-ante promised value v0 and initial conditions
({π0,i(m)}i, y0). This choice of v0 will correspond to some Γ in problem (11).

1. State variables: vt and {πi,t(m)}i capture history dependence,

vt = v̄(st−1, yt|πt−1, vt−1, yt−1)

.

πi,t(m) =
πi,t−1(m)PY (yt|yt−1,m)∑
m πi,t−1(m)PY (yt|yt−1,m)

2. Allocation: Given by policy rules,

c2,t(y
t, st) = C[u2(st|πt, vt, yt)]

c1,t(y
t, st) = C[u1(st|πt, vt, yt)]

Consider the Lagrangian for the Planner’s problem

L(π, v, y, λ) ≡ Tθ1 [(1− δ)u1(s) + δRπ1,θ2Tθ1,m,yQ(π∗, v̄(s, y∗), y∗)]+λ {Tθ1 [(1− δ)su2(s) + δRπ2,θ2Tθ1,m,y v̄(s, y∗)]− v}

The multiplier λ plays the role of the relative “Pareto weights” for Agent 2. The concavity of
the planner’s value function Q additionally implies a monotonic relationship between λ and v.
This follows from the Envelope theorem which implies λ = −Qv

23See discussion in Anderson (2005), Kan (1985), Lucas and Stokey (1984).
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The next proposition establishes the equivalence of the problems (11) and (13). The key
step involves showing that the temporary ex-post incentive constraints in (14b) are equivalent
to the ex-ante incentive constraints in (12b) by exploiting the one-deviation principle.

Proposition 3 For every Γ ∈ (0, 1) there exists a v0 such that the solution to recursive problem
(13) given v0 and initial conditions ({π0,i(m)}i, y0) solves the sequential problem (11) for the
pair of initial Pareto weights (Γ, 1− Γ) and conversely.

Heterogeneity in ex-post beliefs

The planner internalizes the fact that ex-post beliefs 24 change with candidate incentive compat-
ible consumption allocation. Given the optimal allocation c and associated continuation values
for each agent V i

t (yt, st−1), we can compute as equilibrium ex-post beliefs using,

P̃ it (yt+1|st, yt,m) ∝ PY (yt+1|yt,m)exp

{
−
V i
t+1

θ1

}
(15a)

π̃i,t(m|st) ∝ πi,t(m)exp

{
−
Tθ1,m,ytV i

t+1

θ2

}
(15b)

P̃ it (st) ∝ PS(s)exp

{
−
[
(1− δ)υit + δRπ2,t,θ2Tθ1,m,ytV i

t+1

]
θ1

}
(15c)

Dynamic insurance problems in settings with heterogeneity in beliefs or heterogeneous in-
formation typically feature time varying Pareto weights λt. The heterogeneity of beliefs in our
case has two components the exogenous coming from {πi,0(m)}i. and endogenous coming from
the exponential twisting formulae. The next lemma summarizes these dynamics.

Lemma 1 Let P̃ it (yt+1|st) =
∑

m π̃i,t(m)P̃ it (yt+1|yt, st,m), λt be the Lagrange multiplier on the
PK constraint (14a) and µt(s) be the (scaled) multiplier on the incentive constraints (14b). The
one period ahead growth rate of λt under the optimal allocation are given by,

λt+1

λt
=
P̃ 2
t (st)P̃

2
t (yt+1|st)

P̃ 1
t (st)P̃ 1

t (yt+1|st)︸ ︷︷ ︸
Heterogeneous beliefs

1 + µt(st)−
∑
s′t 6=st

µt(s
′
t)
P̃ 2
t (s′t)P̃

2
t (yt+1|s′t)

P̃ 2
t (st)P̃ 2

t (yt+1|st)


︸ ︷︷ ︸

Heterogeneous Information

(16)

Proof. Take the F.O.C condition w.r.t. v̄(s, y∗).

Qv(π∗, v̄(s, y∗), y∗)P̃ 1(s)
∑
m

π̃1(m)P̃ 1(y∗|y, s,m) =λ
∑
m

P̃ 2(s)π̃2(m)P̃ 2(y∗|y, s,m)

+ µ̂(s)
∑
m

π̃′2(m)P̃ 2(y∗|y, s,m)

−
∑
s′ 6=s

µ̂(s)
∑
m

π̃′2(m)P̃ 2(y∗|y, s′,m)

(17)

24The probabilities associated with the minimizations in operators Tθ1,m,y,Rπi,θ2 and Tθ1 .
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Define µ(s) as

µ̂(s) = λµ(s)P̃ 2(s)

Finally using the Envelope theorem λ = −Qv(π, v, y) with the first order conditions for
v̄(s, y∗) to obtain (16)

The remaining part of the paper accounts for the differences in consumption patterns due to
concerns for model misspecification. Our benchmark will be the case when agents completely
trust their approximating models. To focus on the effects of heterogeneous initial priors {πi,0(m)}
and heterogeneous information, the analysis is split in two parts, each of which focuses on one
of the sources of heterogeneity. We begin in section 6 by shutting down the heterogeneity in
private information by assuming S = {1}. Finally in section 7 we show how the main results on
long run inequality extend to case with heterogeneous information.

6 Efficient allocation with symmetric information

In absence of taste shocks, the dynamics of Pareto weights in equation (16) simplify and the
optimal allocation is characterized by

ci,t = ci(λt, yt) (18a)

λt+1

λt
=

∑
m π̃2,t(m)P̃ 2

t (yt+1|yt,m)∑
m π̃1,t(m)P̃ 1

t (yt+1|yt,m)
(18b)

where the probabilities can be computed using (15)
Given a Pareto weight λt, the planner uses conditions (18a) to distribute the current ag-

gregate endowment yt. This combines the first order conditions for c1, c2 and the resource

constraint. The Lagrange multiplier λt =
uc(c1,t)
uc(c2,t)

and measures the time t ratio of marginal

utilities. Concavity of u thus implies a strictly monotonic relationship between consumption of
Agent 2 and λ.

Equations (18b) show that the planner accounts for the differences in the ex-post beliefs,
for example, by by increasing future Pareto weight in states where the Agent 2 is relatively
optimistic.

Remark 3 The allocations are efficient in an “alternative” economy where agents have no mis-
specification concerns but heterogeneous beliefs given by {P̃ it }i,t =

∑
m π̃i,t(m)P̃ it (yt+1|yt,m).In

absence of private information, the optimal allocation can be supported by a complete set of one
period ahead state contingent securities.

Suppose agents start with identical initial priors π1,0 = π2,0 and the initial promised value
v0 is chosen to satisfy Q(π0, v̂(y,π0), y) = v̂(y,π0). This is a situation when two agents are
identical and the optimal allocation features equal consumption shares forever. It is easy to see
that at this candidate allocation, the spread between continuation values is same across agents
for all histories and they will agree on the relative assessments of future shocks. The initial
condition corresponds to λ0 = 1 and the allocation implies λt(y

t) = 1 for all histories yt.
The next section 6.1 we use the decentralization using Arrow securities to emphasize some

properties of asset prices and the role of public information in generating motives for trade.
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In section 6.3 we trace how misspecification doubts affect long run inequality due to hetero-
geneity in initial priors {πi,0(m)}i. The results will broadly depend on whether differences are
dogmatic, e.g., for some m∗ 6= m∗∗ ∈ M, π1,0(m∗) = 1 and π2,0(m∗∗) = 1 or transient, e.g.,
πi(m) > 0 for all i,m.

6.1 Decentralization

In a decentralized equilibrium with Arrow-securities, agents trade until margin utilities of con-
sumption weighted by their respective beliefs are equalized across states. Heterogeneity in
beliefs, thus, affects both motives and prices at which such trade takes place. One can back
out the shadow prices for these one-period ahead Arrow securities using the stochastic discount
factor implied by the optimal allocation. Using consumption and ex-post beliefs of any agent i
one obtains,

q(y∗|π, v, y) = δ

(∑
m∈M π̃i(m|π, v, y)P̃ i(y∗|m,π, v, y)uic(λ

∗(y∗), y∗)

uic(λ(π, v, y), y)

)
For the rest of the section, we will assume π0,1 = π0,2 = π0. This isolates the role of endoge-

nous heterogeneity in beliefs on properties of asset prices and makes it convenient to compute
moments from a perspective of an econometrician who shares this common approximating model.
Concerns for uncertainty make asset prices more volatile and this volatility is related to the de-
gree of wealth inequality. Further uncertainty about πt(m) can potentially deliver conditional
volatilities that are higher in recessions as against booms. For some calculations in this section
we assume u(c) = c1−γ

1−γ .
Given λ, equation (18a) gives us consumption for each of the agent

c1(π, v, y) =
1

1 + λ(π, v, y)
1
γ

y ≡ η1(π, v, y)y (19)

c2(π, v, y) =
λ(π, v, y)

1
γ

1 + λ(π, v, y)
1
γ

y ≡ η2(π, v, z)y (20)

Substituting equation (18b) and using the above expressions to compute q(y∗|π, v, y), we have

q(y∗|π, v, y) = δ

{∑
i

ω∗i

(∑
m∈M

π̃i(m)P̃ i(y∗|m,π, v, y)

)}(
y∗

y

)−γ
(21)

Where ω∗i are given by

ω∗i (y
∗|π, v, y) =

η−γi (π∗(y∗), v∗, y∗)∑
i=1,2 η

−γ
i (π, v, y)

Denote qBM (y∗|y) be the asset prices when both concerns for uncertainty are absent θ1 =
θ2 =∞

qBM (y∗|π, v, y) = δ
∑
m

π(m)PY (y∗|y,m)

(
y∗

y

)−γ
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So we have that q(z∗|v,z)
qBM (z∗|z,π)

= ζ(y∗|π, v, y), where

ζ(y∗|π, v, y) =

∑
i=1,2

ω∗i

∑
m∈M π̃i(m)P̃ i(y∗|y,m)∑
m π(m)PY (y∗|y,m)


The asset prices in this economy feature an additional multiplicative adjustment ζ has two

components - one coming from the relative likelihood of the worst case model with respect to
the approximating model and the other reflecting how consumption shares evolve. Barillas,
Hansen and Sargent (2009) point out the importance of the first component in explaining the
volatility of asset prices and equity premium related puzzles. When we have v 6= v̂(y, π), the
point corresponding to equal initial Pareto weights, there is feedback from wealth inequality to
asset prices.

Pricing kernel

Define ρt(y) as the stochastic discount factor that prices one period ahead state contingent
cash-flows f(y) under the common approximating model.

Definition 9 (Pricing kernel)

Pt(f) = Etρt(yt+1)f(yt+1)

Evidently,

ρt(yt+1) = δ
uc(ci,t+1)

uc(ci,t)

(∑
m∈M π̃i,t(m)P̃ it (yt+1|yt,m)∑
m∈M πt(m)PY (yt+1|yt,m)

)
For CRRA specification for u,

ρt(yt+1) = ζt(yt+1)

(
yt+1

yt

)−γ
(22)

We use conditional variance of the (log) pricing kernel25 as a measure for summarizing the
market price of risk in this economy.

MPR[π, v, y] = var[log(ρ)|π, v, y]

The volatility is with respect to the common approximating model i.e
∑

m π(m)PY (y∗|y,m)
Under the benchmark when agent trust their approximating models, MPR corresponds to

volatility of aggregate growth rate scaled by γ (risk aversion). It is thus independent of wealth
shares.

With concerns for uncertainty MPR is increasing in wealth inequality with IES> 1. To see
this consider a simple example with Y = {yl, yh}.

Suppose yh > yl and u(c) = c1−γ/(1− γ) and denote the spread in utilities, ∆[η] ≡ u(ηyh)−
u(ηyl)

25For a log-normal variable σ[log(x)] = σ(x)
E(x)

. Hansen and Jagganathan (1991) show that this is the bound on
the maximum Sharpe ratio.

19



∆[η] = η1−γ [u(yh)− u(yl)]

It is easy to see that with IES > 1 this spread is increasing in η.
With identical initial priors, v = v̂ that satisfies Q(π0, v̂(y, π0), y) = v̂(y, π0). This corre-

sponds to equal initial Pareto weights and an optimal allocation given by

c1,t =
1

2
yt

WLOG, let v0 → vmin, Agent 1 consumes the entire aggregate endowment

c1,t = yt.

Thus as we go from v̂ and vmin, the share of endowment that Agent 1 consumes doubles. With
IES>1, the increasing spread in utilities imply that the distortions to the common approximating
model are increasing with wealth inequality and vice versa.

Standard consumption based asset pricing models often rely on heteroskedastic innovations
to endowment growth in order to generate cyclical properties of market price of risk. Hansen and
Sargent (2010) study a representative agent model with unobservable shocks to trend growth
and reconcile countercyclical prices of risk using versions of Tθ1,m,y and Rπt,θ2 . In a simplified
setting we show the relevance of θ2 6= θ1 for ensuring such cyclical properties and then con-
struct a example with two models that shows how doubts about πt are capable of generating
countercyclical market price of risk.

Proposition 4 Consider the economy where Y = {yl, yh}, agents have identical priors π and
consider two models |M| = 2 with symmetric transition matrices : {αm = PY (y∗ = y|y,m)}m∈M

Let MPRθ1,θ2 [y, v, π] be the market price of risk and ᾱ =
∑

m π(m)αm

• θ1 = θ2 = θ

MPRθ,θ[π, v, y] =
√
ᾱ(1− ᾱ)(2gγ + log ζ∗(yl|π, v, y)− log ζ∗(yh|π, v, y))

and
lim

‖ log(λ)‖→∞
MPRθ,θ[π, v, yl] = lim

‖ log(λ)‖→∞
MPRθ,θ[π, v, yh]

• With θ2 6= θ1 =∞ and α2 > α1 = 1
2 there exists a π̄ < 1

lim
‖ log(λ)‖→∞

MPR∞,θ2 [π, v, yl] > lim
‖ log(λ)‖→∞

MPR∞,θ2 [π, v, yh] ∀π(m = 1) > π̄

Remark 4 Since the MPR is symmetric with respect to λ, the properties generally hold for all
intermediate wealth shares too

As ‖ log λ‖ → ∞, the asset pricing properties are isomorphic to an economy populated
by a single agent. In this case the departures from the benchmark, when agents trusts the
approximating model, are primarily driven by how large are the distortions to the common
approximating model. When θ1 = θ2, the approximating model is given by a wighted sum of
symmetric Markov transition kernels and retains the symmetry. Further the spread between the
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valuations across states in the next period are invariant to the current aggregate endowment.
Thus the limiting market price of risk is acyclic.

However, with θ2 6= θ1, admitting an approximating model with a small probability of a very
persistent model would generate countercyclical MPR. This arises because of the state dependent
twisting of priors over models. For e.g.., in recessions, Agent 1 twists πt(m) towards models with
more persistence and vice versa. Start from the situation where the common approximating
model has a prior πt that is closer to the IID model. Relative entropy being a convex measure of
distance, the departures of ex-post beliefs are smaller in booms than in recessions. This imparts
the countercyclical behavior to market price of risk when agents consider a small possibility of
persistence. Figure 1 plots the limiting market price of risk as function of π for θ1, θ2 =∞ and
θ1 = ∞, θ2 < ∞ cases. The left panel shows the region is π where the dotted line which plots
the market price of risk in booms is lower than that in recessions.

Figure 1: This figure plots the conditional market price of risk as function of π. The solid
(dotted) line is y = yl(yh). The left panel has θ2 < ∞, θ1 = ∞ and the right panel has both
θ1, θ2 =∞

6.2 Uncertainty about πi,t(m) and news shocks

The previous section illustrated how distortions to πt(m) that depend on the current aggregate
endowment impart cyclical properties to risk prices. This section will show how distortions
to πt(m) that depend on the current distribution of wealth can generate a reason to trade on
public signals. In particular agents with identical initial priors and information sets will have
consumption that fluctuates with “news shocks” (after conditioning for the aggregate endow-
ment). These news shocks will be modeled as public signals that are informative about future
distribution of aggregate endowment.

Suppose we augment the economy with news shocks νt that provide a noisy signal of the
aggregate endowment in the next period.

νt = yt+1 + εt,

where εt is i.i.d over time.
When would these shocks matter for consumption and asset pricing dynamics? With com-

plete markets if agents have identical priors πi(m) = π(m) and identical information structure,
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i.e all agents see Ft = {yt, νt} it easy to see that in the benchmark case when θ1 = θ2 = ∞
consumption will be exact function of the realized endowment yt and news shocks are irrelevant.
These shocks only affect the information sets and may give agents better forecasting abilities
but are symmetric across agents. Thus there is no motive for the planner to vary consumption
with these shocks.

However with concerns for misspecification this conclusion is not generally true.

Example 1 Consider a simple example where the aggregate endowment can take two values and
M or the set of models describing the possible models for the distribution of aggregate endowment
has two elements, both describing a symmetric transition matrix with the probability of remaining
in the same state is α1 6= α2 and α1 + α2 < 1 and θ1 =∞, we have

λt 6= 1,

is necessary and sufficient for

ct(y
t, νt) 6= ct(y

t, ν̃t) whenever νt 6= ν̃t

.

Proof.
This follows from the analyzing the FOC of the Planning problem (18b), for all νt+1 6= ν̃t+1

λt(yt+1, νt+1)

λt(yt+1, ν̃t+1)
= 1 iff

∑
m π̃i,t(m)P̃ it (yt+1, νt+1|m)∑
m π̃i,t(m)P̃ it (yt+1, ν̃t+1|m)

is independent of i

One can simplify the right hand side to∑
m πt(m)PY (yt+1, νt+1|yt, νt,m)F it (m)∑
m πt(m)PY (yt+1, ν̃t+1|yt, νt,m)F it (m)

(23)

where F 1
t (m) = exp

{
− 1
θ2
Em,tQt+1

}
and similarly for Agent 2, F 2

t (m) = exp
{
− 1
θ2
Em,tvt+1

}
In the appendix we show how λt 6= 1 and the restrictions on αi’s are sufficient to make (23) vary
across agents.

Agents trade on news shocks because they have different ex-post assessments of histories
with same aggregate endowment but different signals. What is key for this to be true is that
a) Prt{νt+1|yt+1} differ across models m ∈ M and b) Ex-post weights on models differ across
agents.

In the example, the first condition was achieved by the particular signal structure where νt+1

was informative about yt+2 and models differed in persistence of aggregate endowment. The
ex-post differences in weights on the models came from wealth inequality.

Until agents haven’t settled on a single m ∈M, learning induces a compound lottery whereby
the conditional distribution of the shocks has to averaged across models which are themselves
distributed according to the some prior πt(m). These preferences implicitly takes a stand on
attitudes towards resolution of compound lotteries 26.

In the rest of the section we generalize the structure of the news shocks to see in more detail
what patterns of correlation are necessary for consumption to be sensitive to new shocks.

26In particular the only kind of preferences that display both indifference to compounding temporal lotteries
and ambiguity aversion are Gilboa and Schmeidler’s (1989) maxmin expected utility (MEU) preferences. Strza-
lecki(2011) discusses the connection between these in detail.
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Lemma 2 Let νt be some random process such that ξt = (yt, νt) and the approximating models
are modified to have a joint distribution as denoted by {P (ξ∗|ξ,m)}m∈M. Consider a partition of
M generated by F it (m), where Mi,t(m) ≡ {m′ ∈M : F it (m) = F it (m

′)}. As long as θ2 6= θ1 =∞
and λt 6= 1 a sufficient condition for there to be pair of histories such that ci,t+1(yt+1, νt+1) 6=
ci,t+1(yt+1, νt, ν̃t+1) is that @ κ1

t (yt+1, νt+1, ν̃t+1) independent of m such that∑
m′∈Mi,t(m)

πt(m
′)PY (yt+1|yt, νt,m′)P (νt+1|yt+1, yt, νt,m

′) =

κt
∑

m′∈Mi,t(m)

πi,t(m)PY (yt+1|yt, νt,m)P ( ˜νt+1|yt+1, yt, νt,m)
(24)

is satisfied for all m in the support of πt(m)

Proof.
Suppose ci,t+1(yt+1, νt+1) = ci,t+1(yt+1, νt, ν̃t+1). Thus

λt(yt+1, νt+1)

λt(yt+1, ν̃t+1)
= 1

Consider first the case when F 1
t (m) = ιF 2

t (m) for all m in the support of πt(m). This would
imply that Qt+1 − vt+1 is constant across all realizations of (yt+1, νt+1). The distortions π̃it and
P̃ it (yt+1, νt+1|m) are same across agents and thus λt+1 = λt = 1.

In other cases, the sufficient condition rules of cases where 23 is independent of i.

The lemma isolates properties of the joint distribution of the endowment and news shocks
that depend on endogenous objects namely continuation values Qt+1, vt+1. Instead of further
restricting the class of distribution such that sufficient condition is always satisfied, we give some
examples of cases that are ruled out.

Proposition 5 Without loss of generality, let,

P (ξ∗|ξ,m) = PY (y∗|y, ξ,m)Pν|Y (ν∗|y∗, ξ,m) (25)

Let αm and βm(y∗) be a vector of parameter that characterize PY and Pν|Y respectively. If the
following conditions are true then consumption is only measurable with respect to histories of
aggregate shocks in spite of θ2 6= θ1 =∞:

1. No aggregate risk: |Y| = 1

2. No correlation: Pmν|Y (ν∗|y∗, ξ) = Pmν|Y (ν∗|ξ) for all m in the support of πt and M =

{αm}m∈M × {βm}m∈M

3. Aggregate risk specifications: For all m,m′ in the support of πt, αm = αm′

4. Conditional distributions: For all m,m′ in the support of πt, βm = βm′

So far the discussion assumed θ1 =∞. This made it easy to derive and study the sufficient
conditions for news shocks to matter in terms of the properties of approximating models. How-
ever, this restriction is not necessary and with θ1 <∞, it is still generally true that news shocks
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will matter. In the appendix we construct a three period example to highlight how different
histories of νt’s that generate different πt’s require optimal consumption to be sensitive to new
shocks. The key insight is that the correlation in the shocks gives a alternative histories νt dif-
fering information content about future distribution of aggregate endowment shocks. The value
of this information depends on the difference in expected continuation values (under the model
specific ex-post beliefs) across models m as captured by the presence of π in the state variables.
With inequality in wealth, this difference in expected continuation values across models can
differ across agents, leading to disagreements and trade on histories that only differ in news.

A simple corollary to the analysis is that closing markets where agents can trade on news
shocks is suboptimal, a conclusion that would be reversed if one ignores concerns for misspecifi-
cation. The implications of cross sectional consumption and consequently pricing kernels being
sensitive to news shocks can jointly reconcile both higher volatility of prices and larger volume
of trade. We leave a quantitative assessment of this channel for future work.

6.3 Long run inequality and market selection

The market selection hypothesis articulated by Friedman (1953) conjectures that agents who
make systematic errors in evaluation of future risk lose wealth on an average. What is envisioned
in this hypothesis is a frictionless economy (i.e complete markets) with agents who have dis-
agreements about how they evaluate future contingencies. It asserts that in such cases, there is
a “natural selection” and markets will weed out agents who have incorrect beliefs. Their wealth
shares and consequently consumption shares will diminish over time.

In our setting, the differences in initial priors {πi,0(m)}i summarize differences in approxi-
mating models over time. To categorize the results we will consider two kinds of heterogeneities
in πi,0(m)’s depending on whether agents are “dogmatic” or not. An agent is called dogmatic if
his initial prior πi,0 is degenerate.27.

The next theorem establishes the long run consequences for Pareto weights when agents trust
their approximating model. With bounded aggregate endowment, Inada conditions can be used
to map the outcomes on λt to consumption shares for each agent.

Proposition 6 For θ1 = ∞, θ2 = ∞, suppose the data generating process is P 0
Y (yt+1|yt) =

PY (yt+1|yt,m∗),

• Dogmatic initial priors: If π1,0(m∗) = 1 and π2,0(m∗∗) = 1 for m∗ 6= m∗∗

λt → 0 P 0
Y − almost surely

• Learning: If π1,0(m∗) > 0 and π2,0(m∗) > 0

λt → λ0
π2,0(m∗)

π1,0(m∗)
P 0
Y − almost surely

Furthermore if π1,0(m∗) = 1
λt ≥ λ0π2,0(m∗)

27These were considered in Harrison and Kreps (1978) who studied trading amongst agents with dogmatic
priors in presence of short selling constraints.
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Proof.
It should be noted that λt is the Lagrange multiplier on the promise keeping constraint and

hence non-negative. With θ1, θ2 =∞ the (18b) simplify to

λt+1

λt
=

∑
m π2,t(m)PY (yt+1|yt,m)∑
m π1,t(m)PY (yt+1|yt,m)

(26)

In the with dogmatic beliefs, λt+1 is a martingale under P 0. Since it is bounded below,
Doob’s supermartingale theorem implies that it converges almost surely to λ∞. Suppose for
some path λ(yt)→ λ̂ > 0.

PY (yt+1|yt,m∗∗)
PY (yt+1|yt,m∗)

→ 1

This is yields a contradiction as m∗ 6= m∗∗, there would exist yt+1 such that given yt the two
models have different likelihood of the shock yt+1.

In the case of Bayesian learning

λt+1

λt
=

(∑
m π2,t(m)PY (yt+1|yt,m)

PY (yt+1|yt,m∗)

)(
PY (yt+1|yt,m∗)∑

m π1,t(m)PY (yt+1|yt,m)

)
(27)

Applying Bayes rule,

πi,t+1(m∗|yt+1) =
πi,t(m

∗)PY (yt+1|yt,m∗)∑
m πi,t(m)PY (yt+1|yt,m)

(28)

Thus ∑
m

πi,t(m)PY (yt+1|yt,m) =
πi,t(m

∗)PY (yt+1|yt,m∗)
πi,t+1(m∗|yt+1)

(29)

Combining (27) and (29), we have

λt+1
π2,t+1(m∗)

π1,t+1(m∗)
= λt

π2,t(m
∗)

π1,t(m∗)

One can note that πi,t+1(m∗)→ 1 P 0−almost surely by Doob’s (1949) consistency theorem

and λt+1 → λ0
π2,0(m∗)
π1,0(m∗)

If π1,0(m∗) = 1, then π1,t(m
∗) = 1 for all t. Thus

λt+1 ≥ λt+1π2,t+1 = λ0π2,0

The case with dogmatic beliefs and complete trust is studied in Blume and Easley (2001)
and we review the main arguments. Consider a static world and an extreme case of belief
heterogeneity where some agents incorrectly perceive certain states of the world to be impossible.
If the planner had instruments to allocate resources over states, trivially efficiency would require
that he allocates zero consumption to these agents in such states. Now consider an infinite
horizon world, even if there are no zero probability states of the world in the next period, it
is easy to construct events that have zero probabilities over infinite sequences. In our setting,
under the benchmark, Agent 2 has complete faith in a Markov kernel that is different from the
data generating process m∗, in particular yields a different stationary mean for yt. Now consider
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events that predicts a sample mean is equal to the stationary mean under the data generating
process PY (yt+1|yt,m∗). By Ergodic theorem, these are zero probability in his mind and as before
the planner would allocate (eventually) zero consumption on these events. Unlike the static case,
where consumption was zero with some positive probability, here eventually consumption will
be zero with probability 1. The previous reasoning isolates absolute continuity of beliefs over
infinite sequences as an important criterion for survival28.

The consequences of survival when agents are Bayesian learners depends on the specific
details of the environment. For a setup where the initial priors are absolutely continuous with
respect to the Lebesgue measure, the key heterogeneity in initial priors that matters for long
run survival is dimension of the support. Under some regularity conditions, Blume and Easley
(2006) show that agents with low dimensional priors dominate (provided their priors include the
data generating process). Although our setup does not fit the analysis (since the set of models is
finite), one can completely characterize how worse off the agents are in the long run as function
of their initial differences.

When beliefs are not dogmatic, Proposition 6 says that the limiting relative Pareto weight

of Agent 2 is path independent and converges to
π2,0(m∗)
π1,0(m∗) fraction of its initial value. The data

generating process is the distribution associated with m∗ and
π2,0(m∗)
π1,0(m∗) is measure of the relative

heterogeneity in initial priors. A number larger than one implies that Agent 2 puts more mass
on the correct model than Agent 1 and consequently has a higher Pareto weight in the limit.
The second part of the proposition characterizes a uniform (i.e for all paths) lower bound on
the relative Pareto weights of Agent 2. When Agent 1 is both dogmatic and correct but Agent
2 admits the possibility of the truth in his support. Figure 2 shows the simulations of λt from a
simple example where the aggregate endowment takes two values andM has two elements, both
Markov models with symmetric transition densities parametrized by a αm that is the probability
if remaining in the same state. The data is generated from m = 1 and the initial conditions are
(π1,0(1), π2,0(1)) = (1, 1

2) and λ0 = 1.
Consistent with the proposition we see the two properties : a) all paths converge to λ0π2,0 = 1

2
and b) The distribution of λt at any date t has a support with a lower bound of 1

2 . The red line
depicts the mean across paths and the bold black line marks the initial condition. One can see
that even though the agent who is learning is worse off in the long run, in the initial periods
Pr{λt > λ0} is quite high.

The next two sections will describe how the results change when agents admit misspecification
concerns. As with the benchmark, we split the discussion in two cases. In section 6.4 we study
the situation when agents are dogmatic (in the Harrison Kreps (1978) sense). In section 6.5 we
study the case when agents are learning and the differences in their approximating models are
transitory.

6.4 Dogmatic beliefs with specification concerns

When agents have different approximating models which they fear are misspecified, what mat-
ters for long run inequality is is how far their ex-post beliefs from a data generating process.
The proposition below shows how specification concerns expands the set of heterogeneous ap-
proximating models that are consistent with none of the agents being driven out.

28More generally when πi,0 have disjoint support(across agents), with Bayesian learning agents’ priors converge
to model that has the least relative entropy with respect to m∗. Thus studying the dogmatic initial priors captures
this case too.
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Figure 2: The figure plots paths of λt for the case when Agent 1 is both dogmatic and correct
while Agent 2 is a Bayesian learner. The red line is the mean across samples and the solid black
marks the initial λ0

Let P iY be the m ∈ M such that πi(m) = 1. Define I0,i(y) = E0 log
(
P 0
Y (y′|y)

P iY (y′|y)

)
be the

conditional relative entropy of Agent i’s approximating model with respect to the data generating
process.

Proposition 7 Suppose u(0) > −∞ and y takes more than two values and let Γy be the invari-
ant distribution of the Markov chain Y under the data generating process. There exists M , M̄
such that

EΓyI0,2(y)− EΓyI0,1(y) ∈ (M, M̄)

is sufficient for both agents to survive P 0-almost surely.
For P 0

Y = P 1
Y we have M = 0, M̄ > 0 and with P 0

Y = P 2
Y we have M < 0, M̄ = 0.

The survival result exploits two key features : a) presence of non-diversifiable aggregate risk
and b) the fact that valuations are bounded from below.

While exploring misspecifications agents are trading off changes in relative entropy and
changes in expected future valuations

min
m:Eim=1

(
EimV i − EiV i

)
+ θEm logm

The search for misspecifications balances the marginal costs of exploring new models and
benefits from recognizing potential losses in average valuations. Scaling the valuations by a
factor k > 1, will mean that for the same marginal costs, the benefits are larger. Thus agents
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with proportionately larger valuations will explore models in a larger set as measured by relative
entropy.

The valuations of the agents roughly scale in individual wealth. Take a hypothetical path such
that Agent 2 (who starts with a approximating model that is slightly incorrect) was arbitrarily
close to zero wealth. Not only his valuations are low but bounded utility implies that the spread
in valuations is also close to zero. As such exploring misspecifications is a rather costly activity
for him since the relative changes in expected valuations under alternative models is also close
to zero. On the other hand, Agent 1 faces large fluctuations in valuations coming from owning
the entire aggregate endowment stream. What matters for the market selection force is not how
far the approximating models are, but the gap in terms of worst case models. In cases where
Agent 1 might have started with a correct reference point i.e., P 0 = P 1, if his doubts switch
the relative ranking in terms of distance from the data generating process. Of course for this to
work, differences in the initial reference points should be low enough. The interval in proposition
7 gives us a sense of how large these differences can be. The length of the interval shrinks as θ
increase as its more costly for Agent 1 to explore misspecifications for the same set of models
29.

One can interpret this wealth transfer mechanisms by analyzing the differences in perceived
insurance needs are across agents. The wealthier agent being more pessimistic “overbuys”
recession insurance. This portfolio generates inflows for him in low endowment states against
payments booms. Since recessions occur less often than what he perceives, there is on an average
a transfer of wealth to the other agent.

With u(0) = −∞, the survival is more delicate. It depends on (λ0, π
1, π2). We can construct

examples where after distortions, the agent with low wealth is relatively more closer to the data
generating process and there is a point in the wealth distribution where the worst case models
coincide for both agents.

Characterizing long run distributions: Binary - IID shocks

In a special setting where the aggregate endowment can take two values we can characterize
the ergodic distributions of Pareto weights. These results extend Anderson’s (2005) findings
where he studies a similar risk sharing problem with common approximating models. That
paper isolates points in wealth distribution that are absorbing in nature. In our problem with
symmetric information and heterogeneous approximating models such “steady states” generally
do not exist. However there is a small class of shock process, particularly where aggregate shocks
are IID and can can take at most two values under the approximating models of each agent when
the ergodic wealth distribution is degenerate. For the rest of the section {P iY }i and the data
generating process P 0

Y satisfy these restriction.

Proposition 8 Let C = [1−δ]
θ1

[u(yh)− u(yl)]. If

log
P 2
Y (yh)

P 1
Y (yh)

− log
P 2
Y (yl)

P 1
Y (yl)

∈ (−C,C),

29 What is crucial is for the mechanism to work is agents with relatively larger wealth to distort more. It is not
necessary that they are pessimistic. One can flip the sign of θ1, θ2 to be negative and switch the minimization in
operator T’s and R’s to a maximization to obtain a theory of “cautiously” optimistic agents. These agents will
have ex-post beliefs that are statistically close to the approximating model but overweight the states with higher
valuations.
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there exists a constant ∞ > λ̄ > 0 such that

λT = λ̄ =⇒ λT+s = λ̄ ∀s > 0

This λ̄ is independent of the y and the data generating process. At λ̄, the agents have
the same ex-post beliefs. This requires the heterogeneity in minimizing likelihood ratios (which
depend of wealth shares) to offset the heterogeneity in approximating models) for all realizations
of aggregate endowments. Given they are “equally” wrong, there are no efficiency gains from
changing consumption shares in the future. The IID-binary restrictions to shock process are
necessary, otherwise the set of equilibrium conditions consistent with steady states forms a non-
square system of unknowns. It is easy to construct examples such that there are generically no
roots to such systems.

The steady state is interesting if the economy reaches it from arbitrary initial conditions.
The next proposition discusses some mild technical conditions under which λ̄ is both locally and
globally stable.

Proposition 9 Suppose that P 0
Y = P 1

Y 6= P 2
Y and suppose there exists a steady state λ̄. Denote

z̄1(y) =
exp{−θ−1

1 u(y)}
E0 exp{−θ−1

1 u(y)} . If

I0,2 ≤ −E0 log z̄1(y) (30a)

P 2
Y (yl) ≤ P 0

Y (yl)z̄1(yl) (30b)

and
P̃ 1(yl|v, y) ≥ P 0

Y (yl) ∀v : λ(v, y) ≤ λ̄ (30c)

For any λ̄ > λt > 0 we have

lim
s
λt+s = λ̄ P 0almost surely

Corollary 1 Suppose that P 0
Y = P 1

Y 6= P 2
Y and suppose there exists a steady state λ̄. Then it is

locally stable i.e, there exists a δ > 0 such that for all λt ≥ λ̄− δ

lim
s
λt+s = λ̄ P 0

Y almost surely

Corollary 2 Assumption (30c) is satisfied if
P 2
Y (yl)

P 2
Y (yh)

≥ P 0
Y (yl)

P 0
Y (yh)

The restriction to Agent 1 having the correct approximating model is without loss of gener-
ality. The set of sufficient conditions will change accordingly, but the structure of proof remains
same. We omit the details for brevity. Note that assumption (30c) restricts an endogenous
policy rule. Corollary 1 shows that it is satisfied locally around λ̄ and corollary 2 provides
restriction on Agent 2’s beliefs that guarantees it holds in the required region λ < λ̄.

The proof starts with the observation that λt is a martingale under the Agent 1’s ex-post
beliefs. The sufficient conditions allow us to argue that it is a sub martingale under the data
generating process on the left of the steady state. A helpful lemma used in the proof shows that
that λt+1[yt+1|y, λt] is monotonic in λ and the steady state λ̄ by definition is a rest point for
the its dynamics. The monotonicity property allow us use the steady state as a bound on this

29



sub-martingale. This leaves us two possibilities either it converges to zero or to the steady state.
Imposing Assumption (30a) rules out the first case and λt converges to the steady state value.
The intuition behind this convergence is same as discussed previously, along the paths when
Agent 1 is dominating his distortions to the approximating model are large, in particular the
ex-post beliefs over estimate ( relative to his approximating model) states with low aggregate

endowment. Figure 3 depicts the log λt+1

λt
as a function of promised values. The two curves

represent growth rates for yt+1 = yl or yt+1 = yh. We see that for low λ, the growth rate
is positive when aggregate endowment is high (dotted line). This corresponds to the excess
returns Agent 2 generates from providing recession insurance to Agent 1. The crossing points
are represent the steady states where the growth rates are equalized.

Figure 3: The figure plots the log change in the Lagrange multiplier as a function of the con-
tinuation value. The solid (dotted) line refers toy(y∗) = yl(yh). The left (right) panel has
θ <∞(θ =∞)

Sample Paths

In this section, we describe sample paths for IID-Binary economy with the following parameters
(γ = .5, θ1 = 1, yhyl = 1.2, δ = .9). The approximating models are P 1

Y (yh) = .6, P 2
Y (yh) = .4. The

plots are constructed to show how convergence rates and patterns differ across different choices
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for the data generating process. We will discuss two cases a) when P 0
Y coincides with with the

agents approximating models and b) when P 0
Y coincides with either agents ex-post beliefs.

Figures (4) and (5) plot a typical sample path for consumption share of Agent 1 for shocks
drawn from alternative measures and initial conditions. The top panel in figure (4) corresponds
to the benchmark when agents trust their approximating models. Depending on whose approxi-
mating model we use to draw the shocks, the consumption share of Agent 1 either goes to zero or
1. The bottom panel plots does the same exercise when agents doubt their approximating mod-
els. Consistent with proposition 8, Agent 1’s consumption share approaches interior λ̄ (about
0.7) irrespective of the data generating process.

Lastly, figure 5 samples from the ex-post beliefs of the agents. Depending on the initial
conditions, we see a very slow convergence to λ̄.

Figure 4: This figure plots a simulated path for the consumption share of Agent 1η1 starting
from 3 different initial conditions. The black (red) line plots outcome under Agent 1 (Agent 2’s)
reference beliefs

Let Gt,t+1 = log λt+1

λt
be the net growth rate of relative Pareto weights. The outcomes in

terms of the convergence rate can depend on the underlying data generating process. Suppose
P 0 is either agents’ approximating model (or a convex combination of them). At the stationary
point the relative entropies of both agent are strictly positive but equal hence Gt,t+1 is zero.
However, if the data generating process is either agents’ ex-post beliefs, at the stationary point
both the relative entropies are equal to 0. Since relative entropy is a convex measure of distance,
a small perturbation of the system will cause a much larger change in the magnitude of Gt,t+1

under the former case than the later. This means that the speed of adjustment will be very slow
under the Agent’s respective ex-post beliefs.
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Figure 5: This figure plots a simulated path for the consumption share of Agent 1η1 starting
from 3 different initial conditions. The black (red) line plots outcome under Agent 1 (Agent 2’s)
worst case beliefs

6.5 Long run inequality under learning

The long run outcomes for Pareto weights when agents are not dogmatic but update their
approximating overtime depend on whether they admit specification uncertainty (θ1 < ∞) or
not (θ1 = ∞). With time the differences in initial priors vanish and the economy converges
to situation where both agents have identical posteriors and hence a common approximating
model.

Let m∗ be the true DGP and πit be Agent i’s posterior on M given history yt.

Definition 10 Weak agreement : Agents are said to agree weakly if π1
t = π2

t . Let T w = inf{t :
‖π1,t − π2,t‖ = 0} be the time taken to agree weakly

Definition 11 Strong agreement : Agents are said to agree strongly if there exist a m∗ such that
π1,t(m

∗) = π2,t(m
∗) = 1. Similarly, let T s = inf{t : π1,t(m

∗) = π2,t(m
∗) = 1 for somem∗ ∈

M} to reach this agreement

The two notions captures the fact that agents starting from possibly heterogeneous initial
priors but same information may have similar forecasts even before they actually learn the
parameter. Also it is easy to see that weak agreement is an absorbing state. Strong agreement
occurs only after all uncertainty is resolved.

When θ1 < ∞ or agents have enduring specification doubts, the limiting relative Pareto
weight of Agent 2 λt also depends on the curvature of u. For an iso-elastic utility function
u(c) = c1−γ

1−γ we can extend Anderson’s (2005) analysis to show that the limiting properties of
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Pareto weight depend on IES. When IES > 1 they converges to 1. This corresponds to a steady
state for a setting where both agents are eventually symmetric except for possibly their wealth
shares. The intuition for this result comes from the observation that λt is a martingale under
Agent 1’s ex-post beliefs

Ẽ1
t λt+1 = λt

“Undoing” Agent 1’s distortions we get,

E1
tλt+1 = λt − Cov1

t

[
λt+1, z

1
t,t+1

]
or

E1
tλt+1 = λt − Cov1

t

[
P̃ 2
t (yt+1|yt)
P̃ 1
t (yt+1|yt)

λt,
P̃ 1
t (yt+1|yt)
P 1
t (yt+1|yt)

]
With learning π1,0(m∗) = π2,0(m∗) = 1 for t > T s

Etλt+1 = λt − Covt

[
P̃ 2
t (yt+1|yt)
P̃ 1
t (yt+1|yt)

λt,
P̃ 1
t (yt+1|yt)
P 1
t (yt+1|yt)

]
Note the two components

1.
P̃ 1
t (yt+1|yt)
P 1
t (yt+1|yt)

: Agent 1’s pessimism which is countercyclical

2.
P̃ 2
t (yt+1|yt)
P̃ 1
t (yt+1|yt)

: Agent 2’s relative pessimism. This depends on IES and whether Agent 2 is

rich or poor.

WLOG suppose λt > 1 or Agent 2 is rich. When IES> 1, utility drops for a given percentage

drop in consumption are larger for richer agents. Thus Agent 2 relative pessimism or
P̃ 2
t (yt+1|yt)
P̃ 1
t (yt+1|yt)

is countercyclical. This makes the covariance positive and imparts a negative drift to λt.
With IES < 1 The covariance flips sign and Agent 2’s relative Pareto weights increase on an
average. With IES = 1, We have Epstein - Zin preferences which are homothetic and the
covariance is zero

The next proposition 10 summarizes the observations.

Proposition 10 Suppose π0,i(m
∗) > 0 for i = 1, 2. Let the data generating process P 0

t (yt) =
P (yt,m

∗) where m∗ ∈M is i.i.d. The long run Pareto weight depends on IES

• limt λt = 1 P 0 almost surely when IES > 1

• limt λt = λ∞ ∈ (0,∞) when IES = 1

• P 0{limt λt = 0, limt λt =∞} = 1 when IES < 1

The case when θ1 =∞, the concerns for uncertainty vanish as posteriors become degenerate.
The transient wealth dynamics persist until either agents strongly agree T s or at T ≥ T w such
that λT = 1. This corresponds to a) either both agents having degenerate priors with possibly
unequal wealth shares or non-degenerate but equal priors and equal wealth shares.
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There is “race” between speed of learning and the survival mechanism associated with het-
erogeneity in ex-post beliefs. If learning is “slow” the agent with smaller weight on the data
generating process has time to catch up. For instance, figure 6 plots sample paths of Agent 1’s
consumption share after agents agreed weakly on π = 1

2 . These transient dynamics come from
concerns for model ambiguity and we see an average tendency towards a more equal wealth
distribution.
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Figure 6: This plots simulated paths of Agent 1’s consumption shares after agents weakly agreed
on a prior of 0.5.

7 Asymmetric Information

The analysis so far studied the implications of how doubts about asymmetric approximating
models under symmetric information arrested the fanning out of consumption shares that is
typical in the benchmark without doubts. This section will show how these forces extend to
settings with asymmetric information, here coming from the fact that the realizations of the
taste shocks are only known to Agent 2. In presence of doubts, the planner will trades-off
fluctuating Pareto weights for providing optimal incentives (due to private information) and for
heterogeneity in ex-post beliefs (induced by misspecification concerns).

To exclusively focus on the role of heterogeneous information, we abstract from both learn-
ing and exogenous heterogeneity in beliefs coming from different approximating models. This
amounts to πi(m

∗) = 1 for all i. Agent 2 now draws privately observed taste shocks from
S = {sl, sh} with sl < sh. We first study the case when all individuals of type 2 get the same
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realization of taste shock and in an extension show that the results carry over to a case when a
continuum of individuals of type 2 draw i.i.d taste shocks.

7.1 Planner’s problem (II): Recursive version

The recursive planner’s problem posed in (13) simplifies and is repeated below.

Q(v, y) = max
u1(s),u2(s),v̄(s,y∗)

Tθ1 [(1− δ)u1(s) + δTθ1,yQ(v̄(s, y∗), y∗)] (31)

subject to
Tθ1 [(1− δ)su2(s) + δTθ1,yv̄(s, y∗)] ≥ v (32a)

(1− δ)su2(s) + Tθ1,yδv̄(s, y∗) ≥ (1− δ)su2(s′) + Tθ1,yδv̄(s′, y∗) ∀s, s′ (32b)

C(u1(s)) + C(u2(s)) ≤ y ∀s (32c)

v̄(s, y∗) ≤ vmax(y∗) (32d)

Simple Contracts

Before discussing the properties of the optimal contract, we will highlight a special class of in-
centive feasible contracts - repeated static contracts30. These dynamic contracts are constructed
by a sequence of static contracts that deliver a constant share of aggregate endowment to both
the agents.

Let V [α2, y] be the value to agent 2 from a consumption plan that always gives him α2

fraction of the aggregate endowment. It solves the following recursion.

V [α2, y] = Tθ1,y(1− δ)su(α2y) + δV [α2, y
∗] (33)

Given (v0, y), we can can solve for α2(v0, y) such that V [α2(v0, y), y] = v0. The simple
contracts are then given by,

1. uss1 (s|v0, y) = u([1− α2(v0, y)]y),

2. uss2 (s|v0, y) = u(α2(v0, y)y),

3. v̄ss(s, y∗|v0, y) = V [α2(v0, y), y∗].

Given this allocation, one can obtain the value to the planner by

Qss[v0, y] = Tθ1,yu
ss
1 (s|v0, y∗) (34)

It is easy to see that these simple contracts are incentive-feasible. The planner essentially
provides no insurance against the taste shocks. These contracts are ’absorbing’ in nature as the
ex-ante promised values are constant and further suboptimal except at {(vmin, y), (vmax(y), y)}.
The value of these contracts gives a lower bound to the value function Q0. Once can construct
an upper bound by using the benchmark with no informational frictions. Denote Qcm(v0, y) as
the solution to the planner’s problem without imposing constraint 32b.

Thus the optimal value satisfies

Qss[v0, y] ≤ Q0[v0, y] ≤ Qcm(v0, y)

30We call them “static” because they would be optimal if δ = 0.
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Optimal Contract

The next proposition summarizes some the key properties of the optimal contract.

Proposition 11 For all v0 ∈ (vmin, v
max(y)), and sl < sh, the optimal contract features

• Current utility : u2(sl|v0, y) < uss2 (v0, y) < u2(sh|v0, y)

• Future utilities: Tyv̄(sl, y
∗) > Tyv̄ss(y∗) > Tyv̄(sh, y

∗)

The planner provides insurance for periods of high taste shocks by giving consumption higher
than the static contracts, but the agent pays for it through lower expected continuation values
in the future. This additional lever whereby the (ex-ante) continuation values can be varied
relaxes incentives and allows the planner to increase the spread in current utilities. Like before
the promised values can be mapped back to effective Pareto weights λ and we can interpret the
variation in promised values as variation in Pareto weights. Thus like heterogeneity in beliefs,
heterogeneity in information also imparts volatility to Pareto weights.

Inverse Euler Equation

The trade offs that the planner faces while perturbing continuation values are succinctly captured
in what has been referred to in literature as an inverse Euler equation. This is a necessary
condition for optimality in many environments with private information31. In our setting, this
equation holds under the worst case beliefs of Agent 1 rather than the common approximating
model P 0

Lemma 3 Let λ be the multiplier on the promise keeping constraint z1(s, y∗) = P̃ 1(s)P̃ 1(y∗|v,y,s)
PS(s)PY (y∗|y) .

The optimal allocation implies,

Ẽ1
yλ(s, y∗) = λ

and
Eyλ(s, y∗) = λ− Cov[λ(s, y∗), z1(s, y∗)|v, y]

Proof. The FOC with respect to v̄(s, y∗) gives us

λ(s, y∗)

λ
=

[
P̃ 2(s)P̃ 2(y∗|s)
P̃ 1(s)P̃ 1(y∗|s)

][
1 + µ(s)− µ(s′)

P̃ 2(s′)P̃ 2(y∗|y, s′)
P̃ 2(s)P̃ 2(y∗|s)

]
(35)

Multiplying by P̃ 1(s)P̃ 1(y∗|s) and summing over all s, y∗ gives us

Ẽ1
yλ(s, y∗) = λ

The second equality follows from applying expanding Ẽ1
yλ(s, y∗) = Eyz1(s, y∗)λ(s, y∗) and the

fact that Eyz1(s, y∗) = 1
The envelope theorem implies that −Q0

v(v
0, y) = λ. Thus the multiplier λ captures the

marginal cost to the planner of providing an extra unit of promised value to Agent 2. Along any

31See Rogerson (1985); Golosov, Kocherlakota, and Tsyvinski (2003) for detailed exposition of the inverse Euler
equation and its implication to capital taxation.
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history (yt, st−1), consider a perturbation (from the optimal contract) that increases continuation
values to Agent 2 for all possible reports of taste shocks st equally and reduces the ex-ante
promised value vt. This deviation is incentive compatible but would cost the planner Ẽ1

tλt+1−λt.
These are measured under Agent 1’s beliefs as given the resource constraints, the additional
future utilities come at lower consumption for Agent 1. The inverse Euler equation captures
optimality of the contract by making such perturbations costless. This implies that λt is a
martingale under the worst case model of Agent 1 but not under P 0. Undoing the distortions
one gets the expected law of motion for the Pareto weights under P 0. The proposition suggest
that he sign of the covariance between λ(s, y∗) and z1(s, y∗) is important to generate a drift in
the dynamics of the Pareto weights over time.

Heterogeneous beliefs and Incentives

Asymptotically the agent with taste shocks goes to immiseration if θ1 = ∞. We already noted
that the inverse Euler equation implies that λt is a martingale. Since it is also the multiplier
of the promise keeping constraint, the KKT necessary conditions require it to be non negative.
Proposition 12 shows that the multiplier converges to any positive number, the incentive con-
straints are violated. However with θ1 < ∞, we have the both forces - heterogeneity in beliefs
and incentive considerations that affect how λt evolves over time. Along the paths λt approaches
zero a) the optimal contract approaches the first best and this dampens the fluctuations due to
optimal incentives b) On the other hand, the disagreements across agents about future aggregate
endowment, measured with respect to their ex-post beliefs is maximum. This generates a drift
that pushes λt in the interior.

Proposition 12 Let λt be the Lagrange multiplier on the promise keeping constraint (32a) for
problem (31). We have

• With θ1 =∞, limt λt = 0 P 0 − almost surely

• With θ1 <∞, limt λt 6= 0 P 0 − almost surely

Figure 7 plots the expected growth rate of λt for two economies with the shocks are both
mutually and over time independent. The black line is the case with θ1 <∞ and the red line is
the benchmark with no concerns for misspecification. We see that as we go to the left of λ = 1,
there is a strictly positive drift to λ when we activate concerns for misspecification.

Inspecting the forces

One can think of this economy as a combination of two arrangements a) a competitive insurance
market with securities contingent on realization of aggregate endowment and b) a bilateral credit
market for trading long term loan contracts between these Agent 1 and Agent 2

The multiplier λ is monotonically related to both the promised value to Agent 2 and his
average consumption share. This allows us to think of it as a proxy for Agent 2’s relative
wealth. The next lemma shows that without concerns for misspecification, the Pareto weights
are only measurable to the histories of taste shocks.

Lemma 4 With θ =∞ we have λ(s, y∗) = λ(s, y∗∗) for all y∗, y∗∗ ∈ Y
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Figure 7: The figure plots the expected one period ahead growth rate of λt+1 under the common
approximating model.

Proof. The FOC’s with respect to v̄(s, y∗),

λ(s, y∗)

λ
=

[
P̃ 2(s)P̃ 2(y∗|s)
P̃ 1(s)P̃ 1(y∗|s)

][
1 + µ(s)− µ(s′)

P̃ 2(s′)P̃ 2(y∗|y, s′)
P̃ 2(s)P̃ 2(y∗|s)

]
(36)

With θ1 = ∞, P̃ i(s) = PS(s) and P̃ i(y∗|s) = PY (y∗|y,m∗). Since the wedges only depend
on the reported shock, dividing the expressions for λ(s, y∗) and λ(s, y∗∗) from equations (36)
eliminates the terms with µ(s) and

λ(s, y∗) = λ(y∗∗, s)

When agents have identical assessments of likelihoods of aggregate shocks, no arbitrage
eliminates any “expected” excess returns from trades in the competitive insurance markets.

The bilateral credit market look like “annuities” : Agent 2 borrows from Agent 1 when he
has a high taste shock and repays by a forever lower consumption in the future. To see this,
consider a simple economy where the informational frictions last only for one period. In time
t = 0, Agent 2 has a taste shock s0 which can take a high or low value and then remains
constant at st = 1 for t ≥ 1. The optimal consumption path for some initial λ0 (associated
with v0) will feature α2,0(y, sh) > α(λ0) and α2,t < α(λ0) for t ≥ 1 where the function α(λ0) is
the constant consumption share in an economy without taste shocks. The consumption pattern
can be implemented by a long term loan that funds the higher consumption share in t = 0
when Agent 2 desires high consumption and is repaid by a permanently lower share in the
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future. In our problem where these taste shocks are recurrent, they have an permanent effect
and eventually drive the agent to immiseration.

When θ1 < ∞ as λ approaches zero, λ(yh,sh)
λ0

≈ PY (yh)

P̃ 1(yh)
> 1. Thus along the paths that

threaten to drive Agent 2 towards immiseration, the relative disagreements on aggregate shocks
become large. Agent 1 is willing to pay a lot for having consumption is states with low ag-
gregate output. These insurance contracts earn a positive return when yt 6= yl. The higher
returns compensate for possible repayments due to adverse taste shocks and push the economy
towards an interior wealth distribution. Figure 8 plots a path for λt across two economies that
differ in θ but have the same history of the fundamental shocks yt, st drawn from the common
approximating model P 0. We see that with θ1 =∞, there is an eventual drift towards zero and
in the case of θ1 <∞ the path eventually clusters around λt = 1.

In related work Farhi and Werning (2007) show that adding a paternalistic planner (whose
is more patient than the agents) can also give long run survival with efficiency in presence of
asymmetric information.
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Figure 8: The figure plots a simulation of λt for a sequence of shock drawn from the common
approximating model

7.2 Continuum of type 2 agents

This section generalizes the setup taste shocks are “idiosyncratic” to individuals to type 2. These
are drawn independently across agents from the distribution PS(s). We setup the recursive
planner’s problem and re-derive the conditions that characterize the evolution of Pareto weights
of any individual of type 2 relative to Agent 1.

Let λ1 be the Pareto weight on Agent 1 and Γ(λ2) be the some distribution of Pareto weights
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amongst type 2 agents. Let W(λ1,Γ, y) be the value to a planner from the optimal insurance
scheme using weights λ1 and Γ(λ2) given the realization aggregate y before the taste shocks are
realized.

The planner chooses Υ = {u1, u2(λ2, s), λ
∗(λ2, s), w

∗
1(y∗), w∗2(λ2, s, y

∗)} to solve the following
Bellman equation32.

Let

• V1[Υ] = (1− δ)u1 + Tθ1,yδw∗1(y∗)

• V2[λ2,Υ] = Tθ1 [(1− δ)su2(λ2, s) + δTθ1,yw∗2(λ2, s, y
∗)]

The Bellman equation that solves the Planner’s problem is described below,

W(λ1,Γ, y) = max
Υ

λ1V1[Υ] + (1− λ1)

∫
dΓ(λ2)λ2V2[λ2,Υ]

subject to ∫ ∑
s

PS(s)dΓ(λ2)C[u2(λ2, s)] = y − C[u1]

for all λ2, s, s
′

(1− δ)su2(λ2, s) + Tθ1,yδw
∗
2(λ2, s, y

∗) ≥ (1− δ)su2(λ2, s
′) + Tθ1,yδw

∗
2(λ2, s

′, y∗)

for all y∗

W(λ∗1,Γ
∗, y∗) ≥ λ∗1w∗1 + (1− λ∗1)

∫ ∑
s

dΓ(λ2)PS(s)λ∗2(λ2, s, y
∗)w∗2(λ2, s, y

∗)

for each y∗, Γy
∗

is given by

Γy
∗
(λ̃2|Γ, y) =

∫ ∑
s

PS(s)dΓ(λ2)Iλ∗(λ2,s,y∗)≤λ̃2

Notice that the continuation value function for the planner comes in equation (37).
Let Γ′(λ2)(1− λ1)λ2µ(λ2, s)P̃

2(λ2, s) be the multiplier of the incentive constraint for agent
2 with Pareto weight λ2 in state s and ξ(y∗)PY (y∗) on the constraint in equation (37). Consider
the first order necessary conditions with respect to w∗1(y∗) and w∗2(λ2, s, y

∗)

λ1P̃
1(y∗|y) = ξ(y∗)PY (y∗|y)λ∗1(y∗) (38)

and

(1−λ1)λ2P̃
2(s)P̃ 2(y∗|λ2, y)

[
1 + µ(λ2, s)− µ(λ2, s

′)
P̃ 2(s′, y∗|λ2, y)

P̃ 2(s)P̃ 2(y∗|λ2, y)

]
= ξ(y∗)PY (y∗|y)PS(s)(1−λ∗1(y∗))

(39)

Let λ̄2(λ1, λ2) ≡ (1−λ1)λ2
λ1

be the relative Pareto weight of type 2 agents. Combining the two
we have the following two results

32We implicitly impose that all individuals with the same Pareto weight are treated in the same way.
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Lemma 5

λ̄2(λ∗1(y∗), λ∗2(λ2, s, y
∗))

λ̄2(λ1, λ2)
=
P̃ 2(s)P̃ 2(y∗|λ2, y)

P̃ 1(y∗|y)

[
1 + µ(λ2, s)− µ(λ2, s

′)
P̃ 2(s′, y∗|λ2, y)

P̃ 2(s)P̃ 2(y∗|λ2, y)

]
(40)

and
Ẽλ̄2(λ∗1(y∗), λ∗2(λ2, s, y

∗) = λ̄2(λ1, λ2) (41)

Thus we have exactly the same dynamics for relative Pareto weights as in equation (16).
The ergodic distribution Γy that solves

Γy
∗
(λ̃2|Γy, y) = Γy

∗ ∀y∗

Remark 5 Without aggregate risk or ‖Y‖ = 1, the relative Pareto weights λ̄t+1 only depend on
st. Agent 1 faces a deterministic consumption scheme and z1,t+1 = 1. Thus the covariance term,
Covt(λt+1, z1,t+1) in equation 41 is zero and λ̄t is non negative martingale. Without aggregate
risk, the returns from the competitive insurance markets which were that crucial to counter the
immiseration force in economies with private information is absent

8 Extensions

The analysis so far exploited two key features, presence of aggregate risk and the multiplicative
nature of taste shocks. In related work Bhandari (2013b), we study implications of model
misspecification in environments with no aggregate risk and additive un-insurable idiosyncratic
income risk. With complete markets and common approximating models, the risk sharing scheme
implies constant consumption for all the agents. In the paper we study the consequences of two
forms of market incompleteness.

First we restrict agents such that they can only trade a risk-free bond. The key finding
is that in contrast to the results of this paper, relative pessimism is diminishing in wealth, a
result that is not dependent on the value of IES. Having a large amount of wealth in assets that
yield non-contingent return, lowers the volatility of consumption and consequently concerns for
misspecification for richer agents. In Appendix B, we sketch a simple two period example to
illustrate this point.

Next we study Pareto optimal risk sharing schemes under the restrictions that individual
incomes are private information. Working with ex ante identical but finite agents, we impose
an additional restriction that transfers to individuals only depend on the reports of histories of
their incomes. This rules out trivially optimal allocations where the planner can impose the first
best by using reports from one agent to punish possible misreports by the second agent.

The efficient risk sharing scheme (within the class of such restricted allocations) without
the concerns for misspecification has a property that either one of the two agents is driven to
immiseration. This comes from the dynamics of continuation values associated with efficient
incentives. Since agents linearly aggregate continuation values a mean zero perturbation of
continuation values (from a static risk sharing scheme) delivers the same ex ante value but relaxes
incentive constraints. The insight in Atkeson Lucas (1992) suggests that such perturbations
are always profitable and optimal incentives would imply that continuation values will spread.
With enough bad shocks, some agent can drift towards immiseration. However, as we show in
Bhandari (2013b), when there are concerns for uncertainty, agents with lower continuation values
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are relatively more pessimistic and consequently over-estimate the states when they have lower
continuation values. The planner alters the risk sharing arrangement by reducing the amount
by which continuation values are lowered. This generates a force away from immiseration.

9 Conclusions and future work

In recent years, causes and consequences of growing inequality has been a topic for great de-
bate. The immiseration results in (exogenous) heterogenous beliefs or heterogenous information
settings can be interpreted as arguments that there are economic forces associated with effi-
ciency that can result in inequality. As such, they caution us from blanket policies that aim at
“remedying” the problem of inequality.

This paper re-examined such arguments in settings where the nature of non-diversifiable
aggregate risk is complex and a plausible description of agents’ attitudes towards risk is captured
by a large set of probability distributions. Using a common framework, we analyzed Pareto
efficient insurance arrangements where agents centered their misspecification concerns around
heterogeneous approximating models and had heterogeneous information. The results contrasted
the properties long run inequality and market price of risk with a benchmark where agents had
complete trust in their approximating models.

In presence of fluctuations to aggregate endowment, misspecification concerns implied a
wedge between approximating models and ex-post beliefs. With bounded utility, the agent with
a lower Pareto weight explored a smaller set of misspecification. This enabled him to provide
valuable insurance to the other agent whose misspecification fears led to a larger wedge between
his approximating model and ex-post beliefs. These asymmetric departures from approximating
models prevented immiseration of agents who either had incorrect approximating models or were
subject to privately observed taste shocks.

Besides inequality, this paper studied how wealth-driven endogenous heterogeneity in beliefs
can alter implications for prices and volume for trades in Arrow-securities. Recent literature
studying financial markets has identified heterogeneity in beliefs as a qualitative feature that
explains a range of interesting phenomena. For example, Simsek (2013) studies an economy
where belief differences of traders interact with endogenous collateral constraints and Buraschi
and Jiltsov (2006) who exploit beliefs heterogeneities to explain option prices. Since our anal-
ysis in this paper was stylized, a natural next step is a more quantitative exploration of how
endogenous heterogeneity in beliefs can account for nature, volume, and prices of a broader set
of financial securities.
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A Proofs

Proposition 1 :
Proof.

z∗i (y) =

exp

{
−η1−γi y1−γ

θ(1−γ)

}
E exp

{
−η1−γi y1−γ

θ(1−γ)

}
Note that at y = Y

∂ log zi(Y )

ηi
=
η−γi
θ

[
Ẽy1−γ − Y 1−γ

]
Since Y is the lower end of the support, we have the term on the RHS of the above derivative
to be positive iff γ < 1

If γ < 1, z∗i (Y ) is further bounded below by 1. Thus limηi→0 p̃
i(Y ) = pi(Y ). With γ > 1,

however, p̃i(Y ) increases as ηi approaches 0, since p̃i(y) ≤ 1 we have 33

lim
ηi→0

p̃i(Y ) = 1

Proposition 2 : Proof. Given our assumptions that Y is finite and u(0) is well defined,
the proof is standard. Let B(∆(M)2 × [u(0) vmax] × Y ) be the set of continuous bounded
functions on a compact domain. Define a map P that solves the problem (13) for a given guess
of continuation value function Q.

P : B(∆(M)2 × [u(0) vmax]× Y )→ B(∆(M)2 × [u(0) vmax]× Y )

We first show that P is indeed a self-map. Under the assumption u(0) is well defined, the
resource constraint and bounds for v̄(s, y∗) imply that at any feasible {u, v̄(s, y∗)}, the objective
function is bounded above by

Q = maxπ1∈(0,1)Tθ1 [(1− δ)u(y) + δRπ1,θ2Tθ1,m,yQ(u(0), y∗)]

Continuity follows from the Maximum theorem.
Next we show that P satisfies

1. PQ1 ≥ PQ2 for all Q1 ≥ Q2

2. PQ+ c ≤ PQ+ δc for all c ≥ 0 and some δ ∈ (0, 1)

The operators Tθ1,m,y and Rθ2 implicit in the map P are given by

Tθ1,m,yQ
∗ = −θ log

∑
y∗

PY (y∗|y,m) exp

{
−Q∗

θ1

}

Rπ1,θ2Tθ1,m,yQ
∗ = −θ2 log

∑
m

π1(m) exp

{
−Tθ1,m,yQ∗

θ2

}
33γ > 1, z∗i is not defined at ηi = 0 as the utility is unbounded in that case.
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Its easy to see that Tθ1,m,y and Rπ1,θ2 and the outer Tθ1 are increasing and satisfies the
discounting property.

Let uk, v̄k,∗(s, y∗) for k = 1, 2 be the optimal policies associated with Q1 and Q2.

PQ2(π, v, y) = Tθ1
[
u2

1(s) + Rπ1,θ2Tθ1,m,yQ
2(π∗(y∗), v̄2,∗(y∗), y∗)

]
(42)

≤ Tθ1
[
u1

1(s) + Rπ1,θ2Tθ1,m,yQ
2(π∗(y∗), v̄1,∗(y∗), y∗)

]
≤ Tθ1

[
u1

1(s) + Rπ1,θ2Tθ1,m,yQ
1(π∗(y∗), v̄1,∗(y∗), y∗)

]
= PQ1(π, v, y)

The first inequality comes from Rθ2Tθ1,m,y being increasing and the second inequality comes
from the fact that given Q1 the policies {c2,v2,∗(y∗)} are feasible.

The discounting for P is obvious. Thus P is a contraction and B(∆(M)2× [u(0) vmax]×Y )
is complete under the sup norm. Blackwell’s theorem implies that there is a unique Q that solves
the problem.

Fix ζ = {zi(y∗|s, v, y,π), hi(m|s, v, y,π), zsi (s|v, y,π)}i=1,2 be some arbitrary likelihood ra-
tios that represent ex post beliefs for agent 1 and agent 2.

1. I1
i = θ1

∑
s,m,y∗ PS(s)πi(m)PY (y∗|y,m)hi(m|s)zsi (s)zmi (y∗) log zmi (y∗)

2. I2
i = θ2

∑
s,m PS(s)zsi (s)πi(m)hi(m) log hi(m|s)

3. I3
i = θ2

∑
s PS(s)zsi (s) log zsi (s)

Note that we can write P as follows

max
u,v̄(s,y∗)

min
ζi

E

[
zs1(s)

∑
m

π1(m)h1(m|s)zm,∗1 (y∗) {(1− δ)u1(s) + δQ(π∗, v̄(s, y∗), y∗)}

]
+
∑
k

Ik1 (ζ1)

(43)

and

min
ζ2

E

[
zs2(s)

∑
m

π2(m)h1(m|s)zm,∗2 (y∗) {(1− δ)su2(s) + δv̄(s, y∗)}

]
+
∑
k

Ik2 (ζ2) ≥ v (44)

(1− δ)su2(s) + δmin
ζ2

[∑
m

π2(m)h1(m|s)zm,∗2 (y∗)v̄(s, y∗)

]
+
∑
k

Ik2 (ζ2) >

(1− δ)su2(s̃) + δmin
ζ̃2

[∑
m

π2(m)h̃1(m|s)z̃m,∗2 (y∗)v̄(s̃, y∗)

] (45)

Emzmi (y∗|y, s) = 1 i = 1, 2 and ∀m ∈M (46a)∑
m

hi(m|s)πi(m) = 1 i = 1, 2 (46b)

∑
m

zsi (s)PS(s) = 1 i = 1, 2 (46c)
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Emz̃m2 (y∗|y, s) = 1 (46d)∑
m

h̃2(m|s)π2(m) = 1 (46e)

and the feasibility constraints on {c,v∗(y∗)} and the law of motion for π∗

Define a sub map Pζ that iterates on the Bellman equation given ex-post beliefs that are
computed using ζ. We first show that Pζ preserves concavity, boundedness and monotonicity.
For some (y,π), let v0

1, v
0
2, v

0
3 be some initial promised values such that there exist some α ∈ (0, 1)

such that
v0

2 = α1v
0 + (1− α1)v0

2

Denote the solutions to Pζ associated with {v0
k, y}k=1,3 as {u1,k(s), u2,k(s), v̄k(s, y

∗)}. Construct
a candidate solution

ûi(s) = αui,1(s) + (1− α)ui,3(s) i = 1, 2 (47a)

ˆ̄v2(s, y∗) = αv̄1(s, y∗) + (1− α)v̄3(s, y∗) (47b)

The promise keeping constraint and incentive constraints are linear in the choices. Under
the assumption that C(u) is convex, the resource constraint is also satisfied. This implies that
{ûi(s), ˆ̄v2(s, y∗)} is feasible given (v0

2, y). Thus for a concave Q(v0, y) we need,

Pζ(v0
2, k) ≥ Ẽy

[
(1− δ)û1(s) + δQ0(ˆ̄v(s, y∗), y∗)

]
(48)

≥ α
(
Ẽy
[
(1− δ)u1,1(s) + δαQ0(v̄1(s, y∗), y∗)

])
+ (1− α)

(
Ẽy
[
(1− δ)u1,3(s) + δαQ0(v̄3(s, y∗), y∗)

])
(49)

≥ αQ(v0
1, y) + (1− α)αQ(v0

3, y) (50)

≥ αPζ(v0
2, k)(v0

1, y) + (1− α)αPζ(v0
2, k)(v0

3, y) (51)

Note that the set of feasible policies F(π, v, y) satisfies F(π, v1, y) ⊂ F(π, v2, ) for v1 ≥ v2.
Thus Q(π, v, y) is weakly decreasing.

Thus Pζ preserves concavity, monotonicity, boundedness and continuity. We can apply
similar arguments as above and show that it is a contraction. Thus Pζ has a unique fixed point
that is concave. Our argument is complete by evaluating Pζ at ζ∗ associated with the fixed
point of the previous map P.

Proposition 3 :
Proof.

Proposition 2 shows that Q is concave. The envelope condition implies a increasing mono-
tonic relationship between λ and v. Let v0 be chosen to satisfy λ0(π, v0, y0) = 1−Γ

Γ . Consider
the Lagrangian of the recursive problem,

Consider the Lagrangian for the Planner’s problem

L(π, v, y, λ) ≡ Tθ1 [(1− δ)u1(s) + δRπ1,θ2Tθ1,m,yQ(π∗, v̄(s, y∗), y∗)]+λ {Tθ1 [(1− δ)su2(s) + δRπ2,θ2Tθ1,m,yv̄(s, y∗)]− v}

Notice that Bellman equations in 13 and promise keeping constraint (assuming it holds at
equality), imply that at the optimal choice, the Lagrangian

L(π, v0, y, λ0) = ΓV 1
0 [c1|y0] + (1− Γ)V 2

0 [c2|y0]
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We need to show that the incentive constraints imposed in the recursive problem (13) and
time 0 sequential problem (11) imply exactly the same restrictions. Let c2 = {c2,t(y

t, st)} be a
consumption plan for Agent 2 and let σ∗ be the optimal reporting strategy given c2,i.e.,

σ∗ ∈ argmaxσV0[c2(σ)|y0]

For expected utility, this follows from Blackwell’s (1965) one shot deviation principle. The
next lemma argues that under some mild technical conditions, this extends to our setting as
well.

For any choice of σ we can use the following recursion

V i
t [c|yt, st−1] = Tθ1

{
(1− δ)stu(c2(σt)) + δRπi,t,θ2Tθ1,m,ytV

i
t+1[c2(σ)|yt+1, st]

}
(52)

to back out the ex-post beliefs P̃ 2
t (st, yt) that depend on c2(σ) and solve the minimizations

implicit in operators Tθ1,m,yt , Rπ2,t,θ2 and Tθ1 . Further given these beliefs, the optimal value can
be represented as

Ẽ0

∑
t

(1− δ)δtu(c2(σt)) + terms independent of σt

When u is concave and bounded 34, one can flip the choices of the ex-post probabilities
and σ. Thus for a choice of {P̂t(yt, st)}, the choice of σ[P̂ ] solves a standard expected utility
optimization. Blackwell (1965) provides mild conditions under which the optimal choice of σ[P̂ ]
rules out one shot deviations. The proof follows by evaluating P̂ at the solution associated with
σ∗t (y

t, st) = st

Proposition 4 :
Proof.

With θ1, θ2 = ∞, the marginal rate of substitution, MRS(y∗|y) =
(
y∗

y

)−γ
. First compute

the ingredients for computing the conditional market price of risk. Let yh/yl = 1+g
1−g

1. y = yl

log[MRS(y∗|yl)] = 0 y∗ = yl (53)

log[MRS(y∗|yl)] = −2γg y∗ = yh (54)

1. y = yh

log[MRS(y∗|yl)] = 2γg y∗ = yl (55)

log[MRS(y∗|yl)] = 0 y∗ = yh (56)

σ[log(MRS)|v, y] =
√
ᾱ(1− ᾱ)(2gγ) (57)

σ[log(MRS)|yl] = σ[log(MRS)|yh] =
√
ᾱ(1− ᾱ)2γg

The market price of risk is independent of v and y when θ2, θ1 =∞
34These are known as known an Isaacs-Bellman conditions. Refer Hansen and Sargent chapter 7 for more details

where they study alternative timing protocols for zero-sum games representation of these preferences.
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Let ∆ log ζ(v, y) = log ζ[y(z∗) = yl|v, z]− log ζ[y(z∗) = yh|v, z]. With θ1 = θ2, we expression
for market price of risk has a similar expression,

σ[log(MRS)|v, z] =
√
ᾱ(1− ᾱ)(2gγ + ∆ log ζ(v, y)) (58)

When v → 0, the economy converges to an economy populated by type 1 agents and
ζ(y∗=yl)
ζ(y=yh) → exp{vmax(yh)− vmax(yl)}. This is independent of the current state y.

With θ1 = ∞ and θ2 < ∞, the cyclical properties of MPR now depend on the conditional
volatility of the distorted log likelihood ratio.

Let π denote the probability of αm = 1
2 or the common prior weight on the IID model and

ᾱ = π 1
2 + (1− π)α2

MPRθ2(π, y) = σ

[{
log

∑
m π̃[m|y]PY (y∗|y,m)∑
m π[m|y]PY (y∗|y,m)

]}
|y] +MPR∞(π)

Lemma 6 MPRθ2(π, yl) > MPRθ2(π, yh) iff π̃[yh] + π̃[yl] < 2π ∀π

Proof. For an arbitrary π, π̃(yl), π̃(yh) define the function L

L[π, π̃(yl), π̃(yh)] = σ

[{
log

∑
m π̃[m|y]PY (y∗|y = yl)∑
m π[m|y]PY (y∗|y = yl)

}
|y = yl

]
−σ
[{

log

∑
m π̃[m|y]PY (y∗|y = yh)∑
m π[m|y]PY (y∗|y = yl)

}
|y = yh

]
It can be verified that L satisfies the following properties

• L(π, π̃(yl),max{2π − π̃(yl)}) > 0 for all π̃(yl) ≤ π

• ∂L
∂π̃(yh) > 0

When y = yl the agent 1 distorts the mixture probability away from the IID model and
hence π̃(yl) ≤ π

Lemma 7 There exists π̄ such that π̃[yh] + π̃[yl] < 2π ∀π > π̄

Proof.
Let ∆(y, π) = ENonIID[Qmax(y∗, π∗)|y]− EIID[Qmax(y∗, π∗)|y].
With the IID model we have EIID[Qmax(y∗, π∗)|y = yh, π] = EIID[Qmax(y∗, π∗)|y = yl, π].
Thus ∆(yl, π) = −∆(yh, π)

π̃(y)− π
π

=
1− exp{−∆(y, π)}
π

1−π + exp{−∆(y, π)}

π̄ solves,
1− exp{−∆(y, π)}
π

1−π + exp{−∆(y, π)}
=
−1 + exp{∆(y, π)}
π

1−π + exp{∆(y, π)}

The hypothesis follows by combining the two lemmas.

Proposition 1
Proof.

47



It is easy to see that F i(m) will be vary across m’s as long as Qt+1(yt+1, νt+1) is not constant
across possible values of yt+1.

Further as long as λt+1 6= 1 for all shocks, there would be some realization of yt+1 where
Qt+1(yt+1, νt+1) 6= vt+1(yt+1, νt+1). Since if it was not true vt+1 has to equal to the value of
consuming half of the aggregate endowment for all t+ j. This can only happen for λt = 1. Thus
F 1
t (m) 6= F 2

t (m) if λt 6= 1
Finally

PY (yt+1, νt+1|yt, νt,m) = PY (yt+1, yt+2+εt+1|yt, νt,m) = PY (yt+1, |yt,m)PY (yt+2+εt+1|yt+1,m)

WLOG say yt+1 = yt = yl,

PY (yt+1, νt+1|yt, νt,m) = αm[φ(νt+1 − yl)αm + φ(νt+1 − yh)(1− αm)]

Dividing it across the two models m = 1, 2 for any νt+1,

PY (yt+1, νt+1|yt, νt,m = 1)

PY (yt+1, νt+1|yt, νt,m = 2)
= 1 iff α1 = α2 or α1 + α2 = 1 +

φ(vt+1 − yl)
φ(vt+1 − yh)

The conditions of αm rule of these possibilities. Similarly one can show that
PY (yt+1, νt+1|yt, νt,m) 6= PY (yt+1, ν̃t+1|yt, νt,m) for all m Thus equation (23) will not be in-
dependent of i.

and λt+1 and through equation (18a) consumption shares will also be sensitive to news
shocks.

Proposition 5
Proof.

Suppose not, Let V 1(ξ∗) = Q(ξ∗, π∗, ξ∗) and V 2(ξ∗) = v∗(ξ∗|ξ, v, π) where y∗ = y∗∗

The FOC imply that λ[ξ∗] = λ[ξ∗∗] if and only if( ∑
m π̃i(m)P̃ i(ξ∗|ξ)∑
m π̃i(m)P̃ i(ξ∗∗|ξ)

)
is independent of i

This is equivalent to the following expression∑
m π(m)PY (y∗|ξ,m)Pν∗|y∗(ν

∗|y∗, ξ,m)F im∑
m π(m)PY (y∗|ξ,m)Pν∗|y∗(ν∗|y∗, ξ,m)F im

be independent of i. Where F iξ,m =
{(

1
θ2

)
Eξ,mV i(ξ∗)

}
The necessity of θ1 < ∞ clear since otherwise F iξ,m is independent of m. Similarly, if we

have no aggregate risk or more generally have onlyMα to be trivial, consumption being only a
function of y∗ would imply V i(ξ∗) to be only a function of V i(y∗). This would again make F iξ,m
be independent of m.

Further if Pmν∗|y∗(ν
∗|y∗, ξ,m) = Pν∗|y∗(ν

∗|y∗, ξ,m) ∀ms.tπ(m) > 0

=

∑
m π(m)Pν∗|y∗(ν

∗|y∗, ξ)PmY (y∗|ξ)F im∑
m π(m)P (ν∗∗|y∗, ξ)PmY (y∗|ξ)F im

(59)

=
P (ν∗|y∗, ξ)
P (ν∗∗|y∗, ξ)

(60)
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When ν∗ and y∗ are independent and M is complete i.e M = Mα ×Mβwe can write the
ratio as

=

∑
αm

∑
βm
π(αm)π(βm)Pν∗|y∗(ν

∗|ξ, βm)PY (y∗|ξ, αm)F iαm∑
αm

∑
βm
π(αm)π(βm)Pν∗|y∗(ν∗∗|ξ, βm)PY (y∗|ξ, αm)F iαm

(61)

=

(∑
αm

π(αm)PY (y∗|ξ, αm)F iαm
) (∑

βm
π(βm)Pν∗|y∗(ν

∗|ξ, βm)
)

(∑
αm

π(αm)PY (y∗|ξ, αm)F iαm
) (∑

βm
π(βm)Pν∗|y∗(ν∗∗|ξ, βm)

) (62)

=

(∑
βm
π(βm)Pν∗|y∗(ν

∗|ξ, βm)
)

(∑
βm
π(βm)Pν∗|y∗(ν∗∗|ξ, βm)

) (63)

which is independent of i

Additional details for example in section 6.2
We construct an example to show that news shocks matter even if θ1 <∞.
The FOC 18b imply that λt+1[yt+1, νt+1] = λt+1[yt+1, ν̃t+1] if and only if

∑
m π(m)PY (yt+1|yt, νt,m)Pν|y(νt+1|yt+1, ξt,m)F it (m)∑
m π(m)PY (yt+1|yt, νt,m)Pν|y(ν̃t+1|yt+1, ξt,m)F it (m)

(
exp{

V i
t+1(yt+1, νt+1)− V i

t+1(yt+1, ν̃t+1)

θ1
}
)

be independent of i. Where F it,m =
{(

1
θ2
− 1

θ1

)
Tθ1,ξ,mV i

t+1

}
First assume θ1 = θ2 = θ. This simplifies the previous condition and we require

exp{
V i
t+1(yt+1, νt+1)− V i

t+1(yt+1, ν̃t+1)

θ
} (64)

to be independent of i
Consider a finite horizon setting with t = 0, 1, 2 with a history (y2, ν2) such that λ2(y2, ν2) 6=

1. This is not vacuous since we are free to choose the initial Pareto weights. The next lemma
shows that starting with some initial inequality is sufficient.

Lemma 8 Suppose news shocks did not matter, λ0 6= 1 implies λ2(y2, ν2) 6= 1

Proof. Suppose λ2(y2, ν2) = 1. This would imply that the terminal period consumption for
both the agents are y2

2 . Thus their ex-post beliefs for y2|y1, ν1 will agree for all histories. From
equation (18b), we see that λ1(y1, ν1) = 1. Repeating the same argument one period backwards,
we have λ0 = λ1 = 1.

Suppose we assume that consumption is not sensitive to news shocks. Thus would imply

V i
1 (y1, ν1)−V i

1 (y1, ν̃1) = δθ[log(
∑
m

π̂1(m)Emy1 exp{−θ−1u(ci,2(λ2)})−log(
∑
m

π1(m)Emy1 exp{−θ−1u(ci,2(λ2)})]

Where π̂1(m) is the prior associated with ν̃1. For the difference between the valuations across
news shocks to be independent of i
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∑
m π̂1(m)Em exp{−θ−1u(ci,2(λ2)}∑
m π1(m)Emy1 exp{−θ−1u(ci,2(λ2)}

has to independent of λ2.
The consumption shares will differ across agents if λ2 6= 1 As long the set M is not trivial,

and π(m) 6= π̂(m) condition 64 will be violated.
Proposition 7 :

Proof. We build the proof through a sequence of lemmas

Lemma 9 λ(v, y) is continuous and monotonic in v

Proof. The FOC (18a) gives λ(v, y) as a continuous function of the allocation. The maximum
theorem implies that allocation is continuous in v and hence λ(v, y) is a continuous function of
v. Monotonicity comes from the fact that the value function is strictly concave and the envelope
theorem implies λv(v, y) = −Qvv(v, y).

Lemma 10 Let Qmax(yt) be the value of the aggregate endowment to Agent 1. We have λt → 0
iff vt → vmin and Q(vt) = Qmaxt

Proof. Q(vt, yt) ≤ Qmax(yt) by construction. It is easy to see that v = vmin, the allocation
c(y) = y and v(y∗) = vmin is feasible. Thus Q(vmin, y) = Qmax(y). Again, the maximum theo-
rem implies Qis continuous and hence vt → vmin implies Q(vt) → Qmaxt pathwise. Evaluating
the FOC (18a) at vmin, we have λ(vmin, y) = 0.

The previous lemma argues that λ(v, y) is strictly increasing in v. Thus we can define a
continuous inverse function v̂(λ, y) with the property that v̂(λ(v, y), y) = v for all v > vmin. One
can extend this function continuously on the positive reals including∞ by defining v̂(0, y) = vmin
and v̂(∞, y) = vmax.

Thus for any sequence λt → 0, we have limt vt = limt v̂(λt, y) = vmin

Define a matrix valued sequence or random variables ξi,t(y
∞) =

{
P̃ it (yt+1|yt)

}
for all possible

realizations of (yt, yt+1). This measures the one period ahead transition matrix of the worst case
model (that depends on the history yt).

Suppose that with strictly positive probability agent 1 dominates agent 2 or A = {ω : λt →
0} > 0. Restrict the probability space to event A. Along any path that λt → 0, we can compute
the worst case models for both the agents using the exponential twisting formula

lim
t
P̃ 2
t (yt+1|yt) ∝ P 2

Y (yt+1|yt) exp{−vmin
θ
}.

Since vmin is a constant

lim
t
ξ2,t = P2

Y ≡
{
P 2
Y (yt+1|yt)

}
almost surely

For Agent 1,

lim
t
P̃ 1
t (yt+1|yt) ∝= P 1

Y (yt+1|yt) exp{−Q
max(yt)

θ
}.

Let z1(yt) be the limiting Radon-Nikodym derivative,
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lim
t
ξ1,t = P̂1 ≡

{
P 1
Y (yt+1|yt)z1(yt)

}
almost surely

By Egorov’s theorem, for every ε > 0 there exists a (exceptional) set E ⊂ A such that
P (E) < ε and the almost sure convergence is uniform on the complement set A − E. Taking
logs of the FOC equation (18b) we have

log(λt+1)− log(λt) = log(Φ(yt+1, yt)ξ2,t)− log(Φ(yt+1, yt)ξ1,t) (65)

The operator Φ(y′, y) picks out the corresponding element from matrix ξi,t. With uniform
convergence on the set A E, we can arbitrarily choose a ε2 > 0 such that there exists a T (ε2)
that satisfies t ≥ T (ε2)

ξ2
t ≥ P2(1− δ) (66)

ξ1
t ≤ P̂1(1 + δ) (67)

Where the inequalities are interpreted component-wise. Uniform continuity allows us to have
T (ε2) independent of the particular sample path.

Substituting in equation (65)

log(λt+1)− log(λt) ≥ log(Φ(yt+1, yt)P2)− log(Φ(yt+1, yt)P̂1)− C(ε2) (68)

where C(ε2) > 0 Summing up to K terms from T (ε2) we have

log(λT (ε2)+K) ≥
T (ε2)+K∑
T (ε2)

{log(Φ(yt+1, yt)P2)− log(Φ(yt+1, yt)P̂1)} −KC(ε2)

we can define an auxiliary Markov process χt = [Yt Yt−1]′ and the associated P 0
χ using P 0

Y .
It is easy to check that χ is Harris recurrent as long as Y is. Further Γ(χ) be the invariant
distribution is given by Γy(y)P 0

Y (y′|y). It is easy to check that P 0
Y (y′y) > 0 allows us to use the

ergodic theorem,

lim
K

1

K

T (ε2)+K∑
T (ε2)

{log(Φ(χt+1)P2)− log(Φ(χt+1)P̂1)}

 = I0,1 − I0,2 − EΓ log z1 (69)

Thus for large K

log(λT (ε2)+K) ≥ K
{
I0,1 − I0,2 − EΓ log z1 − C(ε2)

}
(70)

Let M = EΓy log z2(y) and M̄ = −EΓy log z1(y).
Since ε2 was arbitrary, the term inside the bracket is positive. Now the left hand side of

equation (70) diverges to −∞ and the RHS diverges to +∞. Thus we have a contradiction.

Proposition 8:
Proof.

Let Q̂(η, y), v̂(1−η, y) be the values of Agent 1 and 2 respectively from consuming a constant
share of the aggregate endowment.
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• Q̂(η, y) = (1− δ)u(η, y)− δθ1 log
∑

y∗ exp
{
− Q̂(η,y∗)

θ

}
P 1
Y (y∗|y)

• v̂(1− η, y) = (1− δ)u[(1− η)y]− δθ1 log
∑

y∗ exp
{
− v̂(1−η,y∗)

θ

}
P 2
Y (y∗|y)

The IID shocks imply that Q̂(η, y) − v̂(1 − η, y) = [(1 − δ)] [u(ηy)− u((1− η)y)] + D(η).
Using the (18b) we are looking for η such that

P 2
Y (yh)

P 1
Y (yh)

exp{Q̂(η, yh)− v(1− η, yh)

θ
} =

P 2
Y (yl)

P 1
Y (yl)

exp

{
Q̂(η, yl)− v(1− η, yl)

θ1

}
The sufficient conditions on probabilities ensure that there exists a root in η = η̄. Now

starting with v = v̂(1− η̄, y) we have that Q(v̂, y) = Q̂(η̄, y) or stationary value function solves
the Bellman equation with different approximating models. Thus we can recover the derivatives
of Q(v, y)|v=v̂ by using the stationary value functions.

∂Q(v, y)

∂v
|v=v̂ =

Q̂η(η, y)

v̂η(1− η, y)
|η=η̄

This gives λ̄ = η̄−γ

(1−η̄)γ

Proposition 9:
Proof. The proof will construct arguments that show that λt+s|λt is a P 0-sub martingale
bounded above by λ̄. The martingale convergence theorem will guarantee that λt+s converges
to λ∗. We then rule of the possibilities that λ∗ 6= λ̄. Note that assumption (30c) restricts an
endogenous policy rule. It can presumably be weakened by more restrictions on yh

yl
, but for the

purpose of this proof, we take it as given. The corollary shows that it is satisfied locally around
λ̄. It can be checked that it is also satisfied as λ→ 0. We begin with a sequence of lemmas

First we show that λ̄ exists

Lemma 11 There exists a λ̄ such that λt+k = λ̄ implies limt+k λt+k = λ̄ almost surely.

Proof. This follows from Proposition 8. We note a useful monotonicity property of the
Lagrange multipliers.

Lemma 12 λt+1[yt|λt] is monotonic in λt

Proof. In this proof use the fact that value function Q(v, y) is concave and decreasing in
promised values. For a given v, the envelope condition implies a monotonic relationship between
λ and v. Exploiting this they can be used interchangeably and a higher value implies a favorable
situation for Agent 2. Given a λ(v, y), 18a solves for the current endowment is split between
the two agents. The optimal policy for v∗[y∗|v, y] can be described as a solution to the following
auxiliary problem Let Ti represent the Riθ2Tθ1,m,y applied to πi(m) that is degenerate but differs
across agents.

W(λ) = max
v∗(y∗)

T1Q[v∗(y∗), y∗] + λT2v∗(y∗) (71)

We first show that W is convex in λ. Consider a λ′, λ′′ and α ∈ (0, 1). Let v′(y∗), v′′(y∗) be
the associated solutions. Define

λ∗ = αλ′ + (1− α)λ′′
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similarly, v∗(y∗) be the solution to W(λ∗). From the respective optimality, we see that

W(λ′) ≥ T1Q[v∗(y∗), y∗] + λT2v∗(y∗) (72)

W(λ′′) ≥ T1Q[v∗(y∗), y∗] + λT2v∗(y∗)

Multiplying the above equations by α , 1− α, we can see that

αW(λ′) + (1− α)W(λ′) ≥ W(αλ′ + (1− α)λ′)

The envelope theorem applied to this problem implies W ′(λ) = T2v∗ and convexity implies
the later is increasing in λ. Now consider the FOC with respect to v∗

exp
{
θ−1T1Q∗

}
λ(y∗) = λ

P 2
Y (y∗|y)

P 1
Y (y∗|y)

exp

{
Q(y∗)− v(y∗)

θ

}
1

exp {−θ−1T2v∗}

Suppose λ∗[y∗] was decreasing in λ. The last term on the RHS are increasing in λ. A lower
λ∗[y∗] would imply that spread in value Q∗ − v∗ would be higher. Note that

W ′(λ) =
∂T1Q∗

∂λ
+ λ

∂T2v∗

∂λ
+ T2v∗

Substituting W ′(λ) = T2v∗, we have
∂T1Q∗

∂λ
< 0

Thus the FOC cannot be satisfied if λ∗[y∗] was decreasing in λ.

Lemma 13 The policy rules for λ are ordered λ∗(λ, yl) ≤ λ ≤ λ∗(λ, yh) for λ ≤ λ̄

Proof. Wee show that as λ → 0, the respective policy rules are ordered. Then by uniqueness
of steady state in the region (0, λ̄), we can be sure that this ordering in the limit is uniform on
the aforementioned region. If not, the policy rules would switch and there would exist another
steady state that is strictly less than λ̄. In the proof of proposition 7 we argued that,

lim
λ→0

λ∗(y)

λ
=

P 2(y)

P 1(y)z̄1(y)

The condition (30b) then implies that

lim
λ→0

λ∗(λ, yl)

λ∗(λ, yh)
< 1

Now let z1,t(yt+1) be the one period ahead distortion to conditional likelihood of the shock
yt+1.

z1,t(yl) =
P̃ 1(yl|vt, yt)
P 0(yl)

Lemma 14 For all λt ≤ λ̄, C0
t [z1,t(yt+1), λt(yt+1)] ≤ 0
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Proof. we already showed that λt(yt+1) is ordered. By virtue of the restriction (30c), we have
z1,t(yl) ≥ 1. Since z1,t is a Radon-Nikodym derivative and has mean 1. We also have

z1,t(yl) ≥ 1 ≥ z1,t(yl)

Thus both z1,t(yt+1) and λt(yt+1) are ordered for the possible realization of shocks yt+1 and we
can sign the covariance.

The FOC (18b) imply that λt+1 is a P̃ 1
t martingale. Thus,

Ẽ1
tλt+1 = λt

or
E0z1,t+1λt+1 = λt

using the formula for covariance, we have

E0z1,t+1E0λt+1 = λt − C0
t (z1,t+1, λt+1)

Since P̃ 1
t (yl) ≥ P 0(yl) and z1 is ordered.

E0z1,t+1 ≤ Ẽz1,t+1 = 1

Combining this with 14 we have

E0λt+1 ≤ λt
we now show that it is bounded above by the steady state value

Lemma 15 λt+s|λt ≤ λ̄

Proof.
Suppose not, then there exists s such that λs < λ̄ < λs+1. In lemma 12 we showed that

λ(λt, y) is monotonic in λ. It is easy to see that it is also continuous. Thus

λ∗(λs, ys+1) ≤ λ∗(λ̄, ys+1) = λ̄

or
λs+1 ≤ λ̄

thus we have a contradiction.
Now we have a sub martingale that is bounded above by λ̄. We can appeal to Doob’s

Convergence theorem and conclude that lims λt+s = λ∗. Finally we rule out λ∗ 6= λ̄

Lemma 16 The limit λ∗ = λ̄

Proof. The map λ(λt, y) is continuous so the limit λ∗ must satisfy λ(λ∗, y) = λ∗. The only
values λ ≤ λ̄ that have this property is λ∗ = 0 and λ∗ = λ̄. With proposition 7, restriction 30a
is sufficient to rules out λ∗ = 0.

The first corollary can be proved by arguing that 30c is satisfied locally near λ̄. First note
that at λ = λ̄,

Q(λ∗(λ, yl), yl) < Q(λ∗(λ, yh), yh)
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Since the shares are constant eventually , as long as the aggregate endowment is strictly ordered,
we have the continuation values are ordered too.

z1(λ̄, y) ∝ exp{−θ−1Q(λ̄, y)}

By continuity of z1there exists ε > 0 such that

zt(yl) > 1 > zt(yl) ∀‖λt − λ̄‖ ≤ ε

we can apply the previous convergence arguments to conclude that limk λt+k = λ̄ for all
λ̄− ε ≤ λt ≤ λ̄ Thus λt is locally stable

The second corollary requires us to show that
P 2
Y (yl)

P 2
Y (yh)

≥ P 0
Y (yl)

P 0
Y (yh)

is sufficient for assumption

30c to be satisfied globally in the required region for v
We observe that assumption 30c is true if we can order the continuation values of Agent 1,

in particular Q[v∗(yh), yh] ≥ Q[v∗(yl), yl].
Suppose this is not true and Q[v∗(yh), yh] < Q[v∗(yl), yl]. This would imply

Q[v∗(yl), yh] > Q[v∗(yl), yl] > Q[v∗(yh), yh],

or v∗(yl) < v∗(yh)
Lemma 13 shows that λ∗(yl) < λ∗(yh) when v such that λ(v, y) < λ̄. Thus the first order

conditions of the planning problem 18b imply that,

1 >
λ∗(yl)

λ∗(yh)
=

(
P 2
Y (yl)

P 2
Y (yh)

)(
P 0
Y (yh)

P 0
Y (yl)

)
exp

{
Q[v∗(yl), yl]−Q[v∗(yh), yh]

θ1

}
exp

{
v(yh)− v∗(yl)

θ1

}

Since both the terms involving continuation values are greater than zero, we also have

1 >

(
P 2
Y (yl)

P 2
Y (yh)

)(
P 0
Y (yh)

P 0
Y (yl)

)
The sufficient condition in the corollary gives us a contradiction.

Proposition 10
For a ε > 0, let T s be the time such that learning converges and πi,t(m

∗) = 1− ε. Since M
is finite it is easy to see that P 0(T s <∞) = 1. With IES > 1 utilities are bounded below. We
can apply the arguments in proof of proposition 7 to show that the one period ahead growth
rate of of log(λt+1) is bounded and λt cannot converge to zero (or diverge to infinity). Now we
show that for s > T s, λt+s|λs is a supermartingale if λs > 1 and vice versa.

Summing up the FOCs 18b we get that

Ẽ1
tλt+1 = λt

Since ε is arbitrary, the difference between expectation under Agent 1’s approximating model
and the data generating process are controlled for s > T s. This implies

Etλt+1 = λt − Covt
[
λt+1, z

1
t,t+1

]
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The sub or supermartingale nature of λt now depends on the sign of the covariance terms. We
will sign it in the limit as λt →∞ and then argue that it cannot switch signs in the intermediate
region (1,∞). Switching the agents, with symmetry properties switch in the region (0, 1) and
hence it is without loss of generality to consider what happens in any of this subsets.

The second term in the covariance is the relative pessimism of Agent 1. This is decreasing
with respect to yt+1. The next lemma shows that λt+1(yt+1) is increasing (decreasing) with
respect yt+1 for λt > 1 when IES > (<)1

Lemma 17 If IES > (<) 1 we have λt+1(y|λ) > (<)λt+1(y′|λ) if y > y′

Proof. We first show that λt+1(y|λ) = λt+1(y′|λ) implies λt+1 = 1. With IID shocks we have

Qt+1(y)−Qt+1(y′) = u[c1(λt+1(y), y)]− u[c1(λt+1(y′), y′)](1− δ)

and symmetrically,

vt+1(y)− vt+1(y′) = u[c2(λt+1(y)), y]− u[c2(λt+1(y′), y′)](1− δ)

Note that from the FOC 18b,

λt+1(y)

λt+1(y′)
= 1 iff

exp{θ−1
1 [vt+1(y)− vt+1(y′)]}

exp{θ−1
1 [Qt+1(y)−Qt+1(y′)]}

This implies,

u[c1(λt+1(y), y)]− u[c2(λt+1(y), y)] = −u[c1(λt+1(y′), y′)] + u[c2(λt+1(y′), y′)]

With constant elasticity of substitution, the above expression simplifies to

(η1,t+1(y)− η2,t+1(y))
(
u(y)− u(y′)

)
=
(
η2,t+1(y′)− η1,t+1(y′)

) (
u(y)− u(y′)

)
If λt+1 is constant across these shocks, we have

η1,t+1(y) = η2,t+1(y) =
1

2

or equivalently λt+1 = 1
Thus the policy rules for λt+1(y) can only cross at λt = 1. This implies if we can order them

at extremes they will be ordered uniformly on either side of unity. From the FOC,

lim
λt→∞

λt+1(y)

λt+1(y′)
=

exp{−θ−1vmax(y)}
exp{−θ−1vmax(y′)}

Now vmax(y) − vmax(y′) = u(y) − u(y′) and depending on the IES, we can order
limλt→∞ λt+1(y). The previous discussion allows us to extend the ordering uniformly to (1,∞).

Thus the covariance is positive in the region λt > 1 and the process is a supermartingale. It
is bounded below by 1 due to the monotonicity properties i.e ∂λt+1(yt+1,λt)

∂λt
> 035. Thus by the

martingale converge theorem it converges almost surely to 1.

35This was proved in Lemma 12
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When IES < 1, we can repeat the arguments to show that it is supermartingale in the region
(0, 1). Thus λT s < 1 would mean limt λt+T s is either 0 or 1 (or by symmetry, if λt > 1 it either
goes to 1 or∞). The location of λT s depends on the sequence of shocks and hence can be either
> or < 1. Thus we can conclude that P 0(λt = 0, λt =∞) > 0.

Let T w be the first time when agents agree weakly. As before, P 0(T w < ∞) = 1. With
IES = 1, the covariance is zero and Pareto weights are constant when agents priors converge.
We now show that the boundaries {0,∞} cannot be approached in finite time unless λ0 = 0 or
λ0 =∞.

Suppose there exists a history yT such that λT (yT ) = 0 for T < ∞. The continuation
allocation from yT will have c2,T+s = 0 and vT+s = −∞ for all s ≥ 0. With this continuation
allocation, the promise keeping at T − 1 will be violated if vT−1(yT−1) < −∞. By backward
induction, this means that v0 =∞ or λ0 = 0.

Proposition 11:
Proof.

We break the proof into two steps. First we show that both constraints cannot bind and
then we use this to characterize how the contract varies current and future utilities Let λ be
the multiplier of the promise keeping constraint (32a) and µ(s)P̃ 2(s)λ be the multiplier on the
incentive compatibility constraint (32b) for state s. We can summarize the first order necessary
conditions as follows

P̃ 1(s)C ′(u2(s))

sP̃ 2(s)C ′(u1(s))
= λ

[
1 + µ(s)− µ(s′)

s′P̃ 2(s′)

sP̃ 2(s)

]
(73a)

λ(s, y∗)

λ
=

[
P̃ 2(s)P̃ 2(y∗|s)
P̃ 1(s)P̃ 1(y∗|s)

][
1 + µ(s)− µ(s′)

P̃ 2(s′)P̃ 2(y∗|y, s′)
P̃ 2(s)P̃ 2(y∗|s)

]
(73b)

Presence of asymmetric information introduces a wedge in the allocation as compared to the
first best. This measures how much current consumption shares deviate for a given λ from the
complete market solution

W (s) =

[
µ(s)− µ(s′)

s′P̃ 2(s′)

sP̃ 2(s)

]

Lemma 18 Let µ(s)P̃ 2(s)λ be the multipliers on the IC constraints in state s. We cannot have
µ(s) > 0 for both s

Proof. Suppose there exists (v0, y) such that both IC’s bind. This impels the contract sat-
isfies ui(sl) = ui(sh) and Tθ1,yv̄(sl, y∗) = Tyv̄(sh, y∗). Next we show that if Tθ1,yv̄(sl, y∗) =
Tθ1,yv̄(sh, y∗), one can without loss of generality choose v̄(sl, y

∗) = v̄(sh, y
∗).

Note that the value of the objective function at this contract can be written as

Q(v0, y) = (1− δ)u1 + δTθ1,y,y∗Tθ1,s|y∗Q(v̄(s, y∗), y∗) (74)

Note that,

Tθ1,s|y∗Q(v̄(s, y∗), y∗) < Eθ1,s|y∗Q(v̄(s, y∗), y∗) < Q(Eθ1,s|y∗ v̄(s, y∗), y∗) < Q(Tθ1,s|y∗ v̄(s, y∗), y∗)

(75)
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The first inequality comes from the fact that the operator Tθ1 solves a minimization problem.
The second inequality is applying Jensen’s inequality. The third inequality comes from the fact
that Q is decreasing in v.

Thus, v̄(sl, y
∗) = v̄(sh, y

∗) = Tθ1,s|y∗ v̄(s, y∗) is feasible and satisfies incentives maintaining
the property that both IC’s bind.

The FOC’s with respect to ui(s) evaluated at this contract yield

P̃ 1(s)

sλP̃ 2(s)
= 1 + µ(s)− µ(s′)

s′P̃ 2(s′)

sP̃ 2(s)
∀s (76)

Similarly the FOCs with respect to v̄(s, y∗) give us

∑
y∗

λ[s, y∗]P̃ 1(s, y∗) = λP̃ 2(s)

[
1 + µ(s)− µ(s′)

P̃ 2(s′)

P̃ 2(s)

]
(77)

Since v̄(sl, y
∗) = v̄(sh, y

∗) and the value function is concave, λ(sl, y
∗) = λ(sh, y

∗). Further, the
valuations for agent one given s are equal. Hence P̃ 1(y∗|sl) = P̃ 1(y∗|sh).

we can substitute for λP̃ 2(s) from equation (76) to obtain

s

[
1 + µ(s)− µ(s′)

s′P̃ 2(s′)

sP̃ 2(s)

]∑
y∗

λ(y∗)P̃ 1(y∗|s) =

[
1 + µ(s)− µ(s′)

P̃ 2(s′)

P̃ 2(s)

]
(78)

Evaluating and dividing the previous expression for s = sl by s = sh, we get[
1 + µ(sl)− µ(sh) shP̃

2(sh)

slP̃ 2(sl)

]
[
1 + µ(sh)− µ(sl)

slP̃ 2(sl)

shP̃ 2(sh)

] >
[
1 + µ(sl)− µ(sh) P̃

2(sh)

P̃ 2(sl)

]
[
1 + µ(sh)− µ(sl)

P̃ 2(sl)

P̃ 2(sh)

] (79)

However [
1 + µ(sl)− µ(sh)

shP̃
2(sh)

slP̃ 2(sl)

]
< [

[
1 + µ(sl)− µ(sh)

P̃ 2(sh)

P̃ 2(sl)

]
and and [

1 + µ(sh)− µ(sl)
slP̃

2(sl)

shP̃ 2(sh)

]
>

[
1 + µ(sh)− µ(sl)

P̃ 2(sl)

P̃ 2(sh)

]
Thus combining both we have a contradiction.
The previous lemma states that both constraints cannot bind. Therefore either IC(sl) >

0, IC(sh) = 0 or IC(sh) > 0, IC(sl) = 0. Adding IC’s for either of the possibilities gives us

u2(sl)(sl − sh) > u2(sh)(sl − sh)

or
u2(sl) < u2(sh)

and evaluating the equality gives us

Tθ1,yv̄(sl, y
∗) > Tθ1,yv̄(sh, y

∗)

Thus the optimal contract features u2(sl) < u2(sh) and Tθ1,yv̄(sl, y
∗) > Tθ1,yv̄(sh, y

∗)
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Proposition 12:
Proof. We first begin with the case with θ1 =∞. Lemma 3 implies that λt is a P 0-martingale.
The KKT necessary conditions imply that λt ≥ 0. Thus it is martingale bounded below by zero
for t. We can apply Doob’s martingale convergence theorem to argue that λt → λ∞ almost
surely.

Next we argue that it can only converge to its lower bound i.e zero. Suppose not, and for
some path λ(yt, st) → λ̂ > 0. Proposition 4 shows that with θ1 = ∞, λ∗(s, y∗) = λ∗(s, y∗∗).
Using the concavity of the value function, we have a monotonic relationship between λ(v0, y)
and the promised values such that v(λ(v0), y) = v0

Note that
λ(yt, st) = λ∗[st|v(λt−1), yt)

Thus the convergence of λt implies vt → v̂(yt) and λ∗[s|v̂(y), y)] = λ̂ for all s.
The FOCs 73b imply that λ∗ = λ imply that the dynamic wedge [1 +µ(s)−µ(s′)] converges

to 1 and the limiting multipliers are zero. The allocation converges to the complete market
solution.

The FOC’s 73a imply consumption shares for agent 2 vary across s. In particular
u2(sl|v̂(y), y) < u2(sh|v̂(y), y)

Now we compute the one period ahead conditional expectation of the continuation values
Etv̄(yt+1, st). In the limit this will converge to the random variable Eyv̂. One can observe that
this is independent of st.

The ex-post values v(s, y) evidently solve the following equation

v(s, y|v0, y) = (1− δ)su2(s|v0, y) + δEyv̄(s, y∗|v0, y)

Let ∆(y|v0, y) = v(sh, y)− v(sl, y) given by

∆(y|v0, y) = (1− δ) [shu2(sh)− slu2(sl)] + δ(Eyv̄sh, y∗ − Eyv̄sl, y∗)

Convergence of Etv̄(yt+1, st) implies

∆t = (1− δ) [shu2(sh|v̂(y), y)− slu2(sl|v̂(y), y)]

Adding (sl − sh)u2(sh|v̂(y), y) to both sides we gets

∆t + (sl − sh)u2(sh|v̂(yt), yt) = (1− δ)sl(u2(sh)− u2(sl)) > 0

This violates the incentive compatibility in state s = sl. Thus we have a contradiction.
Next we turn to the case with θ1 <∞ taking logs, the FOC 73b imply that the growth rate

of λt+1 is given by

log
P̃ 2
t (yt+1|st)
P̃ 1
t (yt+1|st)

+ log
P̃ 1
t (st)

P̃ 2
t (st)

+ log(1 + µt(st)− µt(s̃t)
P̃ 2(s)

P̃ 1(s)

The proof for survival follows exactly as Proposition 7 if on the paths λt → 0 we have

• limt P̃
i(yt+1|st) = P̃ it (yt+1)

• limt log P̃ 1(st)

P̃ 2
t (st)

+ log(1 +Wt) = 0
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Following similar arguments as in Proposition 7 one can show that λt → iff vt → vmin.
At v = vmin, the contract u2(s) = vmin and v̄(s, y∗) = vmin is incentive compatible and

implements the complete markets solution and is hence optimal.
It is easy to see that consumption of agent 1 is independent of s in the limit and hence

limt P̃
1(yt+1|st) = P̃ 1

t (yt+1).
Let a(v0, y) be the allocation and associated endogenous beliefs that solves 31. Define a

continuous function κ(s|a, λ) as

κ(s|a, λ) =
C ′[u2(s)]

λsC ′[u1(s)]

P̃ 1(s)

P̃ 2(s)
− 1 (80)

Associated with the sequence λt that goes to zero, let acmt be the complete market allocation
and beliefs acm(v(λt), yt). Continuity with respect to a implies that for every ε > 0, there exists
δ > 0 such that

‖a− a′‖ < δ =⇒ ‖κ(s|a, λ)− κ(s|a′, λ)‖ < ε

Since the private information allocation converges to the complete market solution we have
‖at − acmt ‖ → 0. Thus there exists a T large enough that

‖at − acmt ‖ < δ ∀t > T

and

‖κ(s|at, λ)− κ(s|acmt , λ)‖ < ε

At λ = λt we have κ(s|acmt , λt) = 0 since the probability weighted marginal utilities are equal
to the time t (implied )Pareto weights on agent 2 λt

‖κ(s|at, λt)‖ < ε

Using the FOC 73a we have
µt < ε

The rest of the proof follows from Proposition 7.

B Bond Economy

This section describes the bond economy without aggregate risk : Y = {ȳ} and normalizing
aggregate supply of bonds to zero. The shocks s instead of affecting the tastes of Agent 2 affect
the share of endowments. The beliefs of the agents are given by initial priors on a finite set of
Markov models for s denoted by M = {PS(s∗|s,m)}m and π0

i ∈ ∆(M). The endowments of
Agent 1 and Agent 2 are ys, y(1− s) respectively36.

With the zero aggregate supply of bonds and common initial priors - π0, the sufficient state
variables for this economy are (B1, s, π) :- The assets of Agent 1, current realization of the
distributional shock and the common prior over the set of models M

36Note that s is not an idiosyncratic shock as all agents of type i have the same endowment. This allows us
to aggregate symmetric decisions over individual types of agent and keep track only of how wealth is distributed
across types. A full extension to a Huggert/ Aiyagari economy is studied in Bhandari (2013b).
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Agents problem

Given bond prices q, let Qi(b, B1, s, π) be the value of Agent i with assets b and aggregate state
(B1, s, π)

Q1(b, B1, s, π) = max
c,b∗

u(c) + δRθ2T
1
θ1,m,sQ

1(b∗, B1∗, s∗, π∗) (81)

subject to
c+ qb∗ = ys+ b (82a)

π∗ ∝
∑
m

PS(s∗|s,m)π(m) (82b)

b∗ ≥ b1(s) (82c)

Where b1(s) is the natural debt limit for Agent 1 in state s
Similarly we can describe Agent 2’s problem as

Q2(b, B1, s, π) = max
c,b∗

[
u(c) + δR2

θ2T
1
θ1,m,sQ

2(b, B1∗, s∗, π∗)
]

(83)

subject to
c+ qb∗ = y(1− s) + b (84a)

π∗ ∝
∑
m

PS(s∗|s,m)π(m) (84b)

b∗ ≥ b2(s) (84c)

Where b2(s) is the natural debt limit for Agent 2 in state s.

Remark 6 Along equilibrium paths market clearing will impose upper limits on asset positions
of individual agents too

Equilibrium

Given q, the interior solutions to these problems pin down the consumption savings decisions of
both agents. Let Bi[b, B1, π, s, q] be the savings of Agent i.

B1(b, B1, s, π, q) : quc[ys+ b− qb∗]− δẼ1
sQ

1
b(b
∗, B1∗, s∗, π∗) = 0 (85a)

B2(b, B1, s, π, q) : quc[y(1− s) + b− qb∗]− δẼ2
sQ

2
b(b
∗, B1∗, s∗, π∗) = 0 (85b)

The expectations are taken with respect to the worst case model averaged marginals∑
m π̃i(m)P̃ iS(s∗|s,m). Like before π̃i and P̃ iS can be computed using the value functions Qi

for each agent.
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B.1 A Minimally Stochastic case

We first analyze the equilibrium under special dynamics for s which reduces the problem essen-
tially to a 2 period version that can be quickly solved and study how wealth differences affect the
worst case beliefs of agents. The simple economy is constructed under the following dynamics
for {st}t>0 given s0

1. s1|s0 ∼ PS [s∗|s,m]

2. st+1 = st for t ≥ 1

This is a minimally stochastic case which features an absorbing state for st from t = 1. The
value of the agent can now be computed backwards - Let Qi∗ be the value of Agent i from period
1 onwards and Qi0 denote the value after s0 has been realized. The stationary environment after
period 1 implies that

• Q1∗[b, B1, s, π] = u[ys+(1−δ)b]
1−δ and B1∗[b, B1, s, π] = b

• Q2∗[b, B1, s, π] = u[y(1−s)+(1−δ)b]
1−δ and B2∗[b, B1, s, π] = b

• q(B1, s, π) = δ

Now we can derive the objects in t = 0 using the above as terminal conditions. The following
proposition states that there exist an inverse relationship between assets and the weights that
agents give to states when they have low income.

Let z1(B1, s, π) =
∑
m π̃1(m)P̃ 1(s|s0,m)∑
m π(m)PS(s|s0,m) be Agent 1’s (equilibrium) worst case likelihood ratio.

Proposition 13 There exists ȳ(b) and B1
−1,0[s, π] such that lim

b→B1
−1,0
B1,0(b,B1

−1,0, s, π, q) =

− ysl
1−δ and lim

b→B1
−1,0

ȳ[B(b,B1
−1,0, s, π, q)] = ysl. Further we have,

∂z1(B1, s, π)

∂B1
> 0 iff y1(s) > ȳ(b)

as long as we have ysl < ȳ[B(B1, s, π, q)] < ysh

Proof. We first derive some properties of how distortions to priors depend on wealth

Lemma 19 Suppose consumption was given by c(y, b) = y + b and z solves

V R(b) = min
z,Ez=1

Ez[u(c) + θ log(z)]

For every b there exists a threshold ȳ(b) such that ∂m(y,b)
∂b > 0 iff y > ȳ(b)

Proof. The choice for z∗

z∗(y, b) ∝ exp

{
−(y + b)1−γ

θ(1− γ)

}
taking logs and differentiating with respect to b we have

∂ log z∗(y, b)

∂b
= −(y + b)−γ

θ
+

E exp
{
− (y+b)1−γ

(1−γ)θ

}
(y + b)−γ

θ1E exp
{
− (y+b)1−γ

(1−γ)θ

}
62



Define p̃(y) = p(y)
exp

{
− (y+b)1−γ

(1−γ)θ

}
E exp

{
− (y+b)1−γ

(1−γ)θ

} we have

∂d log z∗(y, b)

∂b
= −(y + b)−γ − Ẽ(y + b)−γ

θ

Let ȳ(b) be such that the numerator is zero

ȳ(b) =
(
Ẽ(y + b)−γ

)− 1
γ − b

Since y + b ≥ 0 as y > ȳ(b) we have

∂d log z∗(y, b)

∂b
> 0

Lemma 20 There exists a B1
−1,0[s, π] such that lim

b→B1
−1,0
B1,0(b,B1

−1,0, s, π, q) = − ysl
1−δ . Fur-

ther we also have
lim

b→B1
−1,0

ȳ[B(b,B1
−1,0, s, π, q)] = ysl

As B1,0 approaches − ysl
1−δ , marginal utility of consumption of Agent 1 in s∗ = sl diverges to

∞. For an interior solution, the FOC would require his current consumption to go to zero as
well. This means that b−1,0[s, π] will satisfy

b0,1 ≈ q
ysl

1− δ
− ys

and from Agent 2’s FOC along with market clearing we have that q is

q ≈ δ
ẼQ2∗

b ( ysl1−δ ,−
ysl
1−δ , s

∗, π∗)

uc(y)

This suggests b−1,0[s, π] = δ

(
ẼQ2∗

b (
ysl
1−δ ,−

ysl
1−δ ,s

∗,π∗)

uc(y)

)(
ysl
1−δ

)
− ys

Following steps in lemma 19, the threshold for Agent 1’s income to ensure that relative
optimism rises with assets satisfies

ȳ[b∗] =
(
Ě1
s[ys

∗ + b∗(1− δ)]−γ
)− 1

γ − (1− δ)b∗

Note that the likelihood ratio m(b∗, s∗) =
∑
m π̃1(m)P̃ 1

S(s∗|s,m)∑
m π(m)PZ(s∗|s,m) The numerator can be simplified

to  exp{−u[ys∗+b∗(1−δ)]
θ1

}∑
m exp{

−δT1
θ1,m

[u(ys∗+b∗(1−δ))]
θ2

}

∑
m

π(m)PS(s∗|s,m)F 1(m)

and F 1(m) = exp
{(

θ2−δθ1
θ1θ2

)
T1
θ1,m

[u(ys∗ + b∗(1− δ))]
}

The derivative ∂ log[z(b∗,s∗)]
∂b∗ is given by
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−
(

1− δ
θ1

)
[ys∗+b∗(1−δ)]−γ+(1−δ)

∑
m

Ẽ1
m,s[ys

∗+b∗(1−δ)]−γ
(
δ

θ2
π̃1(m) +

(
− δ

θ2
+

1

θ1

)
π̂∗(m)

)
where π̂∗(m) ∝ π(m)PS(s∗|s,m)F 1(m)

Multiplying by θ1
1−δ , we can define π̌∗ as δθ1

θ2
π̃1 +

(
1− δθ1

θ2

)
π̂∗.

Now ∂ log[z(b∗,s∗)]
∂b∗ ≥ 0 if and only if ysh ≥ ȳ[b∗] ≥ ysl

ȳ[b∗] =
(
Ě1
s[ys

∗ + b∗(1− δ)]−γ
)− 1

γ − (1− δ)b∗

Now as b→ B1
0,−1[s, π] and b∗ = B1,0[b, s, π]→ − ysl

1−δ

ȳ

(
−ysl
1− δ

, s∗
)

= ysl

As long as we have ysl < ȳ[B(B1, s, π, q)] < ysh implies a negative association of assets levels
and pessimism.
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