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Abstract

We study monetary and �scal policy in a heterogeneous agents model with incomplete markets

and nominal rigidities. We develop numerical techniques that allow us to approximate Ramsey

plans in economies with substantial heterogeneity. In a calibrated model that captures features of

income inequality in the US, we study optimal responses of nominal interest rates and labor tax

rates to productivity and cost-push shocks. Optimal policy responses are an order of magnitude

larger than in a representative agent economy, and for cost-push shocks are of opposite signs.

Taylor rules poorly approximate optimal nominal interest rates.
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1 Introduction

An empirical labor literature has documented that dispersions of labor earnings, assets, and other

measures of inequality co-move with aggregate business cycle �uctuations. Meanwhile, a quanti-

tative macroeconomics literature that studies optimal monetary and/or �scal policy over business

cycles relies almost exclusively either on a representative agent assumption or oversimpli�ed models

of heterogeneity. We want to know how those simpli�ed treatments of heterogeneity a�ect quantita-

tive prescriptions. Therefore, this paper studies optimal monetary and �scal policies in a workhorse

New Keynesian model augmented to capture rich heterogeneities across agents and empirical facts

about co-movements of aggregate variables and measures of inequality.

We study a New Keynesian economy populated by a continuum of heterogeneous agents who are

subject to idiosyncratic wage risks. Agents di�er in skills and their exposure to aggregate shocks

that are calibrated to emulate dynamics of the distribution of U.S. labor earnings documented by

Guvenen et al. (2014). Financial markets are incomplete with agents di�ering in their holdings

of stocks, bonds and their access to �nancial markets. We study how a Ramsey planner adjusts

nominal interest rates, transfers, and proportional labor taxes and transfers in response to aggregate

shocks.

In studying a Ramsey planner's best policies, we confront substantial computational challenges.

Existing studies of economies with heterogeneities, incomplete markets, and aggregate shocks typi-

cally approximate the ergodic distributions of competitive equilibrium prices and quantities under

a given set of policies and cannot easily be extended to answer normative questions. Ramsey prob-

lems bring additional challenges. First, because they assign important roles to Lagrange multipliers

on individual and aggregate forward looking constraints, they have additional state variables that

summarize history dependencies making the state vectors larger than what are often used to char-

acterize recursive competitive equilibria in applied studies. Second, due to market incompleteness,

some state variables exhibit very slow rates of mean-reversion, implying that approximations around

a mean of an invariant distribution poorly approximate an optimal policy during a transition from

a given initial distribution.

This paper contributes a new computational technique that allows us to obtain good approxi-

mations to optimal government policies for economies with such large state spaces. Our numerical

methods build on perturbation theory that uses small noise expansions with respect to a one-

dimensional parameterization of uncertainty as in Fleming (1971) and Fleming and Souganidis

(1986) that has been applied earlier in economics by Anderson et al. (2012). These are related to

but di�er from expansions in Judd and Guu (1993, 1997) and Judd (1996, 1998) that employ small

noise expansions with respect to shocks and state variables about a deterministic steady state. A key

step is that at each date, we take a Taylor expansion of policy functions around the current value

of state vector with respect to a parameter that scales both idiosyncratic and aggregate shocks.
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The current state vector can include a distribution of idiosyncratic states. We thus update the

point around which local approximations are taken each period, which allows our approximations

to remain accurate even in settings where transition dynamics are slow.

To manage heterogeneity, we approximate the distribution of individual state variables using

a discrete grid with a su�ciently large number of points. Our contribution here is to develop a

general framework and derive explicit formulas for coe�cients occurring in the Taylor expansions

of individual agents' and aggregate policy functions. A key step that makes our analysis tractable

is a �factorization theorem� using which we show that these formulas require matrix inversions only

of manageable dimensions, often equal to the number of aggregate variables, and that they can be

e�ciently computed. In this way, our procedure allows fast approximations even for a large number

of agents. That allows us to construct nonlinear impulse responses that describe how distributions

across agents respond to an aggregate shock. In Section 3.3, we describe the steps comprising our

algorithm and how our method compares to other approaches.

Applying our approach to a calibrated New Keynesian economy with heterogeneous agents,

we �nd that attitudes about inequality induce the planner to use �scal and monetary tools to

redistribute resources toward agents who are especially adversely a�ected by recessions. We study

two types of shocks: shocks to the growth rate of productivity that also change the distribution of

labor earnings in ways documented by Guvenen et al. (2014) and cost-push shocks that we model as

a shock to the elasticity of substitution between goods that leads to an increase in the the desired

mark-ups for the �rms. We compare our results to optimal outcomes from a representative agent

economy and to outcomes under a competitive equilibrium with simple �scal and monetary policies

rules (such as a Taylor rule) used in existing studies that investigate the transmission of monetary

shocks.

In response to a negative productivity shock, we �nd that optimal monetary policy lowers

nominal rates while keeping expected in�ation near zero. But the planner also engineers high

unanticipated in�ation in recessions because that is a good way to transfer resources from agents

with high bond holdings toward agents with low holdings. This transfer makes up for the inability

of agents fully to insure against aggregate shocks. An optimal plan induces that surprise in�ation

by increasing the tax rate, which raises real wages and marginal costs for �rms. Furthermore, as in

data, recessions in our calibrated economy are accompanied by persistent increases inequality. This

generates a motive to redistribute labor income from productive agents by increasing transfers. The

planner achieves this by keeping marginal labor tax rates high long after output has recovered. We

�nd that in response to a productivity shock that lowers output growth by 3%, there is a nearly

permanent increase in the labor tax rate of about 0.5 percentage points and a 0.25 percentage points

jump in in�ation for one period. As a point of comparison, the optimal tax rate and in�ation rate

in an economy without heterogeneity are constant for permanent productivity shock and an order

of magnitude lower if we impose zero lump-sum transfers.

3



In response to a �cost-push� shock an optimal policy calls for a signi�cant decrease in nominal

interest rates that generates an increase in in�ation and output. This policy response is opposite

from that found in a representative agent economy. The explanation for this di�erence is that in

response to a cost-push shock, �rms want to increase their prices, but the presence of nominal

rigidities makes that costly. So in a representative agent economy, a Ramsey planner increases

nominal interests rates to reduce output and marginal costs enough to o�set that force for in�ation,

a response that Galí (2015) dubs �leading against the wind�. The markup shock also decreases the

labor share and increases the pro�t share, which in heterogeneous agent economies redistributes

resources from agents who mainly obtain income from wages to agents to with large stock holdings.

Leaning against the wind exacerbates this e�ect. When we calibrate the distribution of equity

ownership to U.S. data, we �nd that a 1 percentage point positive shock calls for a -0.5 percentage

point decrease in the nominal interest rate compared to 0.05 percentage point increase with a

representative agent calibration.

We also investigate to what extent Taylor rules approximate an optimal policy. We �nd that in

heterogeneous agent economies Taylor rules do a substantially worse job than in a representative

agent counterpart. In absence of heterogeneity, the main trade-o� for optimal policy is to stabilize

in�ation and a Taylor rule with su�ciently large loading on in�ation can meet this objective well.

In our economy, the optimal policy requires in�ation that is large and but very short lived. The

allocation with Taylor rules implies that interest rates and in�ation share the same persistence and

co-move positively. This means that high in�ation necessarily comes at an cost of expected high

in�ation in the future and such behavior is sub-optimal.

As a part of robustness we do several alternatives that modify one feature at a time relative

to our baseline, with the key ones being - adding borrowing frictions, alternative ways of setting

Pareto weights, di�erent speci�cation for stochastic processes of idiosyncratic shocks. We �nd that

with borrowing frictions that are calibrated to observed distribution of marginal propensities to

consume, there is a larger role for �scal policy - especially in the optimal timing of lump-sum

transfers, alternative Pareto weights mainly a�ect the steady state level of distortionary taxes but

not much how monetary and �scal policies respond to aggregate shocks and the response of nominal

rates, tax rates, and in�ation are lower when aggregate productivity shocks are not accompanied

with shifts in the skill distribution.

We begin by describing our model and some properties of the Ramsey allocation in Section

2. The numerical method and its comparison to alternatives are discussed in Section 3. We use

our method to obtain quantitative results in the calibrated economy in Section 4 and 5. Section 6

concludes.
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2 Environment

A continuum of in�nitely lived households face idiosyncratic shocks to their productivities. Indi-

vidual i's preferences over stochastic processes for a �nal consumption good {ci,t} and labor supply

{ni,t} are ordered by

E0

∞∑
t=0

βtu (ci,t, ni,t)

where

u (c, n) =
c1−ν

1− ν
− n1+γ

1 + γ
, (1)

Et is a mathematical expectations operator conditioned on time t information and β ∈ (0, 1) is a

time discount factor. We use uc, un to denote partial derivaties with the respect to c and n, and

higher order derivatives are denoted analogously.

The economy is subject to aggregate and idiosyncratic shocks. In our baseline speci�cation we

focus on only one source of aggregate uncertainty � the aggregate productivity shock Θt � that

follows a stochastic process described by

ln Θt = ρΘ ln Θt−1 + EΘ,t,

where EΘ,t is a mean-zero, i.i.d. random variables and ρΘ ∈ [0, 1). Aggregate and idiosyncratic

shocks relate to individual i's labor productivity θi,t by

ln θi,t = ln Θt + ei,t + ςi,t, (2)

ei,t = ρeei,t−1 + (1− ρe) ē+ f (ei,t−1) EΘ,t + ηi,t, (3)

where ςi,t, ηi,t are also mean-zero, i.i.d. random variables. This speci�cation of idiosyncratic shocks

builds closely on formulations used in labor literature, e.g. Storesletten et al. (2001), Low et al.

(2010) where ςi,t and ηi,t correspond to transitory and persistent shocks to individual productivity.

The function f (ei,t−1) individuals' skills vary with aggregate shocks. It allows us to match the

business cycles in cross sections that are documented by Guvenen et al. (2014). We assume that all

shocks take values in a compact set.

Agent i supplies θi,tni,t units of e�ective labor to a competitive labor market at nominal wage

PtWt, where Pt is the nominal price of the �nal consumption good at time t. There is a common

proportional labor tax rate τt and a common lump transfer TtPt. Agents trade a one-period risk-

free nominal bond with price Qt with each other and with the government. We use Ptbi,t, PtBt to

denote bond holdings of agent i and the debt position of the government respectively, and ιt,πt to

denote the nominal interest rate and in�ation. Finally, di,t are dividends from intermediate goods

producers measured in units of the �nal good. We take as given an initial price level P−1 <∞ and
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set ι−1 = β−1 − 1.

Agent i's budget constraint can be written as

ci,t +Qtbi,t = (1− τt)Wtθi,tni,t + Tt + di,t +
bi,t−1

1 + πt
. (4)

The government's budget constraint at time t is

Ḡ+ Tt +

(
1 + ιt−1

1 + πt

)
Bt−1 = τtWt

∫
i
θi,tni,tdi+Bt,

where Ḡ is the level of government non-transfer expenditures.

A �nal good Yt is produced by competitive �rms that use a continuum of intermediate goods

{yt(j)}j∈[0,1] in a production function

Yt =

[∫ 1

0
yt(j)

ε−1
ε dj

] ε
ε−1

.

The �nal good producer takes the �nal good prices Pt and intermediate goods prices {pt(j)}j as
given and solves

max
{yt(j)}j∈[0,1]

Pt

[∫ 1

0
yt(j)dj

] ε
ε−1

−
∫ 1

0
pt(j)yt(j)dj. (5)

Outcomes of optimization problem (5) are a demand function for intermediate goods

yt(j) =

(
pt(j)

Pt

)−ε
Yt,

and a nominal price satisfying

Pt =

(∫ 1

0
pt(j)

1−ε
) 1

1−ε

.

Intermediate goods yt(j) are produced by monopolists having decreasing returns to scale technology

yt(j) =
[
nDt (j)

]α
,

where nDt (j) is the amount of e�ective labor hired by �rm j and α ∈ (0, 1]. These monopolists

face downward sloping demand curves
(
pt(j)
Pt

)−ε
Yt and choose prices pt(j) while bearing quadratic

Rotemberg (1982) price adjustment costs ψ
2

(
pt(j)
pt−1(j) − 1

)2
measured in units of the �nal consump-
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tion good. Firm j chooses prices {pt(j)}t that solve

max
{pt(j)}t

E0

∑
t

βt
(
Ct
C0

)−ν
pt(j)

Pt
−Wt

((
pt(j)

Pt

)−ε
Yt

) 1−α
α

(pt(j)
Pt

)−ε
Yt −

ψ

2

(
pt(j)

pt−1(j)
− 1

)2
 ,

(6)

where for convenience we have imposed that each �rm values pro�t streams with a stochastic

discount factor that is driven by aggregate consumption Ct =
∫
ci,tdi.

1

In the symmetric equilibrium pt(j) = Pt, yt(j) = Yt for all j and market clearing conditions in

labor, goods, and bond markets are:

Nt =

∫
θi,tni,tdi, Dt = Yt −WtNt −

ψ

2
π2
t , (7)

yt(j) = Yt = Nα
t , (8)

Ct + Ḡ = Yt −
ψ

2
π2
t , (9)∫

i
bi,tdi = Bt. (10)

Each agent in period 0 is characterized by a triple (ei,−1, bi,−1, si) where ei is agent i persistent

productivity component, bi,−1 is her initial holdings of debt, and si is her stock ownership. Agent i

dividends in period t are given by di,t = siDt.

De�nition 1. An allocation is a sequence {ci,t, ni,t}i,t . A bond pro�le is a sequence
{
{bi,t}i , Bt

}
t
.

A price system is a sequence {Wt, Pt}t. A monetary policy is a sequence {Qt, Tt}t. A monetary-

�scal policy is a sequence {Qt, Tt, τt}t. An initial condition is the distribution {ēi, bi,−1, si}i and the

initial price levels p−1(j) = P−1 for all j,

De�nition 2. Given an initial condition, a competitive equilibrium is a monetary-�scal policy

{Qt, Tt, τt}t and a sequence
{
{ci,t, ni,t, bi,t}i , Bt,Wt, Pt

}
t
such that: (i) {ci,t, ni,t, bi,t}i,t maximize

(1) subject to (4) and natural debt limits; (ii) �nal goods �rms choose {yt(j)}j to maximize (5);

(iii) intermediate goods producers' prices solve (6) and satisfy pt(j) = Pt; and (iv) market clearing

conditions (8), (9) and (10) are satis�ed.

A utilitarian Ramsey planner orders allocations by

E0

∫ ∞∑
t=0

βt

[
c1−ν
i,t

1− ν
−
n1+γ
i,t

1 + γ

]
di. (11)

1In economies with heterogeneous agents and incomplete markets one has to take a stand on how �rms are valued.
Using aggregate consumption to drive a stochastic discount factor process allows us to get a representative agent
economy as a special case of our heterogeneous agent economy by appropriately setting some of our parameters. This
choice aligns with Kaplan et al. (2016).
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De�nition 3. Given an initial condition and a tax sequence τt = τ̄ for some τ̄ , an optimal monetary

policy is a sequence {Qt, Tt}t that supports a competitive equilibrium allocation that maximizes (11).

An optimal monetary-�scal policy given an initial condition is a sequence {Qt, Tt, τt}t that support a
competitive equilibrium allocation that maximizes (11). A maximizing monetary or monetary-�scal

policy is called a Ramsey plan; an associated allocation is called a Ramsey allocation.

The distinction between optimal monetary and monetary-�scal policies is that the former takes

tax rates as given while the latter also optimizes with respect to tax rates. A common argument

is that institutional constraints make it di�cult to adjust tax rates in response to typical business

cycle shocks, leaving nominal interest rates as the government's only tool for responding to such

shocks. We will capture that argument by studying optimal monetary policy when tax rates {τt}t
are �xed at some level τ̄ . The monetary-�scal Ramsey plan evaluates the optimal policies when this

restriction is dropped.

Standard arguments (e.g. Lucas and Stokey (1983), Galí (2015)) establish that a sequence{
{ci,t, ni,t, bi,t}i , Bt,Wt, Pt, Qt, πt, τt

}
t
is a competitive equilibrium if and only if it satis�es (4),

(7)-(10) and

Qt−1uc,i,t−1 = Et−1
uc,i,t

1 + πt
, (1− τt)Wtθi,tuc,i,t = −un,i,t for all i, (12)

Yt
[
1− ε

(
1− Wt

αNα−1
t

)]
ψ

− πt(1 + πt) + βEt
(
Ct+1

Ct

)−ν
πt+1(1 + πt+1) = 0. (13)

Finding an optimal policy amounts to �nding a competitive equilibrium that maximizes welfare

(11). We describe how we numerically �nding such equilibria next.

3 Computational strategy

The Ramsey problem is di�cult to analyze using existing numerical techniques as our model features

extensive heterogeneity which makes it hard to �nd even the competitive equilibrium associated

with an exogenously given government policy. The key challenge is that the underlying state of the

economy is the distribution of individual characteristics, which is a large dimensional object. Many

existing approaches2 to analyzing such models solve for the invariant cross-sectional distribution

in a competitive equilibrium without aggregate shocks, and then approximate aggregate responses

around that distribution. Our problem is more complex since we also need to �nd the optimal

policies themselves and so the invariant distribution is unknown. Moreover, since solutions to

Ramsey problem often feature martingale-like components (see, e.g. Aiyagari et al. (2002)) the rate

of convergence to the invariant distribution may be extremely slow, and therefore the behavior of

the economy around that distribution may not be informative about its behavior around a given

2We discuss the comparison to other methods in the literature in Section 3.3

8



state. These problems make the existing numerical methods inapplicable to our settings.

To overcome these challenges we build on the ideas in Fleming (1971), Fleming and Souganidis

(1986), and Anderson et al. (2012) and develop a new approach that involves constructing a power

series approximation to policy rules at each period around the aggregate state that prevails in

the economy in that period. This approach does not require us to known anything about an

invariant distribution, captures transition dynamics, and is fast and highly parallelizable. As an

additional bene�t, it readily extends to second- and higher-order approximations. The second order

approximations allow us to capture the e�ects of aggregate risk on the competitive equilibrium

dynamics in economies with signi�cant heterogeneity that has been a challenge for the existing

literature.

Our plan for this section is as follows. We �rst explain in Section 3.1 how our approach works in

simpler settings where we �x government policy at an exogenously given level and approximate the

competitive equilibrium. This application is both more transparent than a more involved Ramsey

problem, and is also useful in its own right as it show our approach can overcome challenges faced

by the existing methods. Then in Section 3.2 we show that the same techniques extend to Ramsey

settings with minimal changes. Finally, in Section 3.3 we discuss the relationship of our method to

existing alternatives. The discussion in these subsections is self-contained. A reader not interested

in computational techniques may skip directly to Section 4.

3.1 Basic ideas: competitive equilibrium for given a policy rule

We �rst consider the problem of �nding the competitive equilibrium for a given government policy.

To make our exposition most transparent, we assume that government has no expenditures, sets

taxes τt = Tt = 0 and implements in�ation πt = 0 in all periods. We assume all agents have equal

ownership of �rms and that there is no permanent component of labor productivity, ei,t = 0. These

assumptions represent a simple non-trivial case that allows us to explain our approach in a trans-

parent way. It also has a natural and interesting interpretation: this is a version of Huggett (1993)

economy with natural borrowing limits extended to allow for endogenous labor supply, decreasing

returns to scale in production, and aggregate shocks. In addition, the computational algorithm and

techniques described are general enough to make it operational to extend to the Ramsey problem.

Individual decisions in our economy can be characterized recursively. The aggregate variables in

a given period depend on the realized aggregate shock Θ and the beginning of the period distribution

of assets Ω. Since we assumed that government has no revenues in this example, it also cannot issue

debt, and so the distribution Ω satis�es
∫
bdΩ = 0. We denote the space of such distributions by

W. We use tildes to denote policy functions, and let X̃ =
[
Q̃ W̃ D̃

]T
be a vector of aggregate

policy functions capturing interest rates, wages and dividends. Individual policy functions depend

both on aggregate state (Θ,Ω) and on idiosyncratic state (ς, b) that capture the realization ς of the
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idiosyncratic shock that a�ects individual with asset b. Let x̃ =
[
b̃ c̃ ñ

]T
be the triplet of the

individual policy functions. Finally, Ω̃ (Θ,Ω) : R×W →W be the law of motion describing how the

aggregate distribution of debt next period is a�ected by the aggregate shock in the current period.

Individual optimality conditions consist of the budget constraint (4) and the optimality condi-

tions (12). In our recursive notation these conditions read

c̃ (ς,Θ, b,Ω) + Q̃ (Θ,Ω) b̃ (ς,Θ, b,Ω) = W̃ (Θ,Ω) exp (Θ + ς) ñ (ς,Θ, b,Ω) (14a)

+b+ D̃ (Θ,Ω) ,

βE
{
uc

[
c̃
(
·, ·, b̃ (Θ, b,Ω) , Ω̃ (Θ,Ω)

)]∣∣∣Θ,Ω} = Q̃ (Θ,Ω)uc [c̃ (ς,Θ, b,Ω)] , (14b)

W̃ (Θ,Ω) exp (Θ + ς)uc [c̃ (ς,Θ, b,Ω)] = −un [c̃ (ς,Θ, b,Ω)] , (14c)

for all ς,Θ, b,Ω. The aggregate constraints and the �rm's optimality condition (13) can be written

as [∫
exp(Θ + ς)ñ (ς,Θ, b,Ω) dPr (ς) dΩ

]α
=

∫
c̃ (ς,Θ, b,Ω) dPr (ς) dΩ, (15a)

ε− 1

ε
α

[∫
exp(Θ + ς)ñ (ς,Θ, b,Ω) dPr (ς) dΩ

]α−1

= W̃ (Θ,Ω) , (15b)(
1− ε− 1

ε
α

)[∫
exp(Θ + ς)ñ (ς,Θ, b,Ω) dPr (ς) dΩ

]α
= D̃ (Θ,Ω) , (15c)

for all Θ,Ω. Finally, the law of motion for the distribution of debts induced by the savings behavior

of the agents is given by

Ω̃ (Θ,Ω) (y) =

∫
ι
(
b̃ (ς,Θ, b,Ω) ≤ y

)
dPr (ς) dΩ ∀y, (16)

where ι is the indicator variable. Equations (14), (15), and (16) fully describe the equilibrium

behavior of aggregate and individual variables X̃ and x̃.

Our starting point is the perturbation theory of Fleming (1971), Fleming and Souganidis (1986),

and Anderson et al. (2012) that uses small noise expansions around the current state Ω. Consider

a family of stochastic processes parameterized by a positive scalar σ that scales all shocks (ς,Θ).

Let x̃ (σς, σΘ, b,Ω;σ) and X̃ (σΘ,Ω;σ) denote policy functions with scaling parameter σ. The

perturbational approach takes �rst-, second-, and higher order approximations with respect to σ,

then evaluates these derivative at σ = 0. For example, �rst order approximations take the form

X̃ (σΘ,Ω;σ) = X̄ (Ω) + σ
[
X̄Θ (Ω) Θ + X̄σ (Ω)

]
+O

(
σ2
)
, (17)

x̃ (σς, σΘ, b,Ω;σ) = x̄ (b,Ω) + σ [x̄Θ (b,Ω) Θ + x̄ς (b,Ω) ς + x̄σ (b,Ω)] +O
(
σ2
)
, (18)
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where we used X̄, x̄ to denote the value of the policy function evaluated at σ = 0, X̄Θ, x̄Θ, x̄ς to

denote derivatives with respect to aggregate and idiosyncratic shocks, and X̄σ,x̄σ are the derivative

of the last argument of the policy function. Bars indicate that all the derivatives have been evaluated

at σ = 0. Observe that all the evaluations are performed around a current state Ω that changes as

the aggregate state of the economy changes. The values for the derivatives X̄Θ, x̄Θ, x̄ς ,X̄σ,x̄σ are

obtained via the implicit function theorem that dictates repeated di�erentiation (14), (15) and (16)

with respect to σ and then applying a method of undetermined coe�cients. In simulation, the next

period aggregate state Ω̃ is then obtained and next period policy functions are then approximated

around this new state Ω̃.

An immediate challenge for us and one that is not shared by Fleming (1971), Fleming and

Souganidis (1986) and Anderson et al. (2012) is a curse of dimensionality that arises because our

state-space Ω is in�nite dimensional. Suppose that we approximate this distribution on a grid with

K points. As we explain below, a direct application of the implicit function theorem, as used by

those authors, would require us to invert a 3K × 3K matrix. In our applications K is large,3

which makes such inversions computationally costly and the direct application of this approach

infeasible for heterogeneous agents economies. Our principal contribution is to show that this

problem can be split into K independent linear problems, each of which require inversion of a 3× 3

matrix. This makes our approach computationally feasible, highly parallelizable, and fast. The

crucial intermediate step that enable us to achieve this is a �factorization theorem� that we derive

in the next section. This theorem shows that in competitive equilibrium settings there exists a

particularly simple relationship between derivatives of individual and aggregate policy functions.

Importantly, this theorem and simpli�cations that it provides extend also to second- and higher-

order approximations and to Ramsey settings.

3.1.1 Points of expansion and zeroth order terms

Consider the expansion around deterministic economy with a given distribution of assets Ω. Observe

that we have

b̄ (b,Ω) = b for all b,Ω. (19)

This implies that equations for deterministic economy are

c̄ (b,Ω) + Q̄ (Ω) b = W̄ (Ω) n̄ (b,Ω) + b+ D̄ (Ω) , (20a)

β = Q̄ (Ω) , (20b)

W̄ (Ω)uc [c̄ (b,Ω)] = −un [n̄ (b,Ω)] , (20c)

3In the full Ramsey problem that we study in Section 4 the distribution of individual characteristics is 3-
dimensional, so Ω is a distribution over R3. We approximate it with K = 10, 000 grid points.
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for all (b,Ω) and aggregate constraints[∫
n̄ (b,Ω) dΩ

]α
=

∫
c̄ (b,Ω) dΩ,

ε− 1

ε
α

[∫
n̄ (b,Ω) dΩ

]α−1

= W̄ (Ω) ,(
1− ε− 1

ε
α

)[∫
n̄ (b,Ω) dΩ

]α
= D̄ (Ω) ,

(21)

and the law of motion

Ω̄ (Ω) = Ω (22)

that hold for all Ω.

For a given Ω, we solve the system of equations above for x̄(b,Ω), X̄(Ω). Although this is

a nonlinear system of equations, it can be solved e�ciently using existing numerical techniques,

say by discretizing the state space Ω. In what follows, we take these solutions as known, and

focus on explaining how one can �nd the derivatives that appear in (17) and (18). We call these

x̄(b,Ω), X̄(Ω) the zeroth order expansion. Also, whenever it does not cause confusion, we drop Ω

from the argument and simply use x̄(b), X̄.

To obtain the coe�cients of the �rst order expansion of the policy functions, we will need to

know how policy functions are a�ected by perturbations to the aggregate state Ω. These e�ects

can be derived using equations (20)-(22). Let ∂Q̄ denote the Frechet derivative of Q̃ with respect

to perturbations of state Ω evaluated at σ = 0, and let ∂Q̄ ·∆ denote the value of that derivative

in the direction ∆ ∈ W.4 We extend similarly the notation of Frechet derivatives for other policy

functions and triplets X̃ and x̃. Our key result is the following theorem.

Theorem 1. (Factorization theorem) For each b there exists a loading matrix C(b) with coe�cients

known from the zeroth order expansion such that

∂x̄(b) = C(b)∂X̄. (23)

For any perturbation ∆ ∈ W we have

∂X̄ ·∆ = D−1

∫
E(b)d∆ (24)

for a 3 × 3 matrix D and 3 × 1 vectors E(b), all with coe�cients known from the zeroth order

expansion.

4In particular, ∂Q̄(Ω) is a linear operator such that lim‖∆‖→0
|Q̄(Ω+∆)−Q̄(Ω)−∂Q̄(Ω)·∆|

‖∆‖ = 0. If we restrict attention

to changes ∆ that only assigns positive masses to K levels of debts, then ∂Q̄ is a K × 1 vector that captures the
e�ect of changing masses in each of the K points of the distribution Ω; ∆ is also a K × 1 vector, and ∂Q̄ ·∆ is a dot
product. When ∆ is a function, then ∂Q̄ ·∆ is an integral of that function with density ∂Q̄.
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This theorem fundamental to our approach and it will play a critical role in allowing us to solve

for �rst- (and, ultimately, second- and higher-) order approximations computationally e�ciently,

allowing us to handle rich heterogeneity. The economic content of this theorem is as follows.

Function ∂x̄(·) captures how any perturbation of the distribution of asset holdings a�ects the savings,

consumption and labor decisions of each agent. In competitive equilibrium agents do not care

about the asset distribution per se; what a�ects their decision are prices (Q̄, W̄ in our example)

and lumpsum income (D̄). Thus, matrix ∂x̄(·) can be factorized in two terms: how changes in

distribution a�ect prices and lump-sum income, ∂Q̄, ∂W̄ , ∂D̄, and how individual decisions load on

these aggregate variables, matrix C(b). This loading matrix itself is known, in a sense that it can

be constructed directly from zeroth order calculations of x̄ and X̄, and gives equation (23). This

equation then allows on to compute the e�ect of any perturbation ∆ on aggregate variables using

a linear equation (24). Explicit construction of matrices C(b), D and E(b) is given in the proof.

Proof. Observe from (19) that b̄ (b) does not depend on Ω and therefore ∂b̄(b) = 0. Di�erentiate

(20a) and (20c) to get a linear system

[
1 −W̄

W̄ucc [c̄(b)] unn [n̄(b)]

][
∂c̄(b)

∂n̄(b)

]
=

[
−b n̄(b) 1

0 −uc [c̄ (b)] 0

] ∂Q̄

∂W̄

∂D̄

 .
Observe that all terms in the 2×2 matrices that appear in this expression can be directly constructed

from the zeroth order variables X̄,x̄(b). Inverting the matrix on the left hand side, we obtain an

expression for
[
∂c̄(b) ∂n̄(b)

]T
as a linear function of ∂X̄. Adding the �rst raw of zeros to this

matrix, we obtain C(b) that appear in equation (23). Also observe that the same steps allow us to

�nd the derivative of policy function with respect to individual debt level, x̄b(b), as

x̄b(b) ≡

 b̄b(b)

c̄b(b)

n̄b(b)

 =

 1 0 0

Q̄− 1 1 W̄

0 W̄ucc [c̄ (b)] unn [n̄ (b)]


−1  1

D̄

0

 , (25)

where again all the terms on the right hand side are known from the zeroth order expansion.

We obtain derivative ∂X̄ by di�erentiating feasibility constraints (21). For simplicity, suppose

that ∆ ∈ W has density δ and ω(b) is the density of Ω. Consider the Frechet derivative of the

aggregate consumption:

∂

(∫
c̄ (b,Ω) dΩ

)
·∆ = lim

α→0

1

α

[∫
c̄ (b,Ω + α∆) (ω (b) + αδ(b)) db−

∫
c̄ (b,Ω)ω (b) db

]
=

∫
(∂c̄ (b,Ω) ·∆) dΩ−

∫
c̄b (b) d∆,

13



where in the last line we use integration by parts. Substitute equation (23) to get∫
(∂c̄ (b,Ω) ·∆) dΩ =

(
∂Q̄ ·∆

) ∫
C21(b)dΩ +

(
∂W̄ ·∆

) ∫
C22(b)dΩ +

(
∂D̄ ·∆

) ∫
C23(b)dΩ,

where Cij(b) is the ij
th element of the loading matrix Cij(b). Since matrices C(b) are known from

the zero order expansion, so are all the integrals on the right hand side of this expression and their

value does not depend on individual b. Thus, a derivative ∂
(∫
c̄ (b,Ω) dΩ

)
·∆ is equal to a weighted

sum of derivatives ∂Q̄ ·∆, ∂W̄ ·∆, and ∂D̄ ·∆ minus the integral
∫
c̄b (b) d∆, where function c̄b (b)

was already found in (25). Similarly, the Frechet derivative of the aggregate labor supply can also

be written as a linear relationship between ∂X̄ and
∫
n̄b (b) d∆. Using these observations, we can

di�erentiate (21) and construct matrices D,E(b) that appear in (24).

3.1.2 First order expansion

We now consider �rst order expansions of equations (14) and (15). These equations depends on

policy functions in both current and the next period, with the latter appearing in the expectation in

(14b). The expansion of current period policy functions is straightforward and is given in equations

(17), (18). The expansion of the expectation of the next period policy function c̃ requires some care

because the aggregate distribution of asset is a�ected by aggregate shocks.

The aggregate distribution in the next period is given by Ω̃ (σΘ,Ω;σ) and satis�es, in light of

equation (22),

Ω̃ (σΘ,Ω;σ) = Ω + σ
[
Ω̄ΘΘ

]
+O

(
σ2
)
,

where Ω̄Θ is a distribution in W.5 A typical element of Ω̄Θ, denoted by Ω̄Θ(b), can be found from

(16):

Ω̄Θ(b) = −ω(b)b̄Θ (b) for all b. (26)

Using this insight, we have

E
{
c̃
(
·, ·, b̃ (σς, σΘ, b,Ω;σ) , Ω̃ (σΘ,Ω;σ) ;σ

)∣∣∣Θ,Ω} = c̄(b) + σ
{
c̄b(b)b̄ς(b)ς

+
(
ρΘc̄Θ(b) + c̄b(b)b̄Θ(b)− ∂c̄(b) ·

(
ωb̄Θ

))
Θ +

(
c̄σ(b) + c̄b(b)b̄σ(b

)}
+O

(
σ2
)
. (27)

Note that c̄b(b) and ∂c̄(b) are the same objects we computed in the previous section. This equation

show how idiosyncratic and aggregate shocks in the current period a�ect consumption (and hence

the marginal utility of consumption) in the next period. These e�ects are grouped into three groups.

The �rst group, that is multiplied by ς shows the e�ect of the idiosyncratic shocks. Current period

idiosyncratic shocks also a�ects savings in the current period, b̄ς(b)ς and therefore consumption

5Asset market clearing implies that Ω̄σ = 0.
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tomorrow is also a�ected by ς through the e�ect on savings, c̄b(b)b̄ς(b)ς.
6 The second group of

terms capture the e�ect of the aggregate shocks. The aggregate shocks are persistent and their

expected value next period is ρΘΘ, thus the term c̄b(b)b̄Θ(b) captures the direct e�ect of the shock.

The term ρΘc̄Θ(b) analogously to its idiosyncratic counterpart, captures how changes in savings

today a�ects consumption tomorrow. The term, which is equal to ∂c̄(b) · Ω̄Θ from (26), captures

how changes in the aggregate distribution of debt caused by the aggregate shock a�ects individual

agent's consumption. Finally, the last set of terms captures how the presence of risk a�ects the

level of consumption, savings and the law of motions for aggregate debt even in the absence of any

shock.

We are now ready to �nd the derivatives in the expansion that appear in (17) and (18). Consider

the �rst order expansion with respect to σ of equations (15) and (14) and use method of undeter-

mined coe�cients to �nd the derivatives that multiply σς and σΘ. The derivatives x̄ς(b) are easy

to �nd since they cancel out from the expansions of the feasibility constraints and appear only in

the individual optimality conditions

c̄ς (b) + Q̄b̄ς (b) = W̄ (n̄ (b) + n̄ς (b)) , (28a)

Q̄ucc[c̄(b)]c̄ς(b) = βucc[c̄(b)]c̄b(b)b̄ς(b), (28b)

W̄ (uc [c̄ (b)] + ucc [c̄ (b)] c̄ς (b)) = −unn [n̄ (b)] n̄ς (b) . (28c)

for all b. All variables apart from b̄ς (b) , c̄ς (b) , n̄ς (b), are known from the zeroth order expansion.

Thus we can �nd b̄ς (b) , c̄ς (b) , n̄ς (b) separately for each b by solving this 3× 3 system of equations.

In the direct analogy with (25) we can write this solution compactly as

x̄ς(b) = K(b)−1L(b) (29)

for matrices K(b),L(b) known from the zeroth order expansion. Similarly we show that X̄σ, x̄σ are

all zero vectors.

Solving for the e�ect of the aggregate shocks is more complicated because they a�ect the dis-

tribution of debts and the aggregate constraints. Using (27), the individual constraints imply that

c̄Θ (b) + Q̄b̄Θ (b) + Q̄Θb̄ (b) = W̄ (n̄ (b) + n̄Θ (b)) + W̄Θn̄ (b) + D̄Θ,(30a)

βucc[c̄(b)]
(
ρΘc̄Θ(b) + c̄b(b)b̄Θ(b)− ∂c̄(b) ·

(
ωb̄Θ

))
= Q̄ucc[c̄(b)]c̄Θ(b) + uc[c̄(b)]Q̄Θ, (30b)

W̄ (uc [c̄ (b)] + ucc [c̄ (b)] c̄Θ (b)) + W̄Θuc [c̄ (b)] = −unn [n̄ (b)] n̄Θ (b) . (30c)

6Remember that we assumed that ς are i.i.d. in our simple example. With persistent idiosyncratic shocks there
would be an additional term capturing persistence, analogous to ρΘc̄Θ(b) for the aggregate shock.

15



The aggregate constraints are

αN̄α−1

∫
(n̄ (b) + n̄Θ (b)) dΩ =

∫
c̄Θ (b) dΩ,

ε− 1

ε
α (α− 1) N̄α−2

∫
(n̄ (b) + n̄Θ (b)) dΩ = W̄Θ,(

1− ε− 1

ε
α

)
αN̄α−1

∫
(n̄ (b) + n̄Θ (b)) dΩ = D̄Θ,

(31)

where N̄ is the aggregate labor supply in the zeroth order expansion.

The direct way to proceed (e.g. along the lines of Anderson et al. (2012)) would be to use

equations (30) to express individual derivatives x̄Θ as a linear function of X̄Θ and then substitute

those expressions in (31) to solve for X̄Θ. However, in heterogeneous agents economies like ours this

approach is infeasible but for the simplest models of heterogeneity. The problem lies in the fact that

the individual condition (30) for a given b contains unknown variables b̄Θ (·) for all debts levels due
to the integral ∂c̄(b) ·

(
ωb̄Θ

)
. So if the distribution Ω contains K elements, then expression xΘ as a

function of X̄Θ from (30) would require inversion of a 3K × 3K matrix, which is computationally

costly for K large.

Theorem 1 signi�cantly simpli�es the analysis, by allowing us to break one system of 3K × 3K

equations into K system of 3× 3 equations. Using Theorem 1 we can write

∂x̄(b) ·
(
ωb̄Θ

)
= C(b)∂X̄ ·

(
ωb̄Θ

)
≡ C(b)X̄ ′Θ.

Variable X̄ ′Θ captures how aggregate variable tomorrow are a�ected by the changes in the aggregate

distribution tomorrow. Using (24) we can write it explicitly as

X̄ ′Θ = D−1

∫
E(b)ω(b)b̄Θ(b)db. (32)

Now equation (30) de�nes a linear relationship between policy functions x̄Θ(b) and aggregate vari-

ables
[
X̄Θ X̄ ′Θ

]
which is independent of any other x̄Θ(b̂). Thus, we can write (30) for each b

as

M(b)x̄Θ(b) = N(b) ·
[
X̄Θ X̄ ′Θ

]T
, (33)

where M(b) is a 3× 3 matrix, and all coe�cients of M(b) and N(b) are known from the zeroth order

expansion. Thus we can solve for each x̄Θ(b) as a function of aggregate variables independently for

each b, which is a system of 3× 3 equations that can be solved independently for each of K levels

of debt.

Now we can substitute the obtained expressions for x̄Θ(·) into equations (31) and (32) to solve
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for X̄Θ, X̄
′
Θ. This is an 6× 6 system of equations of the form

O ·
[
X̄Θ X̄ ′Θ

]T
= P (34)

that can be easily handled numerically.

This completes the solution for the �rst order responses to the aggregate shock Θ. It is insightful

to review the economics behind these equations. We know from Theorem 1 that any changes in the

individual variables are proportional to changes in aggregate variables with loading given by matrix

C(b). Thus, instead of searching for how the aggregate distribution changes tomorrow, it is su�cient

to search for how how aggregate variables change tomorrow, X̄ ′Θ. For each level b, that implies that

we can �nd a linear mapping from
[
X̄Θ X̄ ′Θ

]
into b̄Θ (b), which can be solved independently for

each b by inverting a 3×3 matrix.
[
X̄Θ X̄ ′Θ

]
themselves must satisfy resource constraints which

constitute an 6× 6 matrix.

3.1.3 Second and higher order terms

Our approach extends easily to higher-order approximations. The key insight is that factorization

property shown in Theorem 1 for the �rst order expansions preserves for higher order expansions

as well. In the appendix we prove the second order corollary of Theorem 1 and equation (24) and

provide their explicit coe�cients.

Corollary 1. The second order Frechet derivative ∂2x̄(b) is a linear map of ∂2X̄ and ∂X̄ with all

coe�cients of that map known from the lower-order expansions. For any ∆1,∆2 ∈ W, the second

order Frechet derivative ∂2X̄ · (∆1,∆2) is a bilinear map of ∆1,∆2 with all coe�cients known from

the lower-order expansions.

The second order expansion of policy functions have additional terms x̄ςς(b), x̄ςσ(b), x̄ΘΘ(b), x̄Θσ(b),

x̄σσ(b), X̄ΘΘ, X̄Θσ, X̄σσ. Calculations of x̄ςς ,x̄ΘΘ,X̄ΘΘ then proceeds analogously to their �rst order

counterparts, while the cross-partials x̄ςσ, x̄Θσ, X̄Θσ are all zeros. Unlike the �rst order expansion,

the intercept terms x̄σσ, X̄σσ are no longer zero. They depend on var(ς), var(Θ) and capture such

e�ects as precautionary savings. Solution for x̄σσ(b), X̄σσ involves steps similar to those used to

solve for x̄Θ(b), X̄Θ in the previous section. We provide those details in the appendix.

3.1.4 A remark on the choice of the state space

Before concluding this section, we want to add a remark about the choice of the states pace.

There exist many equivalent state space representations that allow one recursively to construct a

competitive equilibrium. The state space representation that works best for our approach is the one

that satis�es some version of the stationarity condition (19). The distribution of debts Ω that we

used in our example as a state space sometimes is not ideal. Although the law of motion Ω̃ satis�ed
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the stationarity condition in our example, in other applications it often won't, for example if the

σ = 0 economy has a deterministic dynamics. A more universal choice of the state space would be

the distribution of ratios of agents' marginal utilities or stochastic Pareto-Nigishi weights, de�ned

as mi,t ∝ uc,i,t,
∫
mi,tdi = 1. In many economies a distribution of such weights M would satisfy

property (19) even if the distribution of debts Ω does not.

3.1.5 Numerical approximation

To implement our algorithm numerically, we approximate Ω with discrete distributions with K

points {bk}k with masses {ωk}k. All the integrals in our expressions collapse then to sums. For

example, our expression (32) for X ′Θ becomes

X̄ ′Θ = D−1
∑
k

E(bk)ωk b̄Θ(bk).

All intermediate terms, such as E(bk), can be computed independently for each k, making the

algorithm highly parallelizable. Once we compute approximations of the policy functions in the

current period, we use Monte-Carlo methods to obtain the next period distribution of assets Ω̃, for

which we repeat this procedure.

We now discuss the numerical accuracy of our approximations. To compare our approximated

policy rules with those solved via global methods we shut down the aggregate shocks and compute

the steady state distribution of assets the model presented in 3.1. Optimal policies of each agent

are computed using the endogenous grid method of Carol (2005). The steady-state distribution is

approximated using a histogram and computed using the transition matrix constructed from the

policy rules following Young (2010). We then compare the approximated policy rules using our

method, around the same stationary distribution, to those of the global solution. As noted in

section 3.1.2, even in absence of aggregate shocks our techniques are still necessary, for a second

order expansion, to determine the e�ect of the presence idiosyncratic risk on policies through x̄σσ

and X̄σσ.

We calibrate the 6 parameters of this model, ν,γ,β, α, ε and σς , as follows. We set ν = 1 and

γ = 2 to match of calibration in Section 4. β is set to target an interest rate of 2%. ε = 6 targets

a markup of 20% and the decreasing returns to scale parameter, α, is chosen to target a labor

share of 0.66. The standard deviation σς is set at .25 to match our calibration in section 4. We

choose very loose ad-hoc borrowing constraints, b = −100 to approximate a natural debt limit. To

ensure an accurate approximation to the global policy rules, we approximated the consumption and

labor policy rules using cubic splines with 200 grid points and the steady-state distribution with a

histogram with 1000 bins.

The policies of the agents and aggregate variables are then approximated using a second order

approximation around the stationary distribution Ω̄ with the expressions derived in 3.1.1-3.1.3. The
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Figure I: Percentage error of consumption policy functions relative to global solution in top panel.
Bottom panel plots average (with respect to the stationary distribution) absolute consumption error
relative to global solution as σς varies.

equilibrium policy rules and aggregates, around this distribution of 1000 points, can be approximated

using single processor in 0.8 seconds. The equilibrium interest rate found by perturbation code was

2.0013%. The percent error in the aggregate labor supply was 0.036%. Finally, we can evaluate

the policy errors for the individual agents. In the �rst panel of Figure I we plot the percentage

errors for consumption relative to the global solution for a median shock to ς along with a ±2.5

standard deviation shock. For almost all of the agents, the perturbation methods perform well

with errors less that 0.1% which would correspond making an error in consumption of less than

a dollar on every $1000 dollars spent. As is expected, since the approximation in Section 3.1

assumes natural borrowing limits, the accuracy deteriorates near the borrowing limit assumed by

the global solution. The range plotted in Figure I contains 99.2% of the agents in the stationary

distribution. As a robustness check we also observe how accuracy behaves as we change σς . For

values of σς ∈ [0.1, 0.5], we compute the average absolute percentage error as∫ ∫ ∣∣cglobal(σςς, b;σς)− cpertub(σςς, b;σς)∣∣
cglobal(σςς, b;σς)

dPr(ς)dΩ

and plot it in the bottom panel of Figure I. We see that the average error remains very low around

the level of our calibration and increases moderately for higher σς .
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3.2 Ramsey problems

We now extend our approach to Ramsey problems. The problem of �nding the optimal monetary-

�scal policy consists of �nding
{
{ci,t, ni,t, bi,t}i , Bt,Wt, Pt, Qt, πt, τt

}
t
that maximize welfare (11)

subject to (4), (7) - (10) and (12) - (13). The optimal monetary problem imposes, in addition, a

constraint τt = τ̄ for all t. In either case, this problem can be written recursively (see Appendix).

Relative to competitive equilibrium problem, Ramsey problems add additional state variables. Using

our remark in Section 3.1.4, we show in the appendix that a convenient choice of state variables

will be the joint distribution, Z, of agents' marginal utilities in the previous period, the Lagrange

multipliers on the implementability constraints (4) and the persistent component of productivity,

ei,t,
7 as well as the last period realization of the aggregate shock Θ and the Lagrange multiplier on

the Phillips curve equation (13), Λ.8 Similarly to Section 3.1, we use x̃ (σς, σΘ,Λ, z, Z;σ) to denote

the vector of idiosyncratic variables and X̃ (σΘ, Z,Λ;σ) to denote the aggregate variables. In the

Ramsey problem x̃ consists of z̃, c̃, ñ, b̃ as well as the Lagrangians on the individual optimality

conditions, and X̃ consists of Q̃, (1− τ̃)W̃ , T̃ + D̃, π̃, Ñ , Λ̃. We expand with respect to σ around

any given aggregate state (Z,Λ) with all policy functions around σ = 0 denoted by x̄ (z) , X̄.

The following Lemma shows that our algorithm from Section 3.1 applies essentially as is to the

much more complicated Ramsey problem. The two key results that achieve that is the stationary

in the appropriately de�ned state variables and factorization of individual policy functions into

aggregate response and individual loadings, which are the analogues of equation (19), Theorem 1

and its corollary.

Lemma 1. In the Ramsey problem z̄ (z) = z for all Z,Λ. The �rst and second order derivatives

∂x̄ (z) , ∂2x̄ (z) , ∂X̄, ∂2X̄ satisfy Theorem 1 and its corollary, with all the matrices are known from

the lower-order expansions. x̄ς (z) ,x̄Θ (z) ,x̄σ (z) , X̄Θ,X̄σ and their second order analogues satisfy

equivalent equations from Section 3.1.

The key take away of this lemma is that the mathematical structure of the Ramsey problem

remains essentially the same for our problem as that of Section 3.1. The analytical expressions

used for matrices are more cumbersome but their computations as well as the computations of the

expansion of policy functions with respect to the aggregate and idiosyncratic shocks continue to be

as straightforward as they were in Section 3.1.

3.3 Comparison to Other Methods

Our method is related to perturbation techniques of Judd and Guu (1993, 1997) and Judd (1996,

1998) that were subsequently extended to heterogeneous agent economies by Campbell (1998),

7For our approximations we assume that ρe → 1 as σ → 0.
8There also time-invariant parts of the state space si, ēi but since they are constants and we omit them from

discussion for simplicity.

20



Reiter (2009), Mertens and Judd (2013), Ahn et al. (2017), Winberry (2016), and Legrand and

Ragot (2017).

Those approaches approximate responses to aggregate shocks by using �rst-order expansions of

policy rules around a steady state ZSS obtained by shutting down aggregate shocks. Ahn et al.

(2017), which represents the current frontier,9 extends Reiter (2009) into continuous time and

performs a sophisticated form of model reduction by projecting a distribution of individual states

onto a lower-dimensional subspace that is designed to do a good job of approximating impulse

response functions of key variables like prices. In doing so, they can incorporate a larger number

of individual state variables than was previously possible. Lastly, except for Legrand and Ragot

(2017), the studies cited earlier in this paragraph focus on competitive equilibria under �xed policies,

rather than �nding optimal policies.

We di�er from these contributions in two ways. First, our points of approximation, Zt−1, are

dynamic and history dependent. By building on Fleming (1971), Fleming and Souganidis (1986),

and Anderson et al. (2012), we take Taylor expansions with respect to uncertainty at each date as

aggregate shocks push the economy through time.

There are several reasons that approximating around ZSS is not a good way to approximate

economies like ours. First, computing ZSS in a Ramsey setting is di�cult. ZSS is an endogenous

object that depends on a key object to be computed, an optimal policy. That requires jointly solving

for agents' optimal behaviors, which depend on the government's policies, and optimal optimal

policies. Even for a deterministic setting, that would require using computationally challenging

non-linear solution methods. We are not aware of methods to do that quickly. But even if ZSS could

be found, it would be unlikely to be a good point of expansion. That is because in Ramsey settings

with incomplete markets, speeds of mean-reversion to ZSS are typically extremely slow because

state variables are driven by martingale-like dynamics that drift slowly.10 From a computational

point of view, using perturbation around the �xed point provides a poor approximation for the

optimal policy in many states that are away from ZSS .

Secondly, paralleling Evans (2015), in Theorem 1 and Corollary 1 we are able to characterize

the derivatives used in a small noise expansion in terms of matrices of small (typically Nx × Nx)

dimension. This allows us to perform not only �rst-order but also higher-order expansions quickly.

As mentioned earlier, higher order terms are required to compute transition paths and accurate

responses of aggregate variables to shocks because agents' responses to the idiosyncratic risks that

9Mertens and Judd (2013) approximate around a point of no heterogeneity. Winberry (2016) uses a variant in
which parametric forms capture the steady state distributions rather than the histograms used by Reiter (2009).
Legrand and Ragot (2017) study an optimal �scal policy problem with idiosyncratic risk and aggregate shocks after
truncating individual histories, which limits the amount of heterogeneity that they can consider.

10To give an extreme example, debt follows a random walk in a canonical incomplete market model of Barro (1979),
so that the speed of the mean reversion is 0. Aiyagari et al. (2002) showed that a slow martingale-like component is
generally typically present in a Ramsey plan in an incomplete market economy. In Bhandari et al. (2017) we compute
analytically the speed of mean reversion for several incomplete markets economies.
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they face puts slow drifts into equilibrium distributions of their state variables.

Alternatives to perturbation methods the literature have also used projection methods like Krusell

and Smith (1998), Den Haan (1997), Algan et al. (2010). Projection methods summarize the in�nite

dimensional state variable using a subset of moments and approximate value functions and policy

functions by using functional approximations and simulations for aggregate laws of motion that

describe the ergodic behavior of moments.

Like the perturbation methods cited above, projection methods that approximate around the

long run ergodic distribution ZSS are problematic in Ramsey settings. Projections methods work

well only when an economy exhibits what Krusell and Smith termed an �approximate aggregation�

property in which a function of the �rst moment of Z predicts next period's prices accurately. In

our setting, Z is distributed over R3, which makes it much more di�cult to summarize in terms of

one or two dimensional statistics. Moreover, there is little reason to believe that our economy with

heterogeneous loading on aggregate shocks (and, in later extensions, heterogeneous participation in

asset markets) exhibits approximation aggregation.

4 Quantitative Application

We apply our equilibrium approximation algorithm to an economy whose initial conditions are

calibrated to recent U.S. data, assess quantitatively the properties of Ramsey policies, and contrast

them with those of benchmark representative agent settings, and in particular, how interest rates

and tax rates respond to aggregate �uctuations in productivity and markups.

4.1 Calibration

We set ρΘ = 1, implying that the aggregate productivity follows an i.i.d growth process.11 The mean

and standard deviation of the growth rate in productivity Θt are set at 2% and 3%, respectively, to

match the mean and standard deviation of growth rate in output per hour in the U.S. We set ν = 1

so that the preferences are consistent with balanced growth and γ = 2 to attain an Frisch elasticity

of labor supply equal to 0.5.

In addition to productivity shocks, here we also introduce �uctuations in desired aggregate

markups. As in Galí (2015), time varying desired markups are implemented by replacing the

11An i.i.d growth rate process approximates output per worker well for the US and has several convenient properties.
As we explain later the �rst best allocation has constant real rates and in absence of markup shocks and heterogeneity
can be implemented using standard Taylor rules. Since the economy is growing, we scale menu costs and exogenous
government spending by Θt.
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constant elasticity of substitution ε with a stochastic process12

ln(εt) = (1− ρε) ln(ε̄) + ρε ln(εt−1) + Eε,t.

We set the steady state elasticity of substitution at ε̄ = 6 to target a value-added markup of

20%, normalize Eε so that one standard deviation innovation to ln (ε) changes markups by 1% and

following Smets and Wouters (2007) set the persistence of ln(εt) to be 0.65.

Remaining parameters are calibrated by insisting that competitive equilibrium outcomes given

policies {ιt, τt}t match stylized facts about U.S. policies. In particular, we set

τt = τ̄ (35)

with τ̄ = 24% to match the federal average marginal income tax estimated by Barro and Redlick

(2011). We set ιt to follow a Taylor rule

ιt =

(
1

βEexp
{
−Θ̄
} − 1

)
+ 1.5πt (36)

Our choice of constant tax rates and Taylor rule that responds more than one to one to in�ation and

has a constant intercept features a desirable property that it can implement the optimal allocation

in the absence of heterogeneity and markup shocks.13 Our baseline calibration is not sensitive to

alternative speci�cations for �scal and monetary policy that allow the nominal interest rate and tax

rate to feedback on output or the output gap.14 We set the discount factor β to match an interest

rate of 4% per year. Following Schmitt-Grohé and Uribe (2004), we use estimates of Sbordone

(2002) to calibrate the menu cost ψΘt.
15 We set α = 1 to model �rms as having constant returns

to scale production. The mean of government expenditures divided by labor productivity Ḡ is

12The New Keynesian literature has emphasized cost-push shocks in accounting for business cycle �uctuations (see,
e.g., Smets and Wouters (2007)) and studied their implications for optimal monetary policy in a representative agent
framework (see, e.g., Clarida et al. (2001), Galí (2015), Woodford (2003)). As in Galí (2015) we interpret cost-push
shocks as changes in desired markups arising from �uctuations in the elasticity of substitution parameter ε and use
the phrase �markup-shock� and �cost-push shock� interchangeably. Other alternatives such as �uctuations in wage
markups are left for future work.

13The reason is that the real interest rate is constant in a �exible price version of such an economy given our
choice of preferences and the lack of predictability in aggregate productivity growth. See also related discussion of
the �divine coincidence� property in these class of models as in Blanchard and Gali (2007).

14An empirical literature about Taylor rules typically estimates loading on output that are small and statistically
close to zero. See for example Bhandari et al. (2017) for a discussion of �scal policy rules and Clarida et al. (2000)
for a discussion of monetary policy rules.

15Using quarterly data in�ation and measures for marginal cost mct, Sbordone estimates a relationship πt =
α1Etπt+1 +α0mct with α1 ≈ 1 and α−1

0 in the range of 10 - 20 depending on particular measure of marginal cost. In
a linearized version of Phillps curve equation (13) and converting to annual calibration, 1

4
α0 = ψ

ε−1
. Using ε = 6 and

α−1
0 = 15 implies ψ = 18.75. As explained in Sbordone (2002), in a Calvo type price setting friction, this estimate

corresponds to �rms changing prices every 9 months. In appendix D we show how our results change when we vary
ψ.
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calibrated to match the average government current expenditures net of transfer payments (federal)

to annual GDP.16

The stochastic process for idiosyncratic shocks and their loading on aggregate shocks are chosen

to match several stylized facts about labor earnings. We set auto correlation and standard deviation

of of eit and standard deviation of ςi,t to match the authorization of earnings, standard deviation

of one year change in one year log earnings along with the standard deviation of 5 year change

in log earnings. As in Storesletten et al. (2004) and Low et al. (2010) we �nd a fairly persistent

skill process with the ρe = 0.99 and the standard deviations of the persistent components and

transitory component to be 12% and 24%. The loading function f(e) is constructed to match the

evidence in Guvenen et al. (2014) on how recessions a�ects households in di�erent parts of labor

earning distribution. Following the empirical procedure in Guvenen et al. (2014), we rank workers

by their average log labor earnings 5 years prior to simulating a 3% fall in aggregate output. We

then compute the percent income loss for each worker following the recession and calibrate the

parameters of a quadratic function for f(e) = f0 + f1e + f2e
2 to match income losses of the 5th,

50th and 95th percentiles. The right panel of Figure II compares earnings loss patterns simulated

from our model with corresponding data summarized by moments in Guvenen et al. (2014).All the

parameters of our baseline speci�cation are summarized in Table I.

For reporting the optimal policies we calibrate the initial distribution of debt, stock holdings

and the persistent component of productivities using on wages, debt and stock holdings from Survey

of Consumer Finances 2007 (SCF). The SCF measures wage income, hours worked, debt and stock

holdings.17 We restrict sample to married households who report at least 100 hours for the year. We

draw ei,−1 from the ergodic distribution implied by our calibrated process (3) which also produces

initial wages that are similar to those in our SCF sample. We next use the observed distribution

of stock holdings in the SCF to draw si,−1 and for initial debt bi,−1 we use a �tted values from the

regression

debt = a0 + aw × wages+ as × share of stocks

Parameters a0, aw, as are estimated using debt, wages, and stock holdings from the SCF. We �nd

that 30% fraction our sample holds zero stocks and remaining distribution of stock holdings are right

skewed with the top 10% households holding about 60% of the total stocks. The point estimates

of aw and as (standard errors in the parenthesis) are 0.82(0.03) and 1.01(0.01) indicating a positive

relationship between debt holdings, wages, and stock holdings.

16The data is obtained from NIPA and averaged for the period 1960-2016.
17We sum direct holdings plus indirect holdings through liquid assets (net of unsecured credit), government bond

mutual funds (taxable and nontaxable), saving bonds, money market accounts, and components of retirement accounts
that are invested in government bonds. We add liquid assets to debt holdings because b in our model also includes
private IOUs. It also makes sense when we calibrate the hand to mouth types where we setbi,g,−1 = 0. We interpret
stock holdings to be the sum of direct stock and mutual funds and indirect holdings in the through retirement
accounts.
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Parameters Values Targeted moment Values

Preferences, technology
ν−1 1 inter temporal elasticity 1
γ−1 2 Frisch elasticity 2
β .98 risk free rate 4%
ε 6 average markups 20%
ψ 18.75 estimates from Sbordone (2002) see footnote 15

Aggregate shocks
Θ̄ 2% mean labor productivity growth 2%
Ḡ 7% mean govt. expenditure to labor productivity 7%
ε̄ 6 mean markup 20%
s.d of EΘ 3% s.d of log change in labor productivity 3%
s.d of Eε,ρε 4%,0.65 normalize to target the size and persistence

of changes in markups, estimates from Smets
and Wouters (2007)

1%,0.65

Idiosyncratic shocks
s.d of ς 0.24

s.d. of one year and 5 year log earnings
change, autocorr. of annual earnings

0.55, 0.72,0.99s.d. of η 0.12
ρe 0.99
f2, f1, f0 0.28,−0.52,0.00 earnings losses 5th, 50th & 95th percentiles

Table I: Baseline calibration
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Figure II: Annual earnings losses using simulated earnings from the model and data in Guvenen
et al. (2014).

5 Results

We focus on the optimal responses to productivity and desired markup shocks. When we consider

purely a monetary policy response, we �x the tax rate at τt = τ∗, where τ∗ is the optimal tax rate in

the non-stochastic environment. Since Ramsey policies at time 0 typically di�er from continuation

Ramsey policies at t ≥ 1, we report impulse responses for a shock that occurs at a later, t = 5.18 We

begin with the optimal response to a one standard deviation negative labor productivity shock.19

18The e�ects of t = 0 policies lasts longer than one period in our economy is shared with several Ramsey models
- in real models like Lucas and Stokey (1983), Aiyagari et al. (2002) it shows up in the dynamics of the Lagrange
multiplier on government's present value budget constraint and in monetary models such as Schmitt-Grohé and Uribe
(2004) additionally as in the dynamics of the Lagrange multipliers on the Phillips curve. Our choice of t = 5 ensures
that the results are not driven by these time 0 considerations. Other choices with the shock occurring at t = 10 and
t = 15 give similar results and we report then in the online Appendix to keep the main text short.

19To compute the impulse responses we draw a path of length 25 for {EΘ,t} simulate the economy twice changing
only the shock at period 10: for the �rst path EΘ,10 = −0.03 and for the second EΘ,10 = 0. The impulse response is
the di�erence in the path of the endogenous variables. To account for non-linearity in the decisions rules we repeat
this exercise 20 times with di�erent draws of {EΘ,t} and report the mean path. The distribution of the IRF is quite
tight for our case and so we do not report the standard error bands around the mean path. All variables show
deviations in percentage points.

26



5.1 Optimal Response to Productivity Shock

We �rst consider an optimal monetary policy. Figure IV depicts responses to a one-time, one

standard deviation negative impulse to aggregate productivity EΘ occurring at t = 10. On impact,

this shock induces a drop in growth rate of output of about 3 percentage points. The solid lines

represent responses in our calibrated heterogeneous agent New Keynesian (HANK) economy, the

dashed line show responses in its representative agent counterpart (RANK). Here we have set

b1,−1 = B−1, θi,t = Θt for all i and f = 0.

In the representative agent version, the economy's response to a productivity shock is e�cient

without policy adjustments. As a result, the Ramsey planner keeps nominal interest rates unchanged

to keep in�ation stable. Tax rates, which are unchanged by assumption. Such a hands-o� monetary

policy is not optimal when agents are heterogeneous. A productivity shock a�ects di�erent agents

di�erently and because markets are incomplete, agents cannot insure those risks. A monetary policy

response provides missing insurance, partly compensating for market incompleteness.

Productivity shocks di�erentially a�ect agents for two reasons. One arises from wealth hetero-

geneity. Because an adverse productivity shock permanently lowers all wages, the consumption of

agents having few �nancial assets falls by more than consumption of agents with more �nancial

assets. To provide insurance against that adverse aggregate shock, the planner desires to lower

returns on assets. She can achieve this in two ways. First, the planner can reduce the ex post

realized real return on debt by engineering a surprise in�ation at the time of the shock. Second, the

planner can tilt the path of future nominal interest rates to reduce ex ante returns on savings going

forward. Both of these e�ects appear in Figure IV. The planner cuts interests rates on impact of

the shock, thereby generating a spike in in�ation and a drop in ex post real asset returns, and then

promises higher nominal interest rates that lowers aggregate demand and consumption in the future

and lower equilibrium real rates in the current period.

The second motive for government intervention comes from productivity shocks having di�erent

e�ects on high-wage and low-wage agents. As we saw in panel B of Figure II, low-wage agents

are more strongly a�ected by an adverse productivity shock. To provide insurance, the government

would like to design a policy that redistributes resources from high-wage earners to low-wage earners.

Monetary policy can redistribute by a�ecting returns on �nancial assets. Recall from Section 4.1

that wages and asset holdings are positively correlated, both in the data and in our model. Thus,

a policy that reduces asset returns e�ectively redistributes resources from high-wage to low-wage

individuals. A desire to use this channel reinforces the direction of the optimal response that

discussed above.

When a government also has access to �scal policy, increasing progressiveness of the labor taxes

also induces redistributions by o�setting di�erential a�ects of an adverse productivity shock on

the distribution of wages. Figure IV shows the optimal response of monetary-�scal policy to one

standard deviation negative aggregate labor productivity shock. Because an adverse TFP shock
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Figure III: Optimal monetary response to a productivity shock

is associated with an persistent increase in the dispersion of log wages, a government optimally

responds by permanently increasing tax rates one period after the shock. The delayed increased

in tax rates helps to lower real rate at the time of the shock (for the same reason tax rates are

temporarily decreased on the impact of the shock). As the result, the path of nominal rates and

in�ation is smoother when �scal policy is active, which helps the planner to reduce to costs of price

adjustments.

5.2 Optimal Responses to Markup Shocks

Now we turn to the optimal response to an increase in desired markups. Experiments were con-

structed in similar ways to those conducted in Section 5. We start with di�erences in monetary

policy when labor taxes are �xed at τ∗ and then study the case with optimal monetary and �scal

policy. A key �nding is that the trade-o�s faced by the policy maker in a heterogeneous agents

setting di�er substantially from those in a representative agent economy, leading to policy prescrip-

tions that an order of magnitude larger in the HANK economy and can also have opposite signs

from those in the RANK economy.

Optimal monetary responses to a one standard deviation positive shock to Eε are shown in Figure
V. Although the representative agent model calls for a moderate tightening of monetary policy

following a cost-push shock, the heterogeneous agents economy requires a substantial decrease in

nominal interest rates and a positive spike in in�ation.

To understand this result, it is useful �rst to analyze the optimal response in the RANK model.
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Figure IV: Optimal monetary-�scal response to a productivity shock
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Figure V: Optimal monetary response to a markup shock
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A positive cost-push shock increases �rms' desired mark ups over marginal costs. Since price changes

are costly in New Keynesian models, the planner o�sets this e�ect by lowering marginal costs and

thereby pushes output below its natural level.20 Galí (2015) dubs this policy �leaning against the

wind�. The reduction in output is achieved by committing to a tight monetary policy in the future

that lowers aggregate demand.

However positive mark-up shocks not only induce in�ationary pressure, they also decrease labor's

share and increase pro�t's share (see the last row in Figure V). In the representative agent economy,

these e�ects on factor shares are of second-order since workers and �rm owners are the same person.

In the HANK economy stock ownership is heterogeneous and, thus, a mark-up shock naturally

redistributes resources from agents with low stock ownership to agents with high stock ownership.

Since stock ownership and labor earnings are correlated, this e�ectively redistributes resources from

low wage workers to high wage workers. Leaning against the wind policies exacerbate this e�ect.

When markets are incomplete, agents cannot insure against the cost push shock and the Ramsey

planner sets policies indirectly to provide insurance by o�setting the distributional e�ects of a cost-

push shock. Quantitatively, this consideration dominates the planner's desire to reduce costs of

price changes. The planner induces a desired redistribution by signi�cantly lowering interest rates

immediately and committing to low interest rates in the future. That boosts aggregate demand

and thereby raises wages and lowers dividends. A notable feature of the optimal policy is the

increases in wages that occur in the period that the shock hits. Postponing wage increases would

be detrimental because �rms would respond to anticipated wage increases by raising current prices

thereby generating extra in�ation, which is costly, while not generating welfare gains.

With �xed tax rates, a cost-push shock sets up a tension between movements in the labor wedge,

i.e., deviations in (1 − τ)W from one, and costs of in�ation. In a representative agent economy,

when the planner has access to �scal policy, a �rst-best allocation characterized by πt = 0 and

(1 − τ)W = 1 is feasible and can be implemented using a labor tax subsidy that o�sets the time

varying markup and nominal rates that do not respond to to the cost-push shock. This summarizes

the dashed lines in Figure VI.

Optimal �scal policy in a HANK economy also stands starkly in contrast to what it is in a

RANK economy. In the HANK economy, the planner raises taxes in response to an adverse cost-

push shock. The aim of planner is still to transfer resources from high-wage owners of the �rms to

lower-wage agents but, with labor taxes available, the planner has a more direct way of in�uencing

wages and �rm pro�ts. Higher tax rates contracts labor supply, raise wages, and lowers dividends.

That arrests some of the adverse distributional e�ects of markup shocks. As before, tax changes are

concentrated on impact of the shock in order to make the wage increase and the resulting in�ation

both be unanticipated. Following the shock, the planner implements a tax subsidy like the one used

20It is feasible to implement an allocation that sets πt = 0 but that requires that wages adjust to o�set markups
and associated deviations of (1− τ)W from one, which is costly. We return to this consideration when we discuss an
optimal monetary-�scal response to cost-push shocks.
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Figure VI: Optimal �scal monetary response to a markup shock

in the representative agent economy. The nominal rate closely tracks the real rate, which is also

low on impact. These responses are summarized in the solid lines of Figure VI.

A novel aspect of the optimal plan that is captured by our solution method is visible in dynamics

of tax rates and output which have a almost a permanent change that lasts after the transitory shock

wears o�. This occurs because the shock shifts the distributional state variable which has almost

martingale like dynamics. The new level of tax rates and consequently output re�ect this permanent

shift in planners' state variables. Although this e�ect is theoretically present in all our exercises,

its quantitatively largest for markup shocks with �scal and monetary policy.

5.3 Taylor Rules

In this section we study how well standard Taylor rules approximate the optimal policy in hetero-

geneous agents settings. We impose a Taylor rule of the form (36) and compare responses to TFP

shocks and cost-push shocks with responses under an optimal policy.21

We begin with the RANK economy. As explained before, the Taylor rule economy implements an

optimal allocation in an economy with only productivity shocks. It also leads to outcomes similar to

those for an optimal policy in response to a cost-push shock. A key feature of the optimal response

is low and stable prices that can be implemented by a Taylor rule that features a su�ciently large

response of nominal rates to in�ation. These �ndings con�rm conclusions of Woodford (2003) and

21As in sections 5.1 and 5.2, we we keep tax rates constant at optimal τ∗ value and focus on monetary responses
for all the experiments.
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Figure VII: Comparing optimal monetary responses to Taylor rule in HANK model. The solid
line is the optimal response and the dashed line is the response in a competitive equilibrium with
it = ī+ 1.5πt.

Galí (2015) who also �nd that Taylor rules are to being optimal rules.

Things di�er in the HANK model. In response to both types of adverse shocks � a negative

aggregate productivity shock or a positive cost-push shock that raises markups � the optimal plan

seeks to transfer resources from high wage earners who receive asset income to low wage earners who

rely primarily on wage income. Transfers are implemented by lowering nominal rates, thereby raising

aggregate demand, wages, and the price level. Under the Taylor rule, the responses of aggregates

in the HANK economy are very close to those of RANK economy. The Taylor rule continues to

recommend no response to productivity shocks, and contrary to an optimal response, an increase in

interest rates after a cost-push shock. Thus, Taylor rules do a poor job of approximating an optimal

policy. Figure VII summarizes these �ndings.

5.4 Robustness

We now discuss the robustness of our baseline �ndings and the roles of several assumptions. We

begin with our assumption about borrowing limits. In the baseline we imposed natural borrowing

limits which meant that the agents consumption behavior is well approximated by permanent income

hypothesis and they feature a fairly a uniform distribution of the marginal propensity to consume of

out transitory or persistent income shocks. As pointed out by Auclert (2017), Kaplan et al. (2016),
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matching the distribution of marginal propensities to consume is important to study the e�ects of

monetary shocks. We relax the natural debt limit assumption and follow Campbell and Mankiw

(1989), Jappelli and Pistaferri (2014) to add credit frictions in the form of segmented markets. In

particular, we introduce agents who are �hand-to-mouth� types - they have zero initial debt holding

and for all periods thereafter consume their after-tax wage income plus dividends from the �rm.

We use then use evidence from Jappelli and Pistaferri (2014) to calibrate the distribution of these

agents. Using the 2010 Survey of Household Income and Wealth, Jappelli and Pistaferri �nd that

marginal propensity to consume out of transitory income are higher (lower) for agents with small

(large) cash on hand22and a parsimonious description of their data in �gure 4 is a relationship

mpci = 0.6− 0.4p(i) (37)

where p(i) is percentile of cash on hand to which agent i belongs. We populate our economy with

hand-to-mouth types targeting the slope and the intercept of the relationship (37) in our competitive

equilibrium at t = 0. The optimal monetary responses with hand-to-mouth agents are then reported

in Figure VIII.

In comparison to the baseline without hand-to-mouth types, we �nd that the optimal interest

rate response is lower for markup shocks but about the same for productivity shocks. A key

di�erence is the path of transfers which is no longer indeterminate and is chosen optimally in

conjugation with the path for the nominal rates. Timing of transfers in our setting with borrowing

constrained agents can be used for two objectives - to in�uence the path of aggregate demand and

to smooth consumption of constrained agents over time. Which of these two objectives is salient

depends on the type of shocks.

. As emphasized before, with cost push shocks and higher desired markups, the planner aims

to increase wages and lower dividends. In the baseline this was achieved by exclusively lowering

interest rates but with with hand-to-mouth agents, the planner uses lower nominal rates and higher

transfers to achieve this goal. Lower nominal rate increases desired consumption for agents who

are on their Euler equations and higher transfers increases the consumption for constrained agents

who have a higher marginal propensity to consume. We see in bottom panel of Figure VIII that

the drop in nominal rates is much lower than the baseline but the resulting in�ation similar to the

benchmark without constrained agents.

With lower aggregate productivity that disproportionately a�ects low skill workers, the planner

provides insurance against that shock by lowering asset returns and transferring resources from

savers to borrowers. However when a su�ciently large fraction of the economy is constrained, they

do not directly bene�t from lower returns on debt and this reduces the incentive to lower interest

rates. At the same time, a smaller fraction agents who participate in the asset markets implies

22They de�ne cash on hand as as the sum of household disposable income and �nancial wealth, net of consumer
debt.
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Figure VIII: Optimal responses with hand to mouth agents.

that nominal interest rates are less potent to a�ect aggregate demand and in�ation. Together these

forces approximately net out and the planner keeps maintains the same contractionary path for

nominal rates as in the baseline. Now given taxes are �xed, the present value of transfers needs

to adjust to satisfy the budget constraint and in the optimal allocation. In the optimal allocation,

the planner lowers transfers more on impact and less in future to smooth the transitory increase in

wages that accompanies the contractionary monetary policy.

Other robustness exercises include alternative Pareto weights, isolating the role of inequality

shocks, lowering menu costs. Since agents are heterogeneous, a Ramsey planner wants to redistribute

resources; how and how much depends on the Pareto weights. However, Pareto weights a�ect the

average levels of the interest rate, tax rate, and transfers and policy responses to shocks are mainly

driven by the planner's desire to provide insurance which are distinct from its desire to redistribute.

As a result, policy responses to aggregate shocks remain quite similar when we assign Pareto weights

other than those assigned by the utilitarian in government objective function (11), or if we were to

have made alternative assumptions about τ̄ in our analysis of the optimal monetary policy.

The planner's preference for supplying insurance is driven by the assumption that aggregate

shocks a�ect marginal utilities of consumption of agents di�erentially. This arises from two features

of our baseline calibration: agents di�er in their holdings of the nominal bonds as well as in their

exposures to the aggregate shocks through the loading function that we have f calibrated to match

the evidence in Guvenen et al. (2014). In Figure IX of Appendix D, we indicate optimal responses

in a economy in which f = 0 and �nd that asset heterogeneity alone contributes to 50% of the
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policy responses.

We calibrated menu costs to match the the slope of the Phillips curve. Lower costs of changing

prices imply that lowering ex-post returns through in�ation is a cheaper tool for the planner to

insure agents. We use Figure X of Appendix D to study the role of price stickiness by computing

the optimal monetary-�scal policy when menu cost parameter ψ = 0. We �nd that an in�ation

response of about 5 percentage points, which is about 10 times larger than in the benchmark

economy.

In our experiments the planner chooses transfers Tt at each t. Authors of RANKmodels including

Schmitt-Grohé and Uribe (2004) and Siu (2004) typically restrict Tt = 0 for all t. When we re-

compute optimal policies in the RANK version or our economy with Tt = 0 for all t, we recover

outcomes like those discovered by Schmitt-Grohé and Uribe and Siu, namely, that paths of in�ation

and interest rates in that economy, while not longer constant, are extremely smooth. This rea�rms

those authors' insight that the cost of price changes in calibrated RANK economies is su�ciently

high that a Ramsey planner chooses to abstain from using in�ation �uctuations to smooth distortions

coming from aggregate shocks. The peak change in nominal interest rates and in�ation is 0.05%

and 0.03% in the RANK economy, which is an order of magnitude smaller than our baseline HANK

outcomes.

6 Concluding Remarks

James Tobin described macroeconomics as a �eld that explains aggregate quantities and prices while

ignoring distribution e�ects. Tobin's characterization also describes much work subsequent to his in

the real business cycle, asset pricing, Ramsey tax and debt, and New Keynesian research traditions.

In each of these lines of research, an assumptions of complete markets and/or of a representative

consumer allows the analyst to compute aggregate quantities and prices without also determining

distributions across agents.

This paper departs from Tobin's �aggregative economics� in two ways. First, we assume incom-

plete markets � which means that aggregate quantities, prices, and allocations across agents must

be determined jointly, not recursively as in complete markets models. And second, we specify tech-

nology and relative skills shocks in a way that makes contact with �ndings of Guvenen et al. (2014)

that US cross section distributions of labor earnings have moved systematically over business cycles.

A common shock a�ects both an aggregate technology shock and the cross-section distribution of

skills. Cross-section dispersions in labor earnings and asset holdings shape both aggregate outcomes

and choices confronting a Ramsey planner.

Finally, an incomplete markets model goes a long way toward framing an optimal policy problem

when it sets the menu of assets. By specifying that the only asset traded in our model is a risk-free

nominal bond, we activate a bene�cial role for �scal and monetary policy to make nominal interest
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rates �uctuate in ways that hedge inequality-increasing shocks to distributions of labor earnings.23

23It is fruitful to compare our assumptions with those of Musto and Yilmaz (2003), who focus on how markets that
allow citizens to insure outcomes of voting a�ect the e�cacy of redistribution.
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A System of Equations

The planner's problem is to choose an allocation that maximizes

E0

∞∑
t=0

βt
∫ (

c1−ν
i,t

1− ν
−
n1+γ
i,t

1 + γ

)
di

subject to the necessary conditions for a competitive equilibrium (under constant returns to scale)

Some Simpli�cations and change of variables

Will work with the assumption that agents have equal shares of the �rm so that si = 1. Under this

assumption we can show that the Philips' curve is slack. At the end of the appendix we show how our

method extends to when the Phillip's curve is not slack. De�ne Tt = Dt + Tt and Wt = (1− τt)Wt.

Then the maximization problem can be rewritten as max

E0

∞∑
t=0

βt
∫ (

c1−ν
i,t

1− ν
−
n1+γ
i,t

1 + γ

)
di

subject to the necessary conditions for a competitive equilibrium

ci,t + bi,tQt =Wtθi,tni,t + Tt +
bi,t−1

1 + πt

c−νi,t Wtθi,t = nγi,t

c−νi,t Qt = βEt
[
c−νi,t+1(1 + πt+1)−1

]
∫
ci,tdi = Ct

Ct + Ḡ =

∫
θi,tni,t −

ψ

2
π2
t di.

Finally de�ne ai,t = bi,tQtc
−ν
i,t then the budget constraint can be rewritten as (after substituting for

Qt and Wt)

c1−ν
i,t + ai,t = n1+γ

i,t + c−νi,t Tt +
ai,t−1c

−ν
i,t (1 + πt)

−1

βEt−1

[
c−νi,t (1 + πt)−1

] . (38)

Applying Et−1 to both sides we have

ai,t−1 = βEt−1

[
c1−ν
i,t − c

−ν
i,t Tt − n

1+γ
i,t + ai,t

]
.
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Iterating forward we then have

ai,t = Et

[ ∞∑
s=1

βs
(
c1−ν
i,t+s − c

−ν
i,t+sTt+s − n

1+γ
i,t+s

)]
.

This implies that the incomplete markets restriction can instead be interpreted as a sequence of

measurability constraints on the allocation:

ai,t−1c
−ν
i,t (1 + πt)

−1

βEt−1

[
c−νi,t (1 + πt)−1

] = Et

[ ∞∑
s=0

βs
(
c1−ν
i,t+s − c

−ν
i,t+sTt+s − n

1+γ
i,t+s

)]
.

Finally we de�ne mi,t as the time-t Pareto-Negishi weights such that ci,t = m
1/ν
i,t Ct. De�ning Qt =

C−νt Qt, we have that the Euler equation can be written as

Qt−1 = βmi,t−1Et−1

[
c−νi,t (1 + πt+1)−1

]
.

Note that implicit in this de�nition is the restriction that
∫
m

1/ν
i,t di = 1.

Planner's Problem and Choice of State

The planner's problem is then

sup

{ci,t, ni,t,mi,t, ai,t−1}
{Ct, πtWt, Tt,Qt−1}

E0

∞∑
t=0

βt
∫ (

c1−ν
i,t

1− ν
−
n1+γ
i,t

1 + γ

)
di

subject to

c−νi,0 bi,0 = E0

[ ∞∑
s=0

βs
(
c1−ν
i,s − c

−ν
i,s Ts − n

1+γ
i,s

)]
(39)

c−νi,0W0θi,0 = nγi,0

m
−1/ν
i,0 ci,0 = C0∫
ci,0di = C0

C0 + Ḡ =

∫
θi,0ni,0 −

ψ

2
π2

0di
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and

ai,t−1c
−ν
i,t (1 + πt)

−1

βEt−1

[
c−νi,t (1 + πt)−1

] = Et

[ ∞∑
s=0

βs
(
c1−ν
i,t+s − c

−ν
i,t+sTt+s − n

1+γ
i,t+s

)]
(40)

c−νi,t Wtθi,t = nγi,t

Qt−1 = βmi,t−1Et−1

[
c−νi,t (1 + πt+1)−1

]
m
−1/ν
i,t ci,t = Ct∫
ci,tdi = Ct

Ct + Ḡ =

∫
θi,tni,t −

ψ

2
π2
t di

for t ≥ 1. We proceed by letting νi,0 be the Lagrange multiplier on (39) and βtνi,t be the Lagrange

Multiplier on (40). Adding these to the objective function and de�ning µi,0 = νi,0 and µi,t =

µi,t−1 + νi,t we have

inf
µi,0,{νi,t}

sup

{ci,t, ni,t,mi,t, ai,t−1}
{Ct, πt,Wt, Tt,Qt−1}

∫ (
c1−ν
i,t

1− ν
−
n1+γ
i,t

1 + γ

)
+
(
c1−ν
i,0 − c

−ν
i,0 (T0 + bi,0)− n1+γ

i,0

)
µi,0di

+ E0

∞∑
t=1

βt
∫ (

c1−ν
i,t

1− ν
−
n1+γ
i,t

1 + γ

)
+
(
c1−ν
i,t − c

−ν
i,t (Tt)− n1+γ

i,0

)
µi,t −

ai,t−1c
−ν
i,t (1 + πt)

−1νi,t

βEt−1

[
c−νi,t (1 + πt)−1

]di
subject to

c−νi,0W0θi,0 = nγi,0

m
−1/ν
i,0 ci,0 = C0∫
ci,0di = C0

C0 + Ḡ =

∫
θi,0ni,0 −

ψ

2
π2

0di.
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and

c−νi,t Wtθi,t = nγi,t

Qt−1 = βmi,t−1Et−1

[
c−νi,t (1 + πt+1)−1

]
m
−1/ν
i,t ci,t = Ct∫
ci,tdi = Ct

Ct + Ḡ =

∫
θi,tni,t −

ψ

2
π2
t di

µi,t = µi,t−1 + νi,t

for t ≥ 1. We then split the inf sup into two parts

inf
µi,0

sup

ci,0, ni,0,mi,0

C0, π0,W0, T0

∫ (
c1−ν
i,t

1− ν
−
n1+γ
i,t

1 + γ

)
+
(
c1−ν
i,0 − c

−ν
i,0 (T0 + bi,0)− n1+γ

i,0

)
µi,0di

+ inf
{νi,t}

sup

{ci,t, ni,t,mi,t, ai,t−1}
{Ct, πt,Qt−1,Wt, Tt}

βE0

∞∑
t=1

βt−1

∫ (
c1−ν
i,t

1− ν
−
n1+γ
i,t

1 + γ

)
+
(
c1−ν
i,t − c

−ν
i,t (Tt)− n1+γ

i,0

)
µi,t

−
ai,t−1c

−ν
i,t (1 + πt)

−1νi,t

βEt−1

[
c−νi,t (1 + πt)−1

]di
where the �rst inf sup is subject to

c−νi,0W0θi,0 = nγi,0

m
−1/ν
i,0 ci,0 = C0

C0 =

∫
ci,0di

C0 + Ḡ =

∫
θi,0ni,0 −

ψ

2
π2

0di.
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and the second subject to

c−νi,t Wtθi,t = nγi,t (41)

Qt−1 = βmi,t−1Et−1

[
c−νi,t (1 + πt+1)−1

]
(42)

m
−1/ν
i,t ci,t = Ct (43)∫
ci,tdi = Ct (44)

Ct + Ḡ =

∫
θi,tni,t −

ψ

2
π2
t di (45)

µi,t = µi,t−1 + νi,t.

The state for the continuation problem is the joint distribution of (mi,0, µi,0, ei,0), where ei,0 is the

persistent component of productivity. For the remainder of this note we'll focus on the �rst order

conditions for the continuation problem and the solutions to those recursive in the distribution over

(mi, µi, ei). Let β
tφi,t, β

tρi,t−1, β
tϕi,t, β

tχt, βΞt be the Lagrange multipliers on (41)-(45) respectively.

First Order Conditions

The �rst order conditions with respect to mi,t, ci,t, ni,t, ai,t−1 are

βEt
[
c−νi,t+1(1 + πt+1)−1

]
ρi,t +

1

ν
m
−1/ν−1
i,t ci,tϕi,t = 0

c−νi,t +
(

(1− ν)c−νi,t − νc
−ν−1
i,t Tt

)
µi,t +

νai,t−1c
−ν−1
i,t (1 + πt)− 1

βEt−1

[
c−νi,t (1 + πt)−1

] (νi,t −
Et−1

[
c−νi,t (1 + πt)

−1νi,t

]
Et−1

[
c−νi,t (1 + πt)−1

] )

−βνmi,t−1c
−ν
i,t (1 + πt+1)−1ρi,t−1 + νc−ν−1

i,t Wtθi,tφi,t +m
−1/ν
i,t ϕi,t − χt = 0

−nγi,t − (1 + γ)nγi,tµi,t + γnγ−1
i,t φi,t + θi,tΞt = 0

Et−1

[
c−νi,t (1 + πt)

−1νi,t

]
Et−1

[
c−νi,t (1 + πt)−1

] = 0
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The �rst order conditions with respect to Ct,πt,Tt , Wt and Qt−1 give∫
ϕi,tdi+ χt − Ξt = 0

−ψπtΞt +

∫
ai,t−1c

−ν
i,t (1 + πt)

−2

βEt−1

[
c−νi,t (1 + πt)−1

](νi,t −
Et−1

[
c−νi,t (1 + πt)

−1νi,t

]
Et−1

[
c−νi,t (1 + πt)−1

] )di

−β
∫
mi,t−1c

−ν
i,t (1 + πt)

−2ρi,t−1di = 0∫
c−νi,t µi,tdi = 0∫

c−νi,t θi,tφi,tdi = 0∫
ρi,t−1di = 0

There are two things we can do, to simplify these expressions. First

Et−1

[
c−νi,t (1 + πt)

−1νi,t

]
Et−1

[
c−νi,t (1 + πt)−1

] = 0

can be used with µi,t = µi,t−1 + νi,t to get

µi,t−1 =
Et−1

[
c−νi,t (1 + πt)

−1µi,t

]
Et−1

[
c−νi,t (1 + πt)−1

] .

Second, multiplying the FOC w.r.t mi,t by mi,tgives

Qtρi,t +
1

ν
Ctϕi,t = 0

which immediately implies ∫
ϕi,tdi = 0
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and thus Ξt = χt. Finally we will �nd it convenient to de�ne %i,t = c−νi,t (1 + πt)
−1ρi,t−1 and

ri,t =
c−νi,t (1+πt)

βEt−1[c−νi,t (1+πt)−1]
then our �rst order conditions become

βEt [%i,t+1] +
1

ν
m
−1/ν−1
i,t ci,tϕi,t = 0

c−νi,t +
(

(1− ν)c−νi,t − νc
−ν−1
i,t Tt

)
µi,t +

νai,t−1ri,t
ci,t

(µi,t − µi,t−1)

−βνmi,t−1
%i,t
ci,t

+ νc−ν−1
i,t Wtθi,tφi,t +m

−1/ν
i,t ϕi,t − χt = 0

−nγi,t − (1 + γ)nγi,tµi,t + γnγ−1
i,t φi,t + θi,tχt = 0

%i,t − c−νi,t (1 + πt)
−1ρi,t−1 = 0

µi,t−1 − βEt−1 [ri,tµi,t] = 0

ri,t −
c−νi,t (1 + πt)

βEt−1

[
c−νi,t (1 + πt)−1

] = 0

and

−ψπtχt + (1 + πt)
−1

∫
ai,t−1ri,t(µi,t − µi,t−1)− β%i,tdi = 0∫

ρi,t−1di = 0∫
c−νi,t µi,tdi = 0∫

c−νi,t θi,tφi,tdi = 0
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System of Equations

Combining the FOC with equilibrium conditions we have

n1+γ
i,t + c−νi,t Tt + ai,t−1ri,t − c1−ν

i,t − ai,t = 0

c−νi,t Wtθi,t − nγi,t = 0

m
−1/ν
i,t ci,t − Ct = 0

βEt [%i,t+1] +
1

ν
m
−1/ν−1
i,t ci,tϕi,t = 0

c−νi,t +
(

(1− ν)c−νi,t − νc
−ν−1
i,t Tt

)
µi,t +

νai,t−1ri,t
ci,t

(µi,t − µi,t−1)

−βνmi,t−1
%i,t
ci,t

+ νc−ν−1
i,t Wtθi,tφi,t +m

−1/ν
i,t ϕi,t − χt = 0

−nγi,t − (1 + γ)nγi,tµi,t + γnγ−1
i,t φi,t + θi,tχt = 0

%i,t − c−νi,t (1 + πt)
−1ρi,t−1 = 0

µi,t−1 − βEt−1 [ri,tµi,t] = 0

ri,t −
c−νi,t (1 + πt)

−1

βEt−1

[
c−νi,t (1 + πt)−1

] = 0

Qt−1 − βmi,t−1Et−1

[
c−νi,t (1 + πt+1)−1

]
= 0

ei,t − (ρeei,t−1 + ςi,t) = 0

and ∫
c−νi,t µi,tdi = 0

Ct −
∫
ci,tdi = 0∫

θi,tni,t −
ψ

2
π2
t di− Ct − Ḡ = 0

−ψπtχt + (1 + πt)
−1

∫
ai,t−1ri,t(µi,t − µi,t−1)− β%i,tdi = 0∫

c−νi,t θi,tφi,tdi = 0∫
ρi,t−1di = 0

Et−1Tt = 0

Along with the implicit restrictions that Qt−1, ai,t−1 and ρi,t−1 do not depend on period t shocks.

The additional constraint Et−1Tt−1 was due to Ricardian equivalences. Without it there would be
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multiple solutions to the FOC corresponding to di�erent paths of government debt.

As one �nal note, we can make one additional normalization by de�ning m̂i,t = m
1/ν
i,t − 1 and

µ̂i,t =
µi,t
mi,t

which satisfy
∫
m̂i,tdi =

∫
µ̂i,tdi = 0 and search for a solution that is recursive in these

variables. Not one can always recover (mi,t, µi,t) directly from (m̂i,t, µ̂i,t) as mi
t = (m̂i,t + 1)ν and

µi,t =
µ̂i,t

(m̂i,t+1)ν
. Thus, let z = (m̂, µ̂, e) and Ω be the joint distribution over these variables. We can

then write the individual constraints recursively. We will assume that Θ follows an AR (1) process,
due to the timing of the planner's problem (at time t but before shocks have been realized) policy
functions will have to be a function of both the previous level of TFP (Θ) and the innovation to
TFP E .

ñ(ς, E ,Θ, z,Ω)1+γ + c̃(ς, E ,Θ, z,Ω)−ν T̃ (E ,Θ,Ω) + ã(Θ, z,Ω)r̃(ς, E ,Θ, z,Ω)

−c(ς, E ,Θ, z,Ω)1−ν − ã(ρΘΘ + E , z̃(ς, E ,Θ, z,Ω), Ω̃(E ,Θ,Ω)) = 0 (46)

c̃(ς, E ,Θ, z,Ω)−νW̃(E ,Θ,Ω) exp(E + ρΘΘ + ρee(z) + ς)− ñ(ς, E ,Θ, z,Ω)γ = 0 (47)

m̃(ς, E ,Θ, z,Ω)−1/ν c̃(ς, E ,Θ, z,Ω)− C̃(E ,Θ,Ω) = 0 (48)

βE
[
%̃(·, ·, ρΘΘ + E , z̃(ς, E ,Θ, z,Ω), Ω̃(E ,Θ,Ω)

]
+

1

ν
m̃(ς, E ,Θ, z,Ω)−1/ν−1c̃(ς, E ,Θ, z,Ω)ϕ̃(ς, E ,Θ, z,Ω) = 0 (49)

c̃(ς, E ,Θ, z,Ω)−ν +
(

(1− ν)c̃(ς, E ,Θ, z,Ω)−ν − νc̃(ς, E ,Θ, z,Ω)−ν−1T̃ (E ,Θ,Ω)
)
µ̃(ς, E ,Θ, z,Ω)

−βνm̃(ς, E ,Θ, z,Ω)
%̃(ς, E ,Θ, z,Ω)

c̃(ς, E ,Θ, z,Ω)
+
νã(Θ, z,Ω)r̃(ς, E ,Θ, z,Ω)

c̃(ς, E ,Θ, z,Ω)
(µ̃(ς, E ,Θ, z,Ω)− µ̂(z)

(m̂(z) + 1)ν
)

+νc̃(ς, E ,Θ, z,Ω)−ν−1W̃(E ,Θ,Ω) exp(E + ρΘΘ + ρee(z) + ς)φ̃(ς, E ,Θ, z,Ω)

+m̃(ς, E ,Θ, z,Ω)−1/ν ϕ̃(ς, E ,Θ, z,Ω)− χ̃(E ,Θ,Ω) = 0 (50)

−ñ(ς, E ,Θ, z,Ω)γ − (1 + γ)ñ(ς, E ,Θ, z,Ω)γ µ̃(ς, E ,Θ, z,Ω)

+γñ(ς, E ,Θ, z,Ω)γ−1φ̃(ς, E ,Θ, z,Ω) + exp(E + Θ + ρee(z) + ς)χ̃(E ,Θ,Ω) = 0 (51)

%̃(ς, E ,Θ, z,Ω)− c̃(ς, E ,Θ, z,Ω)−ν(1 + π̃(E ,Θ,Ω))−1ρ̃(z,Ω) = 0 (52)

r̃(ς, E ,Θ, z,Ω)− c̃(ς, E ,Θ, z,Ω)−ν(1 + π(E ,Θ,Ω))−1

βE [c̃(·, ·,Θ, z,Ω)−ν(1 + π(·,Θ,Ω))−1]
= 0 (53)

µ̂(z)

(m̂(z) + 1)ν
− βE [r̃(·, ·,Θ, z,Ω)µ̃(·, ·,Θ, z,Ω)] = 0 (54)

Q̃(Ω)− β (m̂(z) + 1)ν E
[
c̃(·, ·,Θ, z,Ω)−ν(1 + π(·,Θ,Ω))−1] = 0 (55)

˜̂µ(ς, E ,Θ, z,Ω)− µ̃(ς, E ,Θ, z,Ω)

m̃(ς, E ,Θ, z,Ω)
= 0

˜̂m(ς, E ,Θ, z,Ω)− m̃(ς, E ,Θ, z,Ω)1/ν + 1 = 0
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while the aggregate constraints are ∫ ∫
c̃(ς, E ,Θ, z,Ω)−ν µ̃(ς, E ,Θ, z,Ω)dPr(ς)dΩ = 0 (56)

C̃(E ,Θ,Ω)−
∫ ∫

c̃(ς, E ,Θ, z,Ω)dPr(ς)dΩ = 0 (57)∫ ∫
exp(E + ρΘΘ + ς)ñ(ς, E ,Θ, z,Ω)di− ψ

2
π̃(E ,Θ,Ω)2 − C̃(E ,Θ,Ω)− ḠdPr(ς)dΩ = 0 (58)

(1 + π̃(E ,Θ,Ω))−1

∫ ∫
ã(z,Ω)r̃(ς, E ,Θ, z,Ω)(µ̃(ς, E ,Θ, z,Ω)− µ(·))− β%̃(ς, E ,Θ, z,Ω)

−ψπ̃(E ,Θ,Ω)χ̃(E ,Θ,Ω)dPr(ς)dΩ = 0 (59)∫ ∫
c̃(ς, E ,Θ, z,Ω)−ν exp(E + ρΘΘ + ρee(z) + ς)φ̃(ς, E ,Θ, z,Ω)dPr(ς)dΩ = 0 (60)∫

ρ̃(Θ, z,Ω)dΩ = 0 (61)

E
[
T̃ (·,Θ,Ω)

]
= 0 (62)

B Expansion

De�nition of variables and F and R notation

Let x̃ denote the individual variables and X̃ denote the aggregate variables. Equations (46) - (55)

can be summarized by the following function

F
(
z,Ex̃(·, ·,Θ, z,Ω), x̃(ς, E ,Θ, z,Ω),E

[
x̃(·, ·, ρΘΘ + E , z̃(ς, E ,Θ, z,Ω), Ω̃(E ,Θ,Ω)

]
, X̃(E ,Θ,Ω), ς, E ,Θ

)
= 0 for all z in Ω

and equations (56)-(62) can be de�ned by∫ ∫
R
(
z, x̃(ς, E ,Θ, z,Ω), X̃(E ,Θ,Ω), ς, E ,Θ

)
dPr(ς)dΩ = 0.

We de�ne the law of motion for Ω̃ by

Ω̃ (E ,Θ,Ω) (y) =

∫
ι (z̃ (ς, E ,Θ, z,Ω) ≤ y) dPr (ς) dΩ ∀y,

where ι (z̃ (ς, E ,Θ, z,Ω) ≤ y) is 1 i� all elements of z̃ (ς, E ,Θ, z,Ω) are less than all elements of y

and zero otherwise.

As in the main text, we will consider a positive scalar σ that scales all shocks and 1− ρe.24 We

let x̃(σς, σE , σΘ, z,Ω;σ) and X̃(σE , σΘ, z,Ω;σ) denote the policy rules with scaling parameters σ.

24For simplicity of exposition we assume that ρe → 1 as σ2 → 0.
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Zeroth Order Expansion

We'll begin by showing that when σ = 0, z̃(0, 0, 0, z,Ω; 0) = z and hence that Ω̃(0, 0,Ω; 0) = Ω.

This is true by assumption for e. From (53) it is clear that r̃(0, 0, 0, z,Ω; 0) = β and thus equation

(54) gives us

µ̃(0, 0, 0, z,Ω; 0) = µ(z)

directly. In absence of shocks equations (48) and (55) imply

c̃(0, 0, 0, z,Ω; 0) = m̃(0, 0, 0, z,Ω; 0)1/νC̃(0, 0,Ω; 0)

and

c̃(0, 0, 0, z,Ω; 0) = m(z)
1
ν

(
β

Q̃(0,Ω; 0)(1 + π(0, 0,Ω; 0))

)1/ν

As E[m(·)
1
ν ] = 1, this immediately implies

(
β

Q̃(0,Ω;0)(1+π(0,0,Ω;0))

)1/ν
= C̃(0, 0,Ω; 0) and hence

c̃(0, 0, 0, z,Ω; 0) = m(z)
1
ν C̃(0, 0,Ω; 0).

Combined we see that m̃(0, 0, 0, z,Ω; 0) = m(z). As this holds for m and µ it will also hold for

m̂ and µ̂ and hence Ω̃(0, 0,Ω; 0) = Ω and z̃(0, 0, 0, z,Ω; 0) = z. Note that we obtained this by

exploiting that expectations (48) and (55) are just equalities, this implies that z̃(0, 0,Θ, z,Ω; 0) = z

and Ω̃(0,Θ,Ω; 0) = Ω as well.

Frechet Derivatives

We being by di�erentiating F and R with respect to z to obtain

F̄xx̄z + F̄z = 0

where F̄x = F̄x− + F̄x + F̄x+ after exploiting z̄z = I. This yields x̄z(z) = F̄x(z)−1F̄z.

Next we need the Frechet derivatives with respect to Ω. Di�erentiating, F with respect to Ω

yields

F̄x∂x̄+ F̄X∂X̄ = 0

or

∂x̄(z) = −F̄x(z)−1F̄X∂X̄ ≡ C(z)∂X̄.
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To solve for ∂X̄ we di�erentiate R in the direction ∆, with density δ to get

0 = lim
α→0

1

α

[∫
R̄(z, x̄(z,Ω + α∆), X̄(Ω + α∆))(ω(z) + αδ(z))dz −

∫
R̄(z)ω(z)dz

]
=

∫
R̄(z)δ(z)dz +

∫ (
R̄x(z)∂x̄(z) ·∆ + R̄X(z)∂X̄ ·∆

)
ω(z)dz.

Substituting for ∂x̄(z) = C(z)∂X̄, we get

∂X̄ ·∆ = −
(∫ (

R̄x(z)C(z) + R̄X(z)
)
dΩ

)−1 ∫
R̄(z)d∆

≡ D−1

∫
E(z)d∆.

First Order

Next we di�erentiate both F and R with respect to σ and use the method of undetermined coe�-

cients to �nd the derivatives that multiply ς, E and Θ. For ς, this yields

F̄xx̄ς + F̄x+x̄zpx̄ς + F̄ς = 0

or

x̄ς(z) = −
(
F̄x(z) + F̄x+(z)x̄z(z)p

)−1
F̄ς(z) ≡ K(z)−1L(z).

For Θ, we �nd that (after noting that the same analysis in the Zeroth Order Expansion can yield

Ω̄Θ = 0 and z̄Ω = 0)

F̄x−x̄Θ + F̄xx̄Θ + F̄x+ (x̄ΘρΘ) + F̄XX̄Θ + F̄Θ = 0

or

x̄Θ = −
(
F̄x− + F̄x + ρΘF̄x+

)−1
(F̄XX̄Θ + F̄Θ).

and ∫
R̄x(z)x̄Θ(z) + R̄X(z)X̄Θ + R̄Θ(z)dΩ = 0.

Plugging in for x̄Θ yields a direct expression for X̄Θ.

Finally for E , we �nd

F̄xx̄E + F̄x+

(
x̄Θ + x̄zpx̄E + ∂x̄ · Ω̄E

)
+ F̄XX̄E + F̄E = 0

and ∫
R̄x(z)x̄E(z) + R̄X(z)X̄E + R̄E(z)dΩ = 0.
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Substituting for ∂x̄, we obtain and de�ning X̄ ′E = ∂X̄ · Ω̄E

F̄x(z)x̄E(z) + F̄x+(z)
(
x̄Θ(z) + x̄z(z)px̄E(z) + C(z)X̄ ′E

)
+ F̄X(z)X̄E + F̄E(z) = 0,

or

M(z)x̄E(z) = N(z)
[
I X̄E X̄ ′E

]ᵀ
Solving for these derivatives �rst requires determining Ω̄E . Ω̃ is de�ned by

Ω̃ (E ,Θ,Ω) (y) =

∫ ∏
i

ι
(
z̃i (ς, E ,Θ, z,Ω) ≤ yi

)
dPr (ς) dΩ,

where zi represents the ith element of z. Di�erentiating with respect to E yields

Ω̃E(E ,Θ,Ω)(y) = −
∫ ∑

i

δ(z̃i (ς, E ,Θ, z,Ω)−yi)
∏
j 6=i

ι
(
z̃j (ς, E ,Θ, z,Ω) ≤ yj

)
z̃iE (ς, E ,Θ, z,Ω) dPr(ς)dΩ

which evaluated at σ = 0 gives

Ω̄E(y) = −
∫ ∑

i

δ(zi − yi)
∏
j 6=i

ι(zj ≤ yj)z̄iE(z)dΩ = −
∑
i

∫
δ(zi − yi)

∏
j 6=i

ι(zj ≤ yj)z̄iE(z)dΩ.

The density of Ω̄E is given by ω̄E(y) = ∂nz

∂y1∂y2···∂ynz Ω̄E(y) so

ω̄E(y) = −
∑
i

∂

∂yi

∫ ∏
j

δ(zj − yj)z̄iE(z)dΩ = −
∑
i

∂

∂yi
(
z̄iE(y)ω(y)

)
.

Plugging in for the de�nition of X̄ ′E we �nd

X̄ ′E = −D−1

∫
R̄(z)

∑
i

∂

∂zi
(
z̄iE(z)ω(z)

)
dz

= D−1

∫ ∑
i

(
∂

∂zi
R̄(z)

)
z̄iE(z)ω(z)dz

= D−1

∫ ∑
i

(
R̄zi(z) + R̄x(z)x̄zi(z)

)
z̄iEdΩ

= D−1

∫ (
R̄z(z) + R̄x(z)x̄z(z)

)
qx̄E(z)dΩ

Substituting for x̄E(z) in this plus∫
R̄x(z)x̄E(z) + R̄X(z)X̄E + R̄E(z)dΩ = 0
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yields a linear system

O ·
[
X̄E X̄ ′E

]ᵀ
= P

which is easy to solve.

Second Order

Derivatives of the states

We continue as before, di�erentiating with respect to the states z and Ω. As before x̄zz(z) is easy to

solve. ∂x̄z(z) can be computed by di�erentiating F w.r.t. z and then taking the Frechet derivative

to �nd 25

F̄x(z)∂x̄z(z)+ F̄xx(z) · (x̄0(z), ∂x̄(z))+ F̄xX(z) ·
(
x̄0(z), ∂X̄

)
+ F̄zx(z) · (I, ∂x̄(z))+ F̄zX ·

(
I, ∂X̄

)
= 0,

where I represents the identity matrix. This linear system is easily solved to give

∂x̄z(z) = Q(z) ·
(
I, ∂X̄

)
where Q(z) is nx × nz × nX .

Finally the second order Frechet derivative of F yields

F̄x(z)∂2x̄(z)+F̄X(z)∂2X̄+F̄xx·(∂x̄(z), ∂x̄(z))+F̄xX(z)·
(
∂x̄(z), ∂X̄

)
+F̄Xx(z)·

(
∂X̄, ∂x̄(z)

)
+F̄XX(z)·

(
∂X̄, ∂X̄

)
= 0

Substituting for ∂x̄(z) = C(z)∂X̄ and solving for ∂2x̄k then gives

∂2x̄(z) = C(z)∂2X̄ + R(z) ·
(
∂X̄, ∂X̄

)
.

25We extend the de�nition of F̄x to F̄xx, F̄zx and F̄xX as follows

F̄zx = F̄zx− + F̄zx + F̄zx+

F̄xX = F̄x−X + F̄xX + F̄x+X

and

F̄xx = F̄x−x− + F̄x−x + F̄x−x+ + F̄xx− + F̄xx + F̄xx+ + F̄x+x−1 + F̄x+x + F̄x+x+
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To �nd ∂2X̄ we di�erentiate R w.r.t Ω in the direction ∆1 and then ∆2 to �nd∫ (
R̄x(z)∂x̄(z) ·∆1 + R̄X(z)∂X̄ ·∆1

)
d∆2 +

∫ (
R̄x(z)∂x̄(z) ·∆2 + R̄X(z)∂X̄ ·∆2

)
d∆1

+

∫ (
R̄xx(z) · (∂x̄(z) ·∆1, ∂x̄(z) ·∆2) + R̄xX(z) ·

(
∂x̄(z) ·∆1, ∂X̄ ·∆2

)
R̄Xx(z) ·

(
∂X̄ ·∆1, ∂x̄(z) ·∆2

)
+ R̄XX(z) ·

(
∂X̄ ·∆1, ∂X̄ ·∆2

))
dΩ

+

∫ (
R̄x(z)∂2x̄(z) · (∆1,∆2) + R̄X(z)∂2X̄ · (∆1,∆2)

)
dΩ = 0

A bit of rearranging and substituting for ∂2x̄ yields

D∂2X̄ · (∆1,∆2) =

∫
S(z)∂X̄ ·∆2d∆1 +

∫
S(z)∂X̄ ·∆1d∆2 + T ·

(
∂X̄ ·∆1, ∂X̄ ·∆2

)
.

Derivatives of Shocks

Next we proceed by taking derivatives w.r.t. σ and then use the method of undetermined coe�-

cients as in the �rst order approach. We note that solving for x̄ςς , x̄ςΘ and x̄ςE are trivial as these

interactions do not e�ect aggregates. We'll begin with ΘΘ (again with the knowledge that z̄ΘΘ = 0

and Ω̄ΘΘ = 0) which implies

F̄x−x̄ΘΘ + F̄xx̄ΘΘ + F̄XX̄ΘΘ + F̄x+

(
x̄ΘΘρ

2
Θ

)
+F̄x−x− · (x̄Θ,x̄Θ) + 2F̄x−x · (x̄Θ, x̄Θ) + 2F̄x−X(x̄Θ, X̄Θ) + 2F̄x−x+ · (x̄Θ, x̄ΘρΘ) + 2F̄x−Θx̄Θ

+Fxx · (x̄Θ, x̄Θ) + 2F̄xX · (x̄Θ, X̄Θ) + 2F̄xx+ · (x̄Θ, x̄ΘρΘ) + 2F̄xΘx̄Θ + F̄XX · (X̄Θ, X̄Θ) + 2F̄Xx+ · (X̄Θ, x̄ΘρΘ)

+2F̄XΘX̄Θ + F̄x+x+ · (x̄ΘρΘ, x̄ΘρΘ) + 2Fx+Θx̄ΘρΘ + FΘΘ = 0

and ∫ (
R̄x(z)x̄ΘΘ(z) + R̄X(z)X̄ΘΘ + R̄xx(z) · (x̄Θ(z), x̄Θ(z))

+ 2R̄xX(z) ·
(
x̄Θ(z), X̄Θ

)
+ 2R̄xΘ(z)x̄Θ(z)

+ R̄XX(z) ·
(
X̄Θ, X̄Θ

)
+ 2R̄XΘ(z)X̄Θ + R̄ΘΘ(z)

)
dΩ = 0.

From the �rst set of equations implies

U(z)x̄ΘΘ(z) = V1(z) + V2(z)X̄ΘΘ
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which we can then plug into the R equation to yield

W(z)X̄ΘΘ = X(z).

Before computing x̄EE and x̄EΘ we will also need x̄zΘ(z) and ∂x̄Θ. The �rst is straightforward

as changes in an individual state z do not e�ect aggregates. For the latter we di�erentiate F and

R (as well as exploiting that ∂z̄Θ = 0) to obtain

F̄x−∂x̄Θ + F̄x∂x̄Θ + F̄X∂X̄Θ + F̄x+ (∂x̄ΘρΘ)

+F̄x−x− · (x̄Θ,∂x̄) + F̄x−x · (x̄Θ, ∂x̄) + F̄x−X(x̄Θ, ∂X̄) + F̄x−x+ · (x̄Θ, ∂x̄) + F̄xx− · (x̄Θ, ∂x̄)

+Fxx · (x̄Θ, ∂x̄) + F̄xX · (x̄Θ, ∂X̄) + F̄xx+ · (x̄Θ, ∂x̄) + F̄Xx− · (X̄Θ, ∂x̄) + F̄Xx · (X̄Θ, ∂x̄)

+F̄Xx+ · (X̄Θ, ∂x̄) + F̄x+x− · (x̄ΘρΘ, ∂x̄) + F̄x+x · (x̄ΘρΘ, ∂x̄) + F̄x+X · (x̄ΘρΘ, ∂X̄)

+F̄x+x+ · (x̄ΘρΘ, ∂x̄) + F̄Θx−∂x̄+ F̄Θx∂x̄+ F̄ΘX∂X̄ + F̄Θx+∂x̄ = 0

and

0 =

∫ (
R̄Θ(z) + R̄x(z)x̄Θ(z) + R̄X(z)X̄Θ

)
δ(z)dz

+

∫ (
R̄x(z)∂x̄Θ(z) ·∆ + R̄X(z)∂X̄Θ ·∆ + R̄xx(z) · (x̄Θ(z), ∂x̄(z) ·∆)

+ R̄xX(z) · (x̄Θ∂X̄ ·∆) + R̄Xx(z) · (X̄Θ, ∂x̄(z) ·∆) + R̄XX(z) · (X̄Θ, ∂X̄ ·∆)

+ R̄Θx(z)∂x̄(z) ·∆ + R̄ΘX(z)∂X̄ ·∆

)
dΩ

From F equations we immediately obtain

Y(z)∂x̄Θ(z) = Z1(z)∂X̄Θ + Z2(z)∂X̄

which can be plugged into the equations from R to obtain

AA∂X̄Θ ·∆ = BB∂X̄ ·∆ +

∫ (
R̄Θ(z) + R̄x(z)x̄Θ(z) + R̄X(z)X̄Θ

)
δ(z)dz
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For x̄EΘ we see (after de�ning x̄+
E = x̄Θ + ∂x̄ · Ω̄E + x̄z z̄E)

F̄xx̄EΘ + F̄XX̄EΘ + F̄x+

(
x̄ΘΘρΘ + x̄zΘx̄EρΘ + ∂x̄Θ · Ω̄E + x̄zpx̄EΘ + ∂x̄ · Ω̄EΘ

)
F̄xx− · (x̄E , x̄Θ) + Fxx · (x̄E , x̄Θ) + F̄xX · (x̄E , X̄Θ) + F̄xx+ · (x̄E , x̄ΘρΘ) + F̄xΘx̄E

+F̄Xx− · (X̄E , , x̄Θ) + F̄Xx · (X̄E , x̄Θ) + F̄Xx+ · (X̄E , x̄ΘρΘ) + F̄XΘX̄Θ + F̄x+x− · (x̄+
E , x̄Θ)

+F̄x+x · (x̄+
E , x̄Θ) + F̄x+X · (x̄+

E , X̄Θ) + F̄x+x+ · (x̄+
E , x̄ΘρΘ) + F̄x+Θ(x̄+

E )

+F̄Ex−x̄Θ + F̄Exx̄Θ + F̄EXX̄Θ + F̄Ex+x̄ΘρΘ + F̄EΘ = 0

Most of these terms are already known, but there are a few that are new and need to be computed:

∂x̄Θ · Ω̄E and ∂x̄ · Ω̄EΘ. For the �rst we have

∂x̄Θ(z) · Ω̄E = Y(z)−1Z1(z)∂X̄Θ · Ω̄E + Y(z)−1Z2(z)X ′E

where

∂X̄Θ · Ω̄E = AA−1BBX ′E + AA−1

∫ (
R̄Θ(z) + R̄x(z)x̄Θ(z) + R̄X(z)X̄Θ

)
ω̄E(z)dz

= AA−1BBX ′E + AA−1

∫ (
d

dz
R̄Θ(z) +

d

dz
R̄x(z)x̄Θ(z) + R̄x(z)x̄Θz(z) +

d

dz
R̄X(z)X̄Θ

)
z̄E(z)ω(z)dz

where in the last term is easily computable from known terms26 . Finally ∂x̄·Ω̄EΘ = C(z)∂X̄ ·Ω̄EΘ =

C(z)X̄ ′EΘ. Thus we can show that the derivative x̄EΘ solves the following system of equations

CC(z)x̄EΘ = DD(z)
[
I X̄EΘ X̄ ′EΘ

]
.

Recall we had

Ω̃E(E ,Θ,Ω)(y) = −
∫ ∑

i

δ(z̃i (ς, E ,Θ, z,Ω)−yi)
∏
j 6=i

ι
(
z̃j (ς, E ,Θ, z,Ω) ≤ yj

)
z̃iE (ς, E ,Θ, z,Ω) dPr(ς)dΩ.

26Note we do need to expand the left hand side. For example d
dz
R̄Θ(z) = R̄Θz(z) + R̄Θx(z)x̄z(z) .
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Thus

Ω̃EΘ(E ,Θ,Ω)(y) =−
∫ ∑

i

δ(z̃i (ς, E ,Θ, z,Ω)− yi)
∏
j 6=i

ι
(
z̃j (ς, E ,Θ, z,Ω) ≤ yj

)
z̃iEΘ (ς, E ,Θ, z,Ω) dPr(ς)dΩ

−
∫ ∑

i

δ′(z̃i (ς, E ,Θ, z,Ω)− yi)
∏
j 6=i

ι
(
z̃j (ς, E ,Θ, z,Ω) ≤ yj

)
z̃iE (ς, E ,Θ, z,Ω) z̃iΘ (ς, E ,Θ, z,Ω) dPr (ς) dΩ

−
∫ (∑

i

∑
j 6=i

δ(z̃i (ς, E ,Θ, z,Ω)− yi)δ(z̃j (ς, E ,Θ, z,Ω)− yj)

∏
k 6=i,j

ι
(
z̃k (ς, E ,Θ, z,Ω) ≤ yk

)
z̃jE (ς, E ,Θ, z,Ω) z̃iΘ (ς, E ,Θ, z,Ω)

)
dPr (ς) dΩ

Evaluating this term at σ = 0 and exploiting z̄Θ = 0 we have

Ω̄EΘ = −
∑
i

∫
δ(zi − yi)

∏
j 6=i

ι(zj ≤ yj)z̄iEΘ(z)dΩ

and thus

ω̄EΘ(y) = −
∑
i

∂

∂yi

∫ ∏
j

δ(zj − yj)z̄iEΘ(z)dΩ = −
∑
i

∂

∂yi
(
z̄iEΘ(y)ω(y)

)
and hence

X̄ ′EΘ = −D−1

∫
R̄(z)

∑
i

∂

∂zi
(
z̄iEΘ(z)ω(z)

)
dz

= D−1

∫ ∑
i

(
∂

∂zi
R̄(z)

)
z̄iEΘ(z)ω(z)dz

= D−1

∫ ∑
i

(
R̄zi(z) + R̄x(z)x̄zi(z)

)
z̄iEΘdΩ

= D−1

∫ (
R̄z(z) + R̄x(z)x̄z(z)

)
qx̄EΘ(z)dΩ

which combined with the second derivative of R w.r.t. EΘ

∫ (
R̄x(z)x̄EΘ(z) + R̄X(z)X̄EΘ + R̄xx(z) · (x̄E(z), x̄Θ(z))

+ R̄xX(z) ·
(
x̄E(z), X̄Θ

)
+ R̄xΘ(z)x̄E(z)

+ R̄XX(z) ·
(
X̄E , X̄Θ

)
+ R̄XΘ(z)X̄E + R̄EΘ(z)

)
dΩ = 0
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gives a linear relationship

EE
[
X̄EΘ X̄ ′EΘ

]
= FF

to solve for X̄EΘ.

For x̄EΘ we see (after de�ning x̄+
E = x̄Θ + ∂x̄ · Ω̄E + x̄z z̄E)

F̄xx̄EE + F̄XX̄EE + F̄x+

(
x̄ΘΘρ

2
Θ + 2ρΘx̄Θz z̄E + 2ρΘ∂x̄Θ · Ω̄E + x̄zz · (z̄E , z̄E) + 2∂x̄z · (x̄E , Ω̄E)

+∂2x̄ · (Ω̄E , Ω̄E) + x̄zpx̄EE + ∂x̄ · Ω̄EE

)
+ Fxx · (x̄E , x̄E) + F̄xX · (x̄E , X̄E)

+F̄xx+ · (x̄E , x̄+
E ) + F̄Xx · (X̄E , x̄E) + F̄Xx+ · (X̄E , x̄+

E ) + F̄x+x · (x̄+
E , x̄E)

+F̄x+X · (x̄+
E , X̄E) + F̄x+x+ · (x̄+

E , x̄
+
E ) + F̄Exx̄E + F̄EXX̄E + F̄Ex+x̄

+
E + F̄EE = 0

Once again almost all of these terms are already known with the exception of ∂2x̄ · (Ω̄E , Ω̄E) which
is easily computable from the expressions above and ∂x̄ · Ω̄EE which we de�ne as ∂x̄(z) · Ω̄EE =

C(z)∂X̄ · Ω̄EE = C(z)X̄ ′EE . Thus, we have that

M(z)x̄EE(z) = GG(z)
[
I X̄EE X̄ ′EE

]ᵀ
,

where M(z) is the same as the �rst order expansion above and GG(z) is computable from the �rst

order terms.

To solve for X̄EE and X̄
′
EE we �rst need Ω̄EE which we �nd by di�erentiating the law of motion

for Ω to get

Ω̃EE(E ,Θ,Ω)(y) =−
∫ ∑

i

δ(z̃i (ς, E ,Θ, z,Ω)− yi)
∏
j 6=i

ι
(
z̃j (ς, E ,Θ, z,Ω) ≤ yj

)
z̃iEE (ς, E ,Θ, z,Ω) dPr(ς)dΩ

−
∫ ∑

i

δ′(z̃i (ς, E ,Θ, z,Ω)− yi)
∏
j 6=i

ι
(
z̃j (ς, E ,Θ, z,Ω) ≤ yj

)
z̃iE (ς, E ,Θ, z,Ω) z̃iE (ς, E ,Θ, z,Ω) dPr (ς) dΩ

−
∫ (∑

i

∑
j 6=i

δ(z̃i (ς, E ,Θ, z,Ω)− yi)δ(z̃j (ς, E ,Θ, z,Ω)− yj)

∏
k 6=i,j

ι
(
z̃k (ς, E ,Θ, z,Ω) ≤ yk

)
z̃jE (ς, E ,Θ, z,Ω) z̃iE (ς, E ,Θ, z,Ω) dPr (ς) dΩ

)
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evaluating at σ = 0 this becomes

Ω̄EE(y) =−
∫ ∑

i

δ(zi − yi)
∏
j 6=i

ι(zj − yj)z̄iEE(z)dΩ−
∫ ∑

i

δ′(zi − yi)
∏
j 6=i

ι(zj − yj)
[
z̄iE(z)

]2
dΩ

+

∫ ∑
i

δ(zi − yi)
∑
j 6=i

δ(zj − yj)
∏
k 6=i,j

ι(zk − yk)z̄jE(z)z̄
i
E(z)dΩ

Thus

ω̄EE(y) =
∂nz

∂y1∂y2 · · · ∂ynz
Ω̄EE(y) =−

∑
i

∂

∂yi

∫ ∏
j

δ(zj − yj)z̄iEE(z)dΩ−
∑
i

∂

∂yi

∫
δ′(zi − yi)

∏
j 6=i

δ(zj − yj)
(
z̄iE(z)

)2
dΩ

+
∑
i

∑
j 6=i

∂2

∂yi∂yj

∫ ∏
j

δ(zj − yj)z̄jE(z)z̄
i
EdΩ

=−
∑
i

∂

∂yi
(
z̄iEE(y)ω(y)

)
+
∑
i

∑
j

∂2

∂yi∂yj

(
z̄iE(y)z̄jE(y)ω(y)

)
.

Thus,

X̄ ′EE =

∫
R̄(z)

−∑
i

∂

∂zi
(
z̄iEE(z)ω(z)

)
+
∑
i

∑
j

∂2

∂zi∂zj

(
z̄iE(z)z̄

j
E(z)ω(z)

) dz

=

∫ (
R̄z(z) + R̄x(z)x̄z(z)

)
px̄iEE(z)ω(z)dz

+

∫ (
R̄zz(z) + R̄xz(z) · (I, x̄z(z)) + R̄zx(z) · (x̄z(z), I) + R̄xx(z) · (x̄z(z), x̄z(z))

)
· (px̄E(z), px̄E(z))ω(z)dz

which combined with the second derivative of R w.r.t EE∫ (
R̄x(z)x̄EE(z) + R̄X(z)X̄EE + R̄xx(z) · (x̄E(z), x̄E(z))

+ 2R̄xX(z) ·
(
x̄E(z), X̄E

)
+ 2R̄xE(z)x̄E(z)

+ R̄XX(z) ·
(
X̄E , X̄E

)
+ 2R̄XE(z)X̄E + R̄EE(z)

)
dΩ = 0

gives a system of linear equations of the form

O ·
[
X̄EE X̄ ′EE

]ᵀ
= HH.

Finally for the second order expansion we need the e�ect of the presense of risk. Di�erentiation
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of F gives

F̄xx̄σσ + F̄XX̄σσ + F̄x+

(
E
[
x̄ςςς

2 + x̄EEE2
]

+ x̄σσ + x̄zpx̄σσ + ∂x̄ · Ω̄σσ

)
+ F̄x−E

[
x̄ςςς

2 + x̄EEE2
]

+ F̄σσ = 0.

or

F̄xx̄σσ+F̄XX̄σσ+F̄x+

(
x̄ςςvar(ς)+x̄EEvar(E)+x̄σσ+x̄zpx̄σσ+∂x̄·Ω̄σσ

)
+F̄x− (x̄ςςvar(ς) + x̄EEvar(E))+F̄σσ = 0.

De�ning ∂x̄(z) · Ω̄σσ = C(z)∂X̄ · Ω̄σσ ≡ C(z)X̄ ′σσ, we �nd that x̄σσ(z) solves the linear system

II(z)x̄σσ(z) = JJ(z)
[
I X̄σσ X̄ ′σσ

]ᵀ
.

To solve for X̄ ′σσ we need to �nd Ω̄σσ by di�erentiating the law of motion for Ω

Ω̃σσ(E ,Θ,Ω)(y) =−
∫ ∑

i

δ(z̃i (ς, E ,Θ, z,Ω)− yi)
∏
j 6=i

ι
(
z̃j (ς, E ,Θ, z,Ω) ≤ yj

) (
z̃iςς (ς, E ,Θ, z,Ω) ς2 + z̃iσσ (ς, E ,Θ, z,Ω)

)
dPr(ς)dΩ

−
∫ ∑

i

δ′(z̃i (ς, E ,Θ, z,Ω)− yi)
∏
j 6=i

ι
(
z̃j (ς, E ,Θ, z,Ω) ≤ yj

)
z̃iς (ς, E ,Θ, z,Ω) z̃iς (ς, E ,Θ, z,Ω) ς2dPr (ς) dΩ

−
∫ (∑

i

∑
j 6=i

δ(z̃i (ς, E ,Θ, z,Ω)− yi)δ(z̃j (ς, E ,Θ, z,Ω)− yj)

∏
k 6=i,j

ι
(
z̃k (ς, E ,Θ, z,Ω) ≤ yk

)
z̃jς (ς, E ,Θ, z,Ω) z̃iς (ς, E ,Θ, z,Ω)

)
dPr (ς) dΩ.

Evaluating at σ = 0 we �nd

Ω̄σσ(y) =−
∫ ∑

i

δ(zi − yi)
∏
j 6=i

ι(zj − yj)
(
z̄iσσ(z) + z̄iςςvar(ς)

)
dΩ−

∫ ∑
i

δ′(zi − yi)
∏
j 6=i

ι(zj − yj)
[
z̄iς(z)

]2
var(ς)dΩ

+

∫ ∑
i

δ(zi − yi)
∑
j 6=i

δ(zj − yj)
∏
k 6=i,j

ι(zk − yk)z̄jς (z)z̄iς(z)var(ς)dΩ

which gives

ω̄σσ(y) = −
∑
i

∂

∂yi
((
z̄iσσ(y) + z̄iςς(y)var(ς)

)
ω(y)

)
+
∑
i

∑
j

∂2

∂yi∂yj
(
z̄iς(y)z̄jς (y)var(ς)ω(y)

)
.
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Thus,

X̄ ′σσ =

∫
R̄(z)

−∑
i

∂

∂zi
(
(z̄iσσ(z) + z̄iςς(y)var(ς))ω(z)

)
+
∑
i

∑
j

∂2

∂zi∂zj
(
z̄iς(z)z̄

j
ς (z)var(ς)ω(z)

) dz

=

∫ (
R̄z(z) + R̄x(z)x̄z(z)

)
p
(
z̄iσσ(z) + z̄iςς(y)var(ς)

)
ω(z)dz

+

∫ (
R̄zz(z) + R̄xz(z) · (I, x̄z(z)) + R̄zx(z) · (x̄z(z), I) + R̄xx(z) · (x̄z(z), x̄z(z))

)
· (px̄ς(z), px̄ς(z)) var(ς)ω(z)dz.

which combined with the second derivative of R w.r.t σσ∫ (
R̄x(z) (x̄σσ(z) + x̄ςς(z)var(ς)) + R̄X(z)X̄σσ + R̄xx(z) · (x̄ς(z), x̄ς(z)) var(ς)

2R̄xς(z)x̄ς(z)var(ς) + R̄EE(z)

)
dΩ = 0

gives a system of linear equations of the form

KK ·
[
X̄σσ X̄ ′σσ

]ᵀ
= LL.

B.1 Endogeneous Aggregate States

When τ is �xed at τ̄ , we add the additional constraint of the Phillip's curve to the planner's problem

C−νt (Yt [1− ε(1−Wt)]− ψπt(1 + πt)) + βEt
[
C−νt+1ψπt+1(1 + πt+1)

]
= 0

where

Yt =

∫
ni,tθi,tdi

and

Wt =
Wt

1− τ̄
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We'll let Λt be the Lagrange multiplier on the Phillips curve. We then need to adjust the FOC as

follows

n1+γ
i,t + c−νi,t Tt + ai,t−1ri,t − c1−ν

i,t − ai,t = 0

c−νi,t Wtθi,t − nγi,t = 0

m
−1/ν
i,t ci,t − Ct = 0

βEt [%i,t+1] +
1

ν
m
−1/ν−1
i,t ci,tϕi,t = 0

c−νi,t +
(

(1− ν)c−νi,t − νc
−ν−1
i,t Tt

)
µi,t +

νai,t−1ri,t
ci,t

(µi,t − µi,t−1)

−βνmi,t−1
%i,t
ci,t

+ νc−ν−1
i,t Wtθi,tφi,t +m

−1/ν
i,t ϕi,t − Ξt = 0

−nγi,t − (1 + γ)nγi,tµi,t + γnγ−1
i,t φi,t + θi,tχt + C−νt

[
1− ε(1− Wt

1− τ̄
)

]
θi,tΛt = 0

%i,t − c−νi,t (1 + πt)
−1ρi,t−1 = 0

µi,t−1 − βEt−1 [ri,tµi,t] = 0

ri,t −
c−νi,t (1 + πt)

−1

βEt−1

[
c−νi,t (1 + πt)−1

] = 0

Qt−1 − βmi,t−1Et−1

[
c−νi,t (1 + πt+1)−1

]
= 0

ei,t − (ρeei,t−1 + ςi,t) = 0
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and, with Πt = ψC−νt πt(1 + πt) ∫
c−νi,t µi,tdi = 0

C−νt

(
Yt

[
1− ε(1− Wt

1− τ̄
)

])
−Πt + βEt [Πt+1] = 0

Ct −
∫
ci,tdi = 0

Yt −
∫
ni,tθi,tdi = 0∫

θi,tni,t −
ψ

2
π2
t di− Ct − Ḡ = 0

−ψπtχt + (1 + πt)
−1

∫
ai,t−1ri,t(µi,t − µi,t−1)− β%i,tdi− ψC−νt (1 + 2πt)(Λt − Λt−1) = 0∫

c−νi,t θi,tφi,tdi+
ε

1− τ̄
C−νt YtΛt = 0

χt − Ξt − νC−ν−1
t (Yt [1− ε(1−Wt)]) Λt + ν

Πt

Ct
(Λt − Λt−1) = 0∫

ρi,t−1di = 0

Et−1Tt = 0

With the additional state Λ, the individual constraints can be written as
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ñ(ς, E,Θ, z,Ω,Λ) + c̃(ς, E,Θ, z,Ω,Λ)−ν T̃ (E,Θ,Ω,Λ) + ã(Θ, z,Ω,Λ)r̃(ς, E,Θ, z,Ω,Λ)

−c(ς, E,Θ, z,Ω,Λ)1−ν − ã(ρΘΘ + E, z̃(ς, E,Θ, z,Ω,Λ), Ω̃(E,Θ,Ω,Λ), Λ̃(E,Θ,Ω,Λ)) = 0

c̃(ς, E,Θ, z,Ω,Λ)−νW̃(E,Θ,Ω,Λ) exp(E + ρΘΘ + ρee(z) + ς)− ñ(ς, E,Θ, z,Ω,Λ)γ = 0

m̃(ς, E,Θ, z,Ω,Λ)−1/ν c̃(ς, E,Θ, z,Ω,Λ)− C̃(E,Θ,Ω,Λ) = 0

βE
[
%̃(·, ·, ρΘΘ + E, z̃(ς, E,Θ, z,Ω,Λ), Ω̃(E,Θ,Ω,Λ), Λ̃(E,Θ,Ω,Λ)

]
+

1

ν
m̃(ς, E,Θ, z,Ω,Λ)−1/ν−1c̃(ς, E,Θ, z,Ω,Λ)ϕ̃(ς, E,Θ, z,Ω,Λ) = 0

c̃(ς, E,Θ, z,Ω,Λ)−ν + m̃(ς, E,Θ, z,Ω,Λ)−1/ν ϕ̃(ς, E,Θ, z,Ω,Λ)− χ̃(E,Θ,Ω,Λ)

−βνm̃(ς, E,Θ, z,Ω,Λ)
%̃(ς, E,Θ, z,Ω,Λ)

c̃(ς, E,Θ, z,Ω,Λ)
+
νã(Θ, z,Ω,Λ)r̃(ς, E,Θ, z,Ω,Λ)

c̃(ς, E,Θ, z,Ω,Λ)
(µ̃(ς, E,Θ, z,Ω,Λ)−

µ̂(z)

(m̂(z) + 1)ν
)

+νc̃(ς, E,Θ, z,Ω,Λ)−ν−1W̃(E,Θ,Ω,Λ) exp(E + ρΘΘ + ρee(z) + ς)φ̃(ς, E,Θ, z,Ω,Λ)

+
(

(1− ν)c̃(ς, E,Θ, z,Ω,Λ)−ν − νc̃(ς, E,Θ, z,Ω,Λ)−ν−1T̃ (E,Θ,Ω,Λ)
)
µ̃(ς, E,Θ, z,Ω,Λ) = 0

−ñ(ς, E,Θ, z,Ω,Λ)γ − (1 + γ)ñ(ς, E,Θ, z,Ω,Λ)γ µ̃(ς, E,Θ, z,Ω,Λ) + γñ(ς, E,Θ, z,Ω,Λ)γ−1φ̃(ς, E,Θ, z,Ω,Λ)

+ exp(E + ρΘΘ + ρee(z) + ς)

(
χ̃(E,Θ,Ω,Λ) + C̃(E,Θ,Ω,Λ)−ν

[
1− ε(1−

W̃(E,Θ,Ω,Λ)

1− τ̄
)

]
Λ̃(E,Θ,Ω,Λ)

)
= 0

%̃(ς, E,Θ, z,Ω,Λ)− c̃(ς, E,Θ, z,Ω,Λ)−ν(1 + π̃(E,Θ,Ω,Λ))−1ρ̃(z,Ω,Λ) = 0

r̃(ς, E,Θ, z,Ω,Λ)−
c̃(ς, E,Θ, z,Ω,Λ)−ν(1 + π(E,Θ,Ω,Λ))−1

βE [c̃(·, ·,Θ, z,Ω,Λ)−ν(1 + π(·,Θ,Ω,Λ))−1]
= 0

µ̂(z)

(m̂(z) + 1)ν
− βE [r̃(·, ·,Θ, z,Ω,Λ)µ̃(·, ·,Θ, z,Ω,Λ)] = 0

Q̃(Ω,Λ)− β (m̂(z) + 1)ν E
[
c̃(·, ·,Θ, z,Ω,Λ)−ν(1 + π(·,Θ,Ω,Λ))−1

]
= 0

˜̂µ(ς, E,Θ, z,Ω)−
µ̃(ς, E,Θ, z,Ω)

m̃(ς, E,Θ, z,Ω)
= 0

˜̂m(ς, E,Θ, z,Ω)− m̃(ς, E,Θ, z,Ω)1/ν + 1 = 0
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while the aggregate constraints are

∫
c̃(ς, E,Θ, z,Ω,Λ)−ν µ̃(ς, E,Θ, z,Ω,Λ)dPr(ς)dΩ = 0

C̃(E,Θ,Ω,Λ)−ν

([
1− ε(1−

W̃(E,Θ,Ω,Λ)

1− τ̄
)

])
− Π̃(E,Θ,Ω,Λ) + βE

[
Π̃(·, ρΘΘ + E, Ω̃(E,Θ,Ω,Λ), Λ̃(E,Θ,Ω,Λ))

]
= 0

C̃(E,Θ,Ω,Λ)−
∫
c̃(ς, E,Θ, z,Ω,Λ)dPr(ς)dΩ = 0

Ỹ (E,Θ,Ω,Λ)−
∫

exp(E + ρΘΘ + ρee(z) + ς)ñ(ς, E,Θ, z,Ω,Λ)dPr(ς)dΩ = 0

Ỹ (E,Θ,Ω,Λ)−
ψ

2
π̃(E,Θ,Ω,Λ)2 − C̃(E,Θ,Ω,Λ)− Ḡ = 0

(1 + π̃(E,Θ,Ω,Λ))−1

∫
ã(z,Ω,Λ)r̃(ς, E,Θ, z,Ω,Λ)(µ̃(ς, E,Θ, z,Ω,Λ)−

µ̂(z)

(m̂(z) + 1)ν
)− β%̃(ς, E,Θ, z,Ω,Λ)dPr(ς)dΩ

−ψπ̃(E,Θ,Ω,Λ)χ̃(E,Θ,Ω,Λ)− C̃(E,Θ,Ω,Λ)−νψ(1 + 2π̃(E,Θ,Ω,Λ))(Λ̃(E,Θ,Ω,Λ)− Λ) = 0∫
c̃(ς, E,Θ, z,Ω,Λ)−ν exp(E + ρΘΘ + ς + e(z))φ̃(ς, E,Θ, z,Ω,Λ)dPr(ς)dΩ +

ε

1− τ̄
C̃(E,Θ,Ω,Λ)−ν Ỹ (E,Θ,Ω,Λ)Λ̃(E,Θ,Ω,Λ) = 0

χ̃(E,Θ,Ω,Λ)− Ξ̃(E,Θ,Ω,Λ)− νC̃(E,Θ,Ω,Λ)−ν−1

(
Ỹ (E,Θ,Ω,Λ)

[
1− ε(1−

W̃(E,Θ,Ω,Λ)

1− τ̄
)

])
Λ̃(E,Θ,Ω,Λ)

+ν
Π̃(E,Θ,Ω,Λ)

C̃(E,Θ,Ω,Λ)
(Λ̃(E,Θ,Ω,Λ)− Λ) = 0

Π̃(E,Θ,Ω,Λ)− C̃(E,Θ,Ω,Λ)−νψπ̃(E,Θ,Ω,Λ)(1 + π̃(E,Θ,Ω,Λ))∫
ρ̃(Θ, z,Ω,Λ)dPr(ς)dΩ = 0

E
[
T̃ (·,Θ,Ω,Λ)

]
= 0

B.1.1 Expansion

Zeroth order terms

The same logic as before gives z̃(0, 0, 0, z,Ω,Λ; 0) = z and Ω̃(0, 0,Ω,Λ; 0) = Ω. There will be

transition dynamics for Λ given by Λ̃(0, 0,Ω,Λ). For a given initial state Λ0 = Λ, we will denote the

deterministic path of Λ by Λn.We will assume that Λn converges to the steady sate Λ̄ in N periods.

We begin by computing the expansion around (0, 0,Ω, Λ̄; 0) and then extend to the path

First Order Terms - around (0, 0,Ω, Λ̄; 0)

Our equations for F and R are adjusted as follows

F
(
z,Ex̃(·, ·,Θ, z,Ω,Λ), x̃(ς, E ,Θ, z,Ω,Λ),E

[
x̃(·, ·, ρΘΘ + E , z̃(ς, E ,Θ, z,Ω,Λ), Ω̃(Θ, z,Ω,Λ), Λ̃(Θ, z,Ω,Λ)

]
, X̃(Θ,Ω,Λ), ς,Θ

)
= 0

for all z in Ω and∫
R
(
z, x̃(ς,Θ, z,Ω,Λ), X̃(Θ,Ω,Λ),E[X̃(·, ρΘΘ + E , Ω̃(Θ,Ω,Λ), Λ̃(Θ,Ω,Λ))], ς,Θ,Λ

)
dPr(ς)dΩ = 0.

where Λ̃ is contained in X̃ so there is a projection matrix P such that Λ̃ = PX̃.
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There are only a few changes to the �rst order terms. The �rst is that we need to solve for the

derivative w.r.t Λ. We can exploit our knowledge of z̃(0, 0, 0, z,Ω,Λ; 0) = z and Ω̃(0, 0,Ω,Λ; 0) = Ω

and hence z̄Λ = 0 and Ω̄Λ = 0. Thus,

F̄x−(z)x̄Λ(z) + F̄x(z)x̄Λ(z) + F̄x+(z)
(
x̄Λ(z)Λ̄Λ

)
+ F̄X(z)X̄Λ = 0

and ∫
R̄x(z)x̄Λ(z) + R̄X(z)X̄Λ + R̄X+(z)X̄ΛΛ̄Λ + R̄Λ(z)dΩ = 0.

We need to solve for the persistence of the endogenous state Λ: ρΛ = Λ̄Λ. This is a nonlinear

equation but fortunately still involves only operations involving small matrices. First note that

x̄Λ(z) = −(F̄x−(z) + F̄x(z) + ρΛF̄x+(z))−1F̄X(z)X̄Λ

then

X̄Λ = −
(∫ [

−R̄x(z)
(
F̄x−(z) + F̄x(z) + ρΛF̄x+(z)

)−1F̄X(z) + R̄X(z) + ρΛR̄X+(z)
]
dΩ

)−1(∫
R̄Λ(z)dΩ

)
.

So ρΛ must solve

ρΛ = −P
(∫ [

−R̄x(z)(F̄x−(z) + F̄x(z) + ρΛF̄x+(z))−1F̄X(z) + R̄X(z) + ρΛR̄X+(z)
]
dΩ

)−1(∫
R̄ΛdΩ

)
.

This can be found easily with a 1-dimensional root solver as all the inversions involve small matrices.

The Frechet derivative w.r.t Ω is adjusted as follows:

F̄x(z)∂x̄(z) + F̄x+(z)x̄Λ(z)P∂X̄ + F̄X(z)∂X̄ = 0

which gives

∂x̄(z) = −(F̄x(z))−1
(
F̄x+(z)x̄Λ(z)P + F̄X(z)

)
∂X̄ ≡ C(z)∂X̄.

To �nd ∂X̄ we then take the Frechet derivative of R to get

0 =

∫
R̄(z)δ(z)dz +

∫ (
R̄x(z)∂x̄(z) ·∆ + R̄X+(z)

(
(∂X̄ ·∆) + X̄ΛP(∂X̄ ·∆)

)
+ R̄X(z)∂X̄ ·∆

)
ω(z)dz.
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Substituting for ∂x̄(z) = C(z)∂X̄, we get

∂X̄ ·∆ = −
(∫ (

R̄x(z)C(z) + R̄X+(z)(I + X̄ΛP) + R̄X(z)
)
dΩ

)−1 ∫
R̄(z)d∆

≡ D−1

∫
E(z)d∆.

Finally we can compute the response to shock E

F̄xx̄E + F̄x+

(
x̄Θ + x̄zpx̄E + ∂x̄ · Ω̄E + x̄ΛPX̄E

)
+ F̄XX̄E + F̄E = 0.

andSubstituting for ∂x̄, we obtain and de�ning X̄ ′E = ∂X̄ · Ω̄E

F̄x(z)x̄E(z) + F̄x+(z)
(
x̄Θ(z) + x̄z(z)px̄E(z) + C(z)X̄ ′E + x̄ΛPX̄E

)
+ F̄X(z)X̄E + F̄E(z) = 0,

or

M(z)x̄E(z) = N(z)
[
I X̄E X̄ ′E

]ᵀ
.

We obtain the same expression for X̄ ′E above

X̄ ′E = D−1

∫ (
R̄z(z) + R̄x(z)x̄z(z)

)
qx̄E(z)dΩ

which, when combined with∫
R̄x(z)x̄E(z) + R̄X(z)X̄E + R̄X+(z)

(
X̄Θ + ∂X̄ · Ω̄E + X̄ΛPX̄E

)
+ R̄E(z)dΩ = 0,

yields the linear system

O ·
[
X̄E X̄ ′E

]ᵀ
= P.

First Order Terms - Along Path

Here we assume that all the derivatives of x̃ and X̃ are known at the point (0, 0,Ω, Λ̄n+1; 0). We

denote derivatives evaluted at those points by ·n+1. We start with the derivatives w.r.t the states

We can exploit our knowledge of z̃(0, 0, 0, z,Ω,Λ; 0) = z and Ω̃(0, 0,Ω,Λ; 0) = Ω and hence

z̄Λ = 0 and Ω̄Λ = 0. Thus,

F̄nx−(z)x̄nΛ(z) + F̄nx (z)x̄nΛ(z) + F̄nx+(z)
(
x̄n+1

Λ (z)PX̄n
Λ

)
+ F̄nX(z)X̄n

Λ = 0

and ∫
R̄nx(z)x̄nΛ(z) + R̄nX(z)X̄n

Λ + R̄nX+(z)X̄n+1
Λ PX̄n

Λ + R̄nΛ(z)dΩ = 0.
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Next note that

x̄nΛ(z) = −
(
F̄nx−(z) + F̄nx (z)

)−1
(
F̄nx+(z)x̄n+1

Λ (z)P + F̄nX(z)
)
X̄n

Λ

then

X̄n
Λ = −

(∫ [
−R̄nx(z)

(
F̄nx−(z) + F̄nx (z)

)−1
(
F̄nx+(z)x̄n+1

Λ (z)P + F̄nX(z)
)

+ R̄nX(z) + R̄nX+(z)X̄n+1
Λ P

]
dΩ

)−1(∫
R̄nΛ(z)dΩ

)
.

The Frechet derivative w.r.t Ω is adjusted as follows:

F̄nx−(z)∂x̄n(z) + F̄nx (z)∂x̄n(z) + F̄nx+(z)∂x̄n+1(z) + F̄nx+(z)x̄n+1
Λ (z)P∂X̄n + F̄nX(z)∂X̄n = 0

which gives

∂x̄n(z) = −
(
F̄nx−(z) + F̄nx (z)

)−1 [(
F̄nx+(z)x̄n+1

Λ (z)P + F̄nX(z)
)
∂X̄n + F̄nx+(z)∂x̄n+1(z)

]
≡

N−n∑
j=0

Cnj (z)∂X̄n+j .

Where for the last expression we our knowledge that ∂X̄N = ∂X̄ and ∂x̄N (z) = ∂x̄(z) = C(z)∂X̄

and then ∂x̄n(z) =
∑N−n

j=0 Cnj (z)∂X̄n+j is derived from the recursion.

To �nd ∂X̄ we then take the Frechet derivative of R to get

0 =

∫
R̄n(z)δ(z)dz +

∫ (
R̄nx(z)∂x̄n(z) ·∆ + R̄nX+(z)

(
(∂X̄n+1 ·∆) + X̄n+1

Λ P(∂X̄n ·∆)
)

+ R̄nX(z)∂X̄n ·∆
)
ω(z)dz.

Substituting for ∂x̄n(z) = ∂X̄n, we get

∂X̄n ·∆ = −
(∫ (

R̄nx(z)Cn0 (z) + R̄nX+(z)X̄n+1
Λ P + R̄nX(z)

)
dΩ

)−1 ∫
R̄n(z)δ(z) + R̄nx(z)∂x̄n(z) ·∆dz

≡ (Dn)−1

∫ R̄n(z)d∆ +
N−n∑
j=1

Enj
(
∂X̄n+j ·∆

)
Finally we can compute the response to shock E (note we only need to do this for n = 0)

F̄ 0
x x̄

0
E + F̄ 0

x+

(
ρΘx̄

1
Θ + x̄1

zpx̄
0
E + ∂x̄1 · Ω̄0

E + x̄1
ΛPX̄0

E
)

+ F̄ 0
XX̄

0
E + F̄ 0

E = 0.

Substituting for ∂x̄1 we obtain, after de�ning X̄j
E = ∂X̄j · Ω̄0

E

F̄ 0
x (z)x̄E(z)+F̄

0
x+(z)

ρΘx̄
1
Θ(z) + x̄1

z(z)px̄
n
E(z) +

N−1∑
j=0

C1
j (z)X̄

j+1
E + x̄1

Λ(z)PX̄0
E

+F̄ 0
X(z)X̄0

E+F̄
0
E (z) = 0,
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or

M0(z)x̄0
E(z) = N0(z)

[
I X̄0

E X̄1
E · · · X̄N

E

]ᵀ
.

We obtain the following expression for X̄j
E for j = 1, . . . , N

X̄j
E =

(
Dj
)−1

(∫ (
R̄jz(z) + R̄jx(z)x̄jz(z)

)
qx̄0
E(z)dΩ +

N−j∑
k=1

EjkX̄
j+k
E

)

which, when combined with∫
R̄0
x(z)x̄0

E(z) + R̄0
X(z)X̄0

E + R̄0
X+(z)

(
ρΘX̄

1
Θ + X̄1

E + X̄1
ΛPX̄0

E
)

+ R̄0
E(z)dΩ = 0,

yields the linear system

O ·
[
I X̄0

E X̄1
E · · · X̄N

E

]ᵀ
= P.

C Simulation and Choice of K

To simulate an optimal policy two tasks, must be accomplished: we must track the evolution of

the distribution of individual state variables and discretize it using K points. In order to track

the evolution of the distribution we approximate a continuum of agents with a large number N =

100, 000 of agents, each of whom receives his/her own idiosyncratic shock. In principle, each period

it would be possible to approximate the policy rules around this discretized group of agents, but

here we can economize on calculations by following a two step procedure. First, we approximate

the N = 100, 000 group of agents with a smaller group of K = 10, 000 points using a k-means

algorithm. Next we approximate policy rules around the Z constructed with the k-means algorithm

and simulate 1 period of the economy with the N agents using the procedure presented in section

3. Additionally, the derivatives provided in section B with respect to the state variables allow us

partially to correct the errors that the k-means approximation introduces by adding additional terms

to the Taylor expansion. The advantage of this approach is that it can reduce the computational

time by what turns out to be a factor of 10 in this instance. We choose K so that increasing K

does not change the impulse responses reported in section 4.

D Robustness

In this section, we show robustness of our main results.
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Figure IX: Optimal monetary-�scal response to a productivity shock with f = 0
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Figure X: Optimal monetary-�scal response to a productivity shock with ψ = 0
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