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1 Introduction

This paper isolates and quantifies motives that shape optimal government portfolios of financial

assets for a class of heterogeneous household general equilibrium models. This class of models

includes popular specifications of households’ risk and liquidity preferences, sets of tradable

securities, as well as restrictions that limit access to markets. We characterize the main forces

that shape an optimal portfolio with a small number of statistics that are functions only of

observables. We apply our approach to study the optimal maturity structure of the U.S.

government debt. For the U.S. we find that an optimal portfolio has a simple shape that is

well-approximated by portfolio shares that decline exponentially with maturity and that has

a longer overall duration than the current U.S. maturity structure.

Our framework includes domestic households, foreign investors, and a benevolent govern-

ment. Households can be heterogeneous and derive utility from consumption and leisure; in

addition, they can also derive indirect utility from holdings financial assets. This indirect util-

ity summarizes shadow benefits and costs from holding assets that provide liquidity services,

or affect borrowing constraints or trading frictions. A benevolent government planner uses

distortionary taxes to finance exogenous public expenditures. Households, government and

foreign investors trade an arbitrary set of financial assets. Our specification of household pref-

erences and demand of foreign investors is flexible enough to represent asset pricing models

including ones with recursive utilities, discount factor shocks, ambiguity aversion, preferred

habitats. Both closed and open economies are included.

We isolate forces that determine an optimal government portfolio by studying consequences

of perturbing the government portfolio at any history along a competitive equilibrium and then

applying small-noise expansions. This allows us to express the optimal portfolio as a function

of some statistics that are functions of macro and financial market data. We show that these

statistics let us characterize an optimal portfolio, and that there is no need to take a stance

on a particular model as long as that model is consistent with these statistics. This ability to

sidestep specifying such details is important because there remain disagreements within the

asset pricing literature about the sources of asset price fluctuations.

The key notion that emerges in our analysis is a target portfolio that a benevolent govern-

ment would optimally choose in the absence of any rebalancing costs that may arise when a big

government has pricing power in financial markets. The target portfolio captures a trade-off

between hedging future risks that the government will face against providing liquidity services

now. The future risks come from fluctuations in interest rates, primary surpluses, measures

of liquidity, and inequalities across households. These risks are summarized by covariances of
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returns on assets in the government portfolio with various financial and macroeconomic vari-

ables. The value of the liquidity services in the present is summarized by a particular measure

of liquidity premia on various assets.

If rebalancing the government portfolio does not affect asset prices, as in a small open

economy, then it is optimal for the government to set its portfolio to the target portfolio. More

generally, the formula for the optimal portfolio includes costs of rebalancing. We show that

those costs are proportional to the distance between the target portfolio and the portfolio with

which the government enters a period, and the price elasticity of various assets to changes in

their supply induced by government trades.

Our framework can be used to study any set of securities. We apply it to a particular

structure in which the government portfolio contains only public debts of different maturities.

We use data on the returns of U.S. government and corporate bonds, taxes, and primary

surpluses to estimate each component of the target portfolio. We find that a single force

– interest rate risk – contributes most to the shape of the target portfolio. That means

that the target portfolio takes a very simple form—portfolio shares of debts decline roughly

geometrically in their maturities, with the rate of decline given by households’ discount factor.

Moreover, maintaining this portfolio requires minimal rebalancing, which implies that the

optimal portfolio is roughly equal to the target portfolio for virtually any price elasticities.

This finding is driven by several statistics. U.S. government bonds are a poor hedge against

primary surplus, liquidity risks, and inequality risk. Their returns are much more volatile

than, and not very correlated with, either future primary surpluses or various measures of

future liquidity premia on government bonds. Furthermore, primary surpluses are procyclical,

while liquidity premia are countercyclical, which means that these two risks have offsetting

effects on the target portfolio. Compared to primary surpluses and liquidity risks, measures of

inequality are even less correlated with returns and desire to hedge them contributes very little

to the optimal portfolio. Liquidity premia also seem to be similar across different maturities of

government bonds, which leaves interest rate risk as the only quantitatively meaningful term

in the target portfolio.

Unlike the situation with primary surplus risks, liquidity risks, and inequality risks, there

exists a simple portfolio that can hedge interest rate risks well. Interest rate risks affect

the government only when it needs to roll over its existing debt. By choosing a maturity

structure that matches the duration of debts to expected primary surpluses, the government

can eliminate anticipated debt rollovers and thereby hedge most of the interest rate risk. We

show that in a stationary environment such a portfolio can be replicated by issuing a growth-
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rate-adjusted consol. A portfolio structured to minimize interest rate risk also minimizes

required rebalancings. This, in turn, implies that costs of portfolio adjustments have small

quantitative impacts on the optimal portfolio.

Related Literature Our paper is related to an extensive Ramsey literature on the optimal

composition of government debt, such as Lucas and Stokey (1983), Zhu (1992), Chari et al.

(1994), Angeletos (2002), Buera and Nicolini (2004), Farhi (2010); Faraglia et al. (2018);

Lustig et al. (2008), Bhandari et al. (2017a). Those authors used simple versions of the

closed economy neoclassical growth models to characterize optimal public portfolios. However,

those models fail to approximate empirical relationships among asset prices, asset supplies, and

macroeconomic variables, key objects that determine how well alternative securities hedge risks.

We overcome that deficiency by considering a much more general specification of preferences

and asset demands that includes multiple mechanisms that can account for the observed asset

pricing behavior.

Realistic asset pricing dynamics dramatically change many insights about optimal public

portfolios that emerged from that earlier literature. For example, in their quantitative model

calibrated to the U.S. economy, Buera and Nicolini (2004) find that the government should

issue long-term debt valued at tens or even hundreds times GDP while simultaneously taking

offsetting short (i.e., negative) positions in short-term debt of similar magnitudes. They also

find that government holdings of debts of similar maturities may differ by hundreds percent

of GDP; that the composition of the optimal portfolio is very sensitive to the menu of traded

maturities; and that relatively small aggregate shocks caused very significant portfolio rebal-

ancing. In contrast, our optimal portfolio is very stable over time and has simple declining

maturity weights qualitatively like those observed in US data. We show that the dramatic dif-

ferences in these findings are driven by counterfactual asset pricing implications of the standard

neoclassical growth model.

Our paper builds on a large literature in finance that focuses on understanding asset price

determination, such as Ai and Bansal (2018), Bansal and Yaron (2004), Albuquerque et al.

(2016), Krishnamurthy and Vissing-Jorgensen (2012), Greenwood and Vayanos (2014). Those

authors proposed a variety of modifications to the standard neoclassical environment so that

it is consistent with the observed behavior of asset prices. By setting up a framework that

incorporates all of these mechanisms and obtaining expressions for the optimal portfolios that

depend only on a small number of statistics that are functions of aggregates and asset returns,

we sidestep taking a stand on their relative importance.
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Work by Bohn (1990) is probably the closest in spirit to ours. He studied a representative

agent model with distortionary taxes and computed an optimal government portfolio as a

function of covariances that he estimated for U.S. data. Unlike in our setting, in Bohn’s

model, consumers are risk-neutral, tax distortions are ad-hoc, financial securities provide no

liquidity services, the set of those assets is restrictive, and all asset prices are exogenous.

Our findings are also related to some recent work by Debortoli et al. (2017, 2022). For a de-

terministic version of Lucas and Stokey (1983), they find that issuing a consol aligns incentives

across successive governments and eliminates time inconsistency. We study a government with

commitment but still find that in a stationary world the optimal portfolio is well approximated

by a (growth-adjusted) consol—a security that hedges the empirically dominant interest rate

risk and eliminates needs to rollover or rebalance the portfolio.1

We obtain for an optimal government portfolio formulas that are related to the formulas

for private portfolios that appear in classic portfolio theory contributions of Samuelson (1970),

Merton (1969, 1971), Campbell and Viceira (1999, 2001), and Viceira (2001). While individ-

ual investors in the classical portfolio theory and the government in our model both choose

portfolios to hedge their risks, there are substantial differences in the forces that determine

portfolio composition. Neither liquidity services nor price impacts feature in the classical port-

folio theory in which investors are small relative to the market. The trade-offs between risks

and returns of various assets captured by Sharpe ratios and risk-aversions that play the central

role in the classical portfolio theory are entirely absent in our government’s portfolio problem.

This is because the government is benevolent and shares agents preferences. This implies that

it cannot improve welfare by simply replicating any trade that households can do themselves.

Instead, the government portfolio depends on a statistic that captures additional costs (such

as trading frictions) or benefits (such as liquidity services) that assets provide to agents beyond

pure transfers of resources across time. We refer to this measure as a excess liquidity premia

and provide a way to measure it for all securities. Finally, our formulas capture additional

motives such hedging fluctuations in inequalities across households that are relevant for public

portfolios but not present in discussions of private portfolios.

In recent papers, Jiang et al. (2019, 2020) document a number of puzzling facts about

market values of total debt and primary surpluses in the U.S. These facts are puzzling when

debt valuation is viewed from a lens of an arbitrage-free and frictionless asset pricing framework.

1Our work is also related to a recent paper by Bigio et al. (2019) that studies the optimal composition
of government portfolios of bonds of different maturities. They largely abstract from the interest rate risk,
primary surplus, and liquidity channels that we emphasize and focus on understanding how price impacts from
debt issuance affect portfolio composition. Because they impose an exogenous cap on the maturities that the
government can issue, that the government wants to rebalance its portfolio even in the absence of all risks.
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Our setting departs from such a framework by incorporating market segmentation as well as a

broad notion of liquidity services that U.S debts provide. However, our focus in this paper on

how the market value of government debt is optimally allocated across various securities and

not much on the determinants of the level itself.

Methodologically, we are related to two strands of literature. We borrow our approach

of using a small number of statistics to characterize an optimal government portfolio from a

recent applied public finance literature, notably Saez (2001) and Chetty (2009). That liter-

ature generally focuses on settings where a government faces no risk. When applied to our

problem directly, this approach yields no clear and transparent insights. We make progress by

augmenting it with some small-noise approximations. Small noise approximations have been

used frequently both in finance (e.g., Samuelson (1970), Devereux and Sutherland (2011))

and computational economics (e.g., Guu and Judd (2001), Schmitt-Grohe and Uribe (2004),

Bhandari et al. (2021)). The particular class of expansions that we use does not require us

to assume stationarity or to ignore heteroskedasticity. That makes it particularly suitable to

study portfolio problems in dynamic stochastic economies.

Outline The rest of the paper is organized as follows. In Section 2, we describe the class

of economic settings. In Section 3, we use a special case of our general economy to describe

a variational approach that characterize an optimal portfolio and the economic forces that

pin it down. In Section 4, we apply our theory to infer an optimal portfolio for the U.S. and

compare it to the observed portfolio. In Section 5, we consider several extensions that relax

the restrictions imposed in Section 3 special case. We show that the qualitative insights from

Section 3 and the many of the quantitative insights derived in Section 4 continue to hold more

generally. Section 6 concludes. Proofs of all statements in the main text are relegated to the

online appendix.

2 General environment

We consider a discrete time, infinite period economy populated by three groups of agents:

a government, households, and foreign investors. All exogenous disturbances in period t are

summarized by st ⊂ RN , where N ≤ ∞. The initial history s0 is predetermined. A history of

shocks is st = (s0, ...., st). We use Pr
(
sT+t

)
and Pr

(
sT+t|sT

)
to denote probabilities of sT+t

conditional on information in period 0 and sT respectively. Any variable xt appearing below is

a function of st. Most of the time, we omit explicit reference to a history and simple write xt

rather than xt
(
st
)
. Whenever a specific history sT is clear from the context, we use ETxT+t
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to denote the expectation of xT+t conditional on history sT . We use x to denote
{
xt
(
st
)}

t,st
.

All agents trade a countable set of securities. Security i is characterized by an exogenous

stream of dividends Di and net supply Si. The price of security i in period t is denoted by Qit.

The set of securities is exogenous but essentially arbitrary, and may include, as special cases,

the full set of history-contingent Arrow securities or history-nonncontingent bonds of various

maturities. For now, all securities are assumed to be real but we discuss nominal securities in

Section 3.4. The government, households, and foreign investors may face addition restrictions

on their ability to trade securities. We discuss such restrictions below. We let Gt(st) or Gt to
denote the subset of securities that the government can trade in history st.

We now describe each group of agents in more detail.

Government. We start with a government budget identity

Xt +
∑
i∈Gt

QitB
i
t =

∑
i∈Gt−1

(
Qit +Di

t

)
Bi
t−1, (1)

where Xt is the primary surplus, and
{
Bi
t

}
i∈Gt

are government holdings of various securities.

We adopt the convention that positive values of Bi
t denote the government’s liabilities. Ac-

counting identity (1) states that the market value of liabilities at the beginning of a period

equals the sum of the primary budget surplus and the market value of government liabilities

at the end of it. The primary surplus is the difference between the government’s revenues and

its expenditures. We use Tt to denote tax revenues and Gt to denote expenditures, so that

Xt ≡ Tt −Gt.

We assume that in every set Gt there is a one-period government bond, a security that

is available in zero net supply, that can be issued (i.e., held in positive quantity) by the

government, and that returns one unit of the consumption good as payout in in period t +

1. Other securities in Gt can be arbitrary. We refer to a set
{
QitB

i
t

}
i∈Gt

as a portfolio of

government securities. We use a convention that B0
t refers to the one-period government bond

issued in period t.2

Let Bt ≡
∑

i∈Gt
QitB

i
t be the market value of the government portfolio and ωit ≡ QitB

i
t/Bt

be the portfolio share of security i ∈ Gt. Let −→ω t be a column vector that has as its elements{
ωit
}
i∈Gt\{0}, that is, the portfolio shares of all securities other than the one-period bond that

the government can trade at t. The elements in vector −→ω t always sum to 1− ω0
t .

2This convention involves a slight abuse of notation. To keep notation simple, it is convenient to enumerate
at time 0 all securities that are ever traded in the future by ˙i = 1, 2, ... and use Gt

(
st
)
to denote the subset

of those securities that can be traded in st. This convention implies that there are infinitely many one-period
government bonds, one for each st, but only one such bond is in each Gt

(
st
)
. This is the bond that we call B0

t

or B0
t

(
st
)
.
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Households. Households are heterogeneous. Household h has recursive preferences

Vh,t = Uh,t

(
ch,t − vh,t (yh,t) ,

{
Qitb

i
h,t

}
i∈Gt

, Gt

)
+ βWh,t (Vh,t+1) , (2)

where Wh,t is a functional that maps t+ 1 measurable random variables to t measurable ran-

dom variables. Here ch,t and yh,t are consumption and earnings of household h and bih,t are

holdings of security i by household h. We assume that functions Uh,t and vh,t are twice differ-

entiable, strictly increasing in their first arguments and concave, and that Wh,t is twice con-

tinuously differentiable, strictly increasing, and increasing in first- and second-order stochastic

dominance,3 with a property that for any time-t measurable random variable xt+1 we have

Wh,t (xt+1) = xt+1.

Household h solves

max
ch,yh,{bi

h}i

Vh,0 (3)

subject to initial portfolio
{
bih,−1

}
i
and

ch,t +
∑
i

Qitb
i
h,t = yh,t − Tt (yh,t) +

∑
i

(
Qit +Di

t

)
bih,t−1, (4)

and

φh,t

({
Qitb

i
h,t

}
i

)
≥ 0. (5)

Our specification of the household problem in (3)–(5) includes a broad class of models that

are used in applied work in macro and finance. That breadth allows us to collect insights that

transcend structural details that differ across a variety of models.

In preference specification (2), we let the period utility Uh,t depend explicitly on
{
Qitb

i
h,t

}
i∈Gt

and on government spending Gt. This allows us to be agnostic as to whether or not households

get utility directly simply from holding some subset of government-traded securities (e.g., as

with the convenience benefits or liquidity services analyzed by Krishnamurthy and Vissing-

Jorgensen (2012)) or whether government expenditures Gt directly enhance utilities of some

households or whether government expenditures are just dropped in the ocean. Furthermore,

the fact that period utility function Uh,t can vary by history and that the functional Wh,t has

very few restrictions means that our framework includes many models of households attitude

towards risk and discounting.4 One substantive restriction on preferences that we impose in

3In other words, Wh,t

(
x1
t+1

)
≥ Wh,t

(
x2
t+1

)
whenever random variable x1

t+1 first- or second-order stochasti-
cally dominates x2

t+1.
4Ai and Bansal (2018) showed that this specification of functional Wh,t includes, as special cases, standard

time-separable preferences, recursive preferences of Epstein and Zin (1989), the variational preferences of Mac-
cheroni et al. (2006a,b), the multiplier preferences of Hansen and Sargent (2008) and Strzalecki (2011), the
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specification (2) is that there is no income effects in labor supply. This assumption substan-

tially simplifies our approach. We explore how well our approach works in models with income

effects in Section 5.4.

The functional φh,t that appears in equation (5) captures a wide variety of asset trading

restrictions faced by households. For instance, the restriction that household h cannot trade

some security j in period t can be represented by two inequalities Qjtb
j
h,t ≥ 0 and Qjtb

j
h,t ≤ 0

as a part of functional φh,t. In parallel with one-period government bond, we assume that

there exists in each period t a security to which we refer as a one-period private bond. This

security matures in period t + 1 and pays one unit of consumption good as dividend, and

there is some subset of households for whom it does not appear in the constraint set φh,t or

the utility function Uh,t. We use Q0,pvt
t to denote the price of this security. Other than that,

φh,t is arbitrary. Thus, specification (5) takes no stance on whether households can trade the

same securities as the government, or whether all or only some households can borrow and

lend from each other. Later in this paper we explore how various assumptions on asset trading

among households affect the government portfolio problem. We write summation
∑

i in the

budget constraint (4) over all securities, since φh,t can restrict holdings of any subset of those

securities to zeros.

Foreign investors. For now, we simply assume that foreign investors are a set of time-t

measurable, twice continuously differentiable demand functions
{
Bit
({

Qi
}
i

)}
i,t
, where Bit may

be subject to exogenous shocks. Later on, we explore several cases of this general specification

— a small open economy (Bit is perfectly elastic), a closed economy (Bit is perfectly inelastic with

Bit = 0 for all i, t), and preferred habitat models that give rise to downward sloping demand

curves for government debt in the spirit of Greenwood and Vayanos (2014) and Koijen and

Yogo (2019).

Definition 1. For given initial conditions
{
bih,−1, B

i
h,−1

}
i,h
, and government policy

(−→ω ,B,T ,G),
a competitive equilibrium is a collection

({
ch,yh,b

i
h,B

i,Qi,Y
}
i,h

)
such that (i)

(
ch,yh,

{
bih
}
i

)
solves (3), (ii)

(
T ,Y,G,

{
Qi,Bi

}
i

)
satisfies (1), (iii)

∑
hyh = Y and

∑
h b

i
h + Bi = Si +Bi

for all i, (iv) ωit = QitB
i
t/
∑

i∈Gt
QitB

i
t.

The focus of our analysis will be on optimal portfolios.

second-order expected utility of Ergin and Gul (2009), the smooth ambiguity preferences of Klibanoff et al.
(2005), Klibanoff et al. (2009), the disappointment aversion preference of Gul (1991), and the recursive smooth
ambiguity preference of Hayashi and Miao (2011). Moreover, by relaxing the differentiability assumption on
Wh,t, one can extend them to the maxmin expected utility of Gilboa and Schmeidler (1989), and Epstein and
Schneider (2003). The stochastic function Uh,t can express the discount shock formulation used in Albuquerque
et al. (2016).
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Definition 2. For given initial conditions and a set of Pareto weights {ϖh}h, a competitive

equilibrium associated with
(−→ω ,B,T ,G) is optimal if there is no competitive equilibrium

associated with
(−→ω ′

,B′,T ′,G
)
that delivers strictly higher social welfare

∑
hϖhVh,0. We call

−→ω the optimal public portfolio.

Government policies must satisfy the government budget constraint in all histories. If the

government changes its portfolio at any date, then future paths of debts, taxes, or expenditures

must adjust. We focus on the optimal portfolio choice for any stochastic processG. This allows

us to be agnostic about whether government expenditures are exogenous or endogenous, and,

when they are endogenous, whether or not they are chosen optimally. We discuss this further

in Section 5.5.

3 The benchmark economy

We start with a special case of the Section 2 environment that we refer to as our benchmark

economy. This allows us to explain our methodology and highlight key insights transpar-

ently. As we show in Section 5, relaxing restrictions imposed in the benchmark economy only

strengthens results that prevail in the benchmark economy.

Definition 3. The benchmark economy

1. Is small and open;

2. Has identical households, so that we can drop subscript h;

3. Has linear taxes Tt (yt) = τ tyt for some random process {τ t};

4. Has a constant elasticity of earnings vt (yt) = θ
−1/γ
t

y
1+1/γ
t
1+1/γ for some γ > 0 and positive

random process {θt};

5. Has government bonds that are perfect substitutes, meaning that they appear Ut
(
·,
∑

i∈Gt
Qitb

i
t, ·
)

and φt
(
·,
∑

i∈Gt
Qitb

i
t

)
in the utility function and constraint set, respectively.

6. Has time-varying multiplicative discount factor shocks δt so that Ut () = δtU () for some

function U and positive random process {δt};

7. Has a constant intertemporal elasticity of substitution so that there exists a scalar IES ≥
0 such that Uc (Γx,B

′,ΓG) /Uc (x,B,G) = Γ−1/IES for any positive scalars (x,G,Γ) and

any (B,B′) , where Uc is the derivative of U with respect to its first argument.
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Condition 1 allows us to ignore responses of asset prices to government actions. This lets us

check our findings with results from studies of portfolio problems in settings with atomistic

private investors. We relax this condition in Section 5.8. Condition 2 is a useful starting point

that abstracts from heterogeneity and we relax it in Section 5.7. Conditions 3 and 4 yield

simple algebraic expressions for deadweight losses from taxation. They require few substantive

restrictions; we go on to drop even those conditions in Sections 5.7 and 5.4. Condition 5 sets

up an important benchmark in which all non-pecuniary benefits of government securities –

including their direct utility consequences as well as their effects on trading frictions – depend

only on their total market value. It sets a natural starting point for proceeding to consider

effects of non-pecuniary forces on a government portfolio. We drop this condition in Section

5.3. Finally, conditions 6 and 7 are used only to illustrate how our model applies in a stationary

setting in which expected growth rates of all real variables are equal.

3.1 Key notions

We define summary measures of tax distortions, discounting for time and risk, and trading

frictions that arise in any competitive equilibrium. We shall use these measures to characterize

optimal portfolios.

In our benchmark economy, our measure of tax distortions is

ξt ≡
∂Tt/∂τ t
Yt

=
∂ ln (τ tYt)

∂ ln τ t
= 1− γ

τ t
1− τ t

. (6)

The numerator, ∂Tt/∂τ t, is the actual response of tax revenues to a marginal increase in tax

rates; the denominator, Yt, is the statutory response to this increase, i.e., the increase in tax

revenues if household pre-tax earnings were held fixed. The ratio measures the deadweight

loss from taxation. If ξt = 1, taxes are not distortionary. Equation (6) shows that the ratio ξt

can also be interpreted as the tax revenue elasticity ∂ ln Tt/∂ ln τ t. The third equality in (6)

follows from the household intratemporal optimality condition

yt = θt (1− τ t)
γ . (7)

The return on holding a security i from time t to t + 1 is Rit+1 ≡
(
Qit+1 +Di

t+1

)
/Qit,

with R0
t+1 = 1/Q0

t and R0,pvt
t+1 = 1/Q0,pvt

t being returns on one-period government and private

bonds. Returns Rit+1 on all risky securities are time-(t+ 1) measurable, but both R0
t+1 and

R0,pvt
t+1 are known at time t and, therefore, time-t measurable. The excess return of security i
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is rit+1 ≡ Rit+1 −R0
t+1. Three stochastic discount rates between periods t and t+ k are

Qt,k ≡ Q0
t × ...×Q0

t+k−1,

Qpvtt,k ≡ Q0,pvt
t × ...×Q0,pvt

t+k−1,

Qt,k ≡ 1∑
i≥1 r

i
t+1ω

i
t +R0

t+1

× ...× 1∑
i≥1 r

i
t+kω

i
t+k−1 +R0

t+k

, (8)

where
∑

i≥1 denotes the sum over all assets i ∈ G \{0}. The first two stochastic discount rates

use cumulative returns on one-period government-issued and privately-issued bonds, respec-

tively, while Qt,k uses cumulative returns on government portfolios. We use a convention that

Qt,0 = Qpvtt,0 = Qt,0 = 1 so that the government budget constraint in some period T +1 can be

written in the present value form as

ET+1

∞∑
t=1

QT+1,t−1XT+t = BT

R0
T+1 +

∑
i≥1

ωiT r
i
T+1

 . (9)

Households’ intertemporal optimality conditions are complicated, a consequence of the

large number of possible specifications of preferences and non-pecuniary costs and benefits of

securities, either due to direct utility benefits or trading frictions. For most of our analysis,

these complexities can be side-stepped. Let βt Pr
(
st
)
Mt

(
st
)
be the Lagrange multiplier on

the household budget constraint (4). For each security i we define a wedge Ait by

1

Ait
≡ Et

βMt+1

Mt
Rit+1. (10)

This wedge equals one whenever security i brings with it no non-pecuniary benefits because

it enters neither utility function Ut nor asset trading constraint φt so that A0,pvt
t = 1 for all t.

Note that lnA0
t = lnQ0

t − lnQ0,pvt
t is the difference between prices of government and private

one period bonds so we refer to lnA0
t as a liquidity premium.5 We define At,0 = 1 and At,k as

At,k ≡ A0
t × ...×A0

t+k−1

for k≥ 1. Thus, lnAt,k = lnQt,k − lnQpvtt,k corresponds to the accumulated liquidity premium

between periods t and t+ k for any k ≥ 0.

In our benchmark economy, government securities are perfect substitutes with one another,

which implies that liquidity wedges for all government securities government securities are

equal.

5The empirical literature has found that government debts are often traded at higher prices (i.e., offer lower
returns) than virtually equally riskless debts issued by highly rated private corporations. There exist various
explanations for this. We refer to this price difference as a “liquidity premium” without necessarily taking a
stand on whether it is driven by liquidity services, tax benefits, or other types of convenience benefits that
government debt provides.
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Lemma 1. If government securities are perfect substitutes then in any competitive equilibrium

Ait = A0
t for all t, i ∈ Gt.

3.2 Analysis

We first use a variational approach to analyze determinants of an optimal public portfolio

and then proceed to apply a class of small-noise approximations that considerably simplifies

isolating key forces.

Start from a competitive equilibrium and consider a family of perturbations. Suppose that

at history sT the government (i) increases holdings of security j ∈ GT by ϵ while simultaneously

reducing holdings of the one-period government bond by the same amount; (ii) unwinds this

transaction in period T +1, thereby realizing excess returns rjT+1ϵ; (iii) rolls over these returns

for another t− 1 periods by putting them into one-period government bonds; and (iv) adjusts

taxes to distribute these returns back to households in period T + t.

By construction, this perturbation increases government revenues by ϵrjT+1/QT+1,t−1 in

period T + t. As ϵ → 0, the marginal effect from this perturbation on taxes is ∂j,T,t,ϵτT+t =

1/
(
ξT+tYT+t

)
. Applying the envelope theorem to maximization problem (3), the welfare

impact of this perturbation is

∂j,T,t,ϵV0 = βT+t Pr
(
sT
)
ETMT+t

rjT+1

QT+1,t−1

1

ξT+t
sign(ϵ). (11)

A necessary condition for optimality is that there are no welfare improving perturbations. If

both positive and negative ϵ are feasible, we obtain6

ETMT+t

rjT+1

QT+1,t−1

1

ξT+t
= 0 for all T, t ≥ 1, j ∈ GT . (12)

To bring out the economics under equation (12), it is useful to compare it to household

intertemporal optimality conditions

ETMT+t

rjT+1

QpvtT+1,t−1

=
1

AjT
− 1

A0
T

= 0 for all T, t ≥ 1, j ∈ GT . (13)

The first line follows from households’ Euler equations and holds for any security j. The

second line follows from the fact that in the bechmark economy government securities are

6Our empirical application focuses on optimal government holdings of debts of different maturities. We find
that it is optimal for the government to issue positive quantities debts of all available maturities. This means
that both positive and negative ϵ are feasible, so we focus on this situation in our theoretical analysis. Using
our approach, it is possible but algebraically cumbersome to incorporate corner solutions.
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perfect substitutes so that according to Lemma 1 their liquidity wedges are equal. There are

two main differences between (12) and (13). A first is in how returns are valued on the margin.

The shadow value of a unit of resources in household’s hands in period T + t is the Lagrange

multiplier on the household budget constraint, MT+t. The shadow value of a unit of resources

in government’s hands is MT+t/ξT+t. The tax revenue elasticity ξT+t appears here because

of the deadweight cost of transferring resources between households and the government. A

second difference between (12) and (13) arises because households and the government transfer

resources intertermporally at different prices, QT+1,t−1 and QpvtT+1,t−1 respectively.

While equations (12) and (13) are similar, there is an important conceptual difference. The

household optimality condition (13) holds in any competitive equilibrium, whether or not the

government sets its policies optimally. Equation (12) holds only when government policies are

optimal. Implications of equation (12) can be better exhibited if we “net out” the household

optimality condition (13) from it.

We can gather more insights by using small-noise expansions to approximate our optimality

conditions. We consider the following class of second-order approximations. We can write the

underlying state process sT+t for t ≥ 0 as

sT+t = ET sT+t + εT+t,

where ET εT+t = 0. Let sT+t ≡ ET sT+t and consider a family of stochastic processes param-

eterized by scalar σ ≥ 0 where the process for the underlying states is given by sT+t (σ) =

sT+t + σεT+t. The case σ = 1 corresponds to our economy, while the case σ = 0 corresponds

to an economy in which all uncertainty vanishes after history sT . Our approximation is based

on second-order Taylor expansions of equilibrium conditions with respect to σ around σ = 0.

A related approach is often used in portfolio theory.7 We use signs “≃” to denote relation-

ships that hold up to third order of approximation and “≈” to denote a relationship in a

deterministic limit that emerges as σ → 0.

Subtracting (13) from (12) and applying our small noise approximation, we obtain

covT

(
ln ξT+t, r

j
T+1

)
≃ −covT

(
lnAT+1,t−1, r

j
T+1

)
for all T, t ≥ 1, j ∈ GT . (14)

This equation highlights that an optimal policy strives to equate fluctuations in the tax revenue

elasticity ξT+t to fluctuations in liquidity premia lnAT+1,t−1 at all time horizons t. Other things

7Samuelson (1970) might be the first one to use it in portfolio applications. Schmitt-Grohe and Uribe (2004)
provide a classic exposition of this approach to study macroeconomic models. Devereux and Sutherland (2011)
apply such perturbations to study portfolio problems in open economy models. Our small noise expansion is
slightly different from theirs as we use small noise expansion after a specific sT rather than around a steady-state
at period 0.
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being equal, fluctuations in deadweight loses are costly. If the government and households can

borrow at the same rate of interest, so that lnAT+1,t−1 = 0 for all T, t, then the government

should use its risky securities to minimize fluctuations in ln ξT+t by setting the covariance on

the left-hand side of (14) to zero. This tax smoothing prescription is similar to Bohn (1990)

(see his equation (8)) but it holds in a much more general environment than he studied. When

the interest rates that households and the government face are not the same, deviations from

tax smoothing are called for. While there are contemporaneous welfare gains from issuing more

public debt in states with high liquidity premia, servicing that additional debt requires levying

higher taxes in the future. Equation (14) captures the optimal way to balance tax smoothing

against liquidity provision.

Because tax revenues must be sufficient to finance primary deficits and debt service, the

government budget constraint establishes a tight link between tax optimality conditions (14)

and an optimal public portfolio. To investigate ramifications of this link, we start with the

following second-order approximation of the budget constraint (9)

∞∑
t=1

ETQT+1,t−1covT

(
XT+t, r

j
T+1

)
+

∞∑
t=2

ETXT+tcovT

(
QT+1,t−1, r

j
T+1

)
≃BT

∑
i≥1

ωiT covT

(
riT+1, r

j
T+1

)
for all T, j ∈ GT .

(15)

This is simply a second-order approximation of an identity that states that fluctuations in

returns on government portfolio (the right-hand side of (9)) should be consistent with fluctua-

tions in primary surpluses and interest rates (the left-hand side (9)). But because it is framed

in terms of covariances, it is easy to relate it to the optimality conditions (14). By itself, equa-

tion (15) imposes few restrictions as it holds in equilibrium at both optimal and suboptimal

government policies. To obtain a prescription for an optimal portfolio −→ω T , we shall combine

equation (15) with (14).

To prepare to combine equations (14) and (15), first note that fluctuations in the primary

surplus XT+t can emanate from two sources: fluctuations in taxes τT+t (and hence in the tax

revenue elasticity ξT+t) and fluctuations in (θT+t, GT+t). We want to distinguish these two

sources of fluctuations. Define

lnY ⊥
t ≡ lnYt − γ ln (1− τ t) .

Since γ is the elasticity of earnings with respect to the retention rate (1− τ t), the variable

lnY ⊥
t removes fluctuations in output arising from fluctuations in tax rates. If we define X⊥

T+t

as

X⊥
T+t ≡ ETTT+t × lnY ⊥

T+t − ETGT+t × lnGT+t,
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we can obtain a decomposition

covT

(
XT+t, r

j
T+1

)
≃ covT

(
X⊥
T+t, r

j
T+1

)
− ET ζT+tETYT+tcovT

(
ln ξT+t, r

j
T+1

)
, (16)

where ζT+t ≡ γ−1 (1− (1 + γ) τT+t)
2.

Equation (16) decomposes fluctuations in the primary surplus into two components: fluc-

tuations driven by changes in tax rates (the second term on the right-hand side of (16)) and

fluctuations driven by other shocks (the first term on the right-hand side of (16)). If we combine

(14), (15), and (16), we obtain the main result of this section.

Theorem 1. An optimal public portfolio in the benchmark economy satisfies

∞∑
t=1

ETQT+1,t−1covT

(
X⊥
T+t, r

j
T+1

)
+

∞∑
t=2

ETXT+tcovT

(
QT+1,t−1, r

j
T+1

)
+

∞∑
t=2

ETQT+1,t−1ET ζT+tETYT+tcovT
(
lnAT+1,t−1, r

j
T+1

)
≃ BT

∑
i≥1

ωiT covT

(
riT+1, r

j
T+1

)
(17)

for all T, j ∈ GT .

The right-hand side of equation (17) contains optimal portfolio weights −→ω T that are chosen

so that fluctuations in the return on the public portfolio hedge three distinct risks that the

government faces and that are summarized by the covariances on the left-hand side of (17).

We call these three the primary surplus, the interest rate, and the liquidity risk, respectively.

Equation (17) shows that, other things being equal, securities have higher weight in the optimal

portfolio if their returns increase when primary surpluses are high,8 when interest rates are

low, and when liquidity premia are high. States with lower than expected present values of

primary surpluses (either directly through changes in expected revenues and spending or via

higher interest rates) or with lower than expected liquidity premia, require a costly increase in

tax rates unless the government holds liabilities whose value fall in those same states.9

There is no reason to expect one security to be equally good at hedging all risks at all

time horizons. Thus, the coefficients that multiply these covariances can be interpreted as

quasi-weights that scale risks across different time periods as well as across different types of

risks for a given time period. To understand these quasi-weights, it is useful to focus on a

special case of our benchmark economy that we call a stationary benchmark economy.

8Recall our convention that BT denotes government obligations, i.e. debts. If returns on debt positively
covary with the primary surplus, debt obligations become lower in states in which the primary surplus decreases.

9The benchmark economy assumes γ > 0 and formula (17) continues to apply as γ → 0. However, in
the limiting case when γ = 0, taxes are non-distortionary, Ricardian equivalence holds, and any government
portfolio is optimal.

15



Definition 4. An optimal competitive equilibrium is stationary (at sT ) if there are some

constants Γ and R such that for all t ≥ 1 (i) ET GT+t+1

GT+t
≈ ET θT+t+1

θT+t
≈ Γ, (ii) ET δT+t ≈ δT ,

(iii) ETRiT+t ≈ R for all i, and (iv) ET cT+t+1

cT+t
≈ Γ.

Stationarity is a convenient benchmark under which all real variables grow at a constant

rate Γ in the deterministic limit. Conditions (i) and (ii) state that expenditures GT+t and

productivity θT+t grow at rate Γ, and that there no predictable trend in the rate of discount.

Condition (iii) ensures that in the deterministic economy all securities earn the same holding

period returns, so that in a stochastic economy all excess returns are ultimately driven by

risk. These conditions imply that in the optimal equilibrium of a deterministic economy, tax

rates are constant and that output YT+t and the primary surplus XT+t both grow at rate Γ.

Condition (iv) is simply a balanced growth requirement that ensures that consumption grows

at the same rate as output. It can be dispensed with (see the appendix) but our discussion is

more streamlined with it.

This stationary economy allows us simplify the weights that appear in the public portfolio.

To state our results succinctly, we define four covariance matrices ΣQT , Σ
X
T , Σ

A
T , ΣT as follows

ΣQT [j, t] = covT

(
lnQT+1,t

Q0
T

, rjT+1

)
, ΣAT [j, t] = covT

(
AT+1,t, r

j
T+1

)
,

ΣXT [j, t] = covT

(
X⊥
T+t

ETYT+t
, rjT+1

)
, ΣT [j, i] = covT

(
riT+1, r

j
T+1

)
.

Corollary 1. In a stationary benchmark economy, an optimal public portfolio satisfies

ΣT
−→ω T ≃

[
πQΣQT + πXT Σ

X
T + πATΣ

A
T

]−→
β̂ , (18)

where β̂ = βΓ1−1/IES, πQ = 1− β̂, πXT = β̂
−1

ΓYT /BT , π
A
T = ΓζTYT /BT , and

−→
β̂ is a column

vector with coefficients
−→
β̂ [t] = β̂

t
.

Stationarity allows us to obtain simple and interpretable formulas for optimal quasi-weightings

of different risks in the public portfolio. Intertemporally, all three risks in period T + t are

weighted by β̂
t
, which depends on the discount factor β, the growth rate of the economy Γ, and

the coefficient of the intertemporal substitution IES. The common assumption that IES = 1

implies that β̂ = β. Intratemporally, the three risks are weighted with quasi-weights πQ, πXT

and πAT . These weights imply that the relative importance of hedging interest rate risks is

higher when the debt-to-GDP ratio is larger (since πXT and πAT decrease in BT /YT ), and that

the relative importance of hedging the liquidity risk is lower when taxes τT are higher (since πAT

decreases in τT ). The economic logic driving the first insight is that interest rate risk matters

16



to the government when it rolls over its debts; thus, the more debt there is that needs to be

rolled over, the larger is welfare cost of managing interest rate risk, and the bigger is the role

of hedging that risks in forming an optimal portfolio. The economic logic driving the second

insight is that to manage the liquidity risk the government needs to vary its outstanding debt,

and consequently change future taxes. Since deadweight losses are convex in tax rates, the

cost of uncertainty from actively managing liquidity risk is larger when the current tax burden

is already high.

If matrix ΣT is invertible then an optimal portfolio is unique and given by

−→ω ∗
T ≡

[
πQΣ−1

T ΣQT + πXT Σ
−1
T ΣXT + πATΣ

−1
T ΣAT

]−→
β̂ . (19)

We refer to −→ω ∗
T as a target portfolio. It will play an important role in our extension to economies

that are neither small nor open.

Observe that although the optimal portfolio in equation (19) depends on various measures

of risk, it does not include a term that captures either expected excess returns or risk aversion,

objects that plays central roles in standard portfolio theory (e.g., Samuelson (1970), Merton

(1971), Campbell and Viceira (1999), Viceira (2001)). This finding could have been anticipated

from our earlier discussion of government and household optimality conditions (12) and (13).

Since the government is benevolent, it has the same attitude towards risks and returns as

households. So long as government securities are perfect substitutes, there is no reason for the

government to chase higher excess returns on securities – households can get those same excess

returns for themselves without bearing deadweight losses from taxation. Only if government

securities are imperfect substitutes for private securities should the government depart from

focusing exclusively on hedging risks. We discuss this case in Section 5.3.

3.3 Optimal bond portfolio

So far, we considered an optimal public portfolio consisting of an arbitrary set of securities.

But bonds are the most common securities that governments have used to smooth aggregate

fluctuations. In this section, we show how focusing on a portfolio of bonds brings several

additional insights.

For simplicity, we assume that all bonds are zero coupon discount bonds. Let QtT be the

period T price of a pure discount bond that matures in period T+t. The long t-period discount

rate QtT is equal to the expectation of the product of one-period discount rates over the next t

periods, Q0
T,t plus a term that reflects liquidity and risk premia. It can be shown that the risk

premium term is of the second order. As an implication of covariances themselves being of the
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second order, covT

(
QtT+1, r

j
T+1

)
≃ covT

(
QT+1,t, r

j
T+1

)
. Furthermore, fluctuations in holding

period returns of a t-period pure discount bond, rtT+1 = QtT+1/Q
t+1
T , are closely related to

fluctuations in a t-period-ahead interest rate, 1/QtT+1, since both are driven by fluctuations

in the same price QtT+1. The most direct way to see the implication of these two observations

is by deriving a counterpart of expression (19) for a market structure with a full set of pure

discount bonds.

Corollary 2. When the set of government securities consists of the full set of pure discount

bonds, then ΣT ≃ ΣQT in the optimal competitive equilibrium. If ΣT is invertible, then the

target portfolio of bonds in the benchmark stationary economy is

−→ω ∗
T =

(
1− β̂

)−→
β̂ +

[
πXT Σ

−1
T ΣXT + πATΣ

−1
T ΣAT

]−→
β̂ . (20)

The central insight from this corollary is that bonds are a very good instrument for hedging

interest rate risk. By matching the duration of debts to the duration of liabilities, the gov-

ernment can eliminate expected debt roll-overs. The remaining unexpected roll-over risks has

only third-order effect on welfare. The portfolio of government bonds that hedges interest rate

risk equals
(
1− β̂

)−→
β̂ and can be replicated by a consol paying coupons that grow at rate Γ.

3.4 Nominal economy

So far, we have focused on real economies but with only minimal changes our analysis extends

to nominal economies. In the appendix, we formally define a nominal version of our benchmark

economy in which the government can trade nominal rather than real securities. Let Pt be

the nominal price level and Πt ≡ Pt/Pt−1 be the inflation rate. We extend the definition of

stationarity to include a condition that ETΠT+t≈ΠT for all T, t so that inflation is approxi-

mately a random walk, consistent some models that approximate U.S. data (see, for example,

Atkeson and Ohanian (2001) or Stock and Watson (2007)). The parameter Γ still denotes the

growth rate of real variables. In the appendix we verify

Corollary 3. In the nominal economy, equations (18), (19) and (20) hold, except that now all

variables in ΣT , Σ
X
T , Σ

A
T , Σ

Q
T are measured in nominal terms, and the coefficients that multiply

ΣXT and ΣAT become ΠTπ
X
T and ΠTπ

A
T respectively.

4 The target portfolio in the U.S. data

Formulas for the optimal portfolios derived in Section 3 have the convenient property that

key objects have straightforward empirical counterparts. In addition to population covariance
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matrices that can be approximated by sample covariance matrices, the target portfolio depends

on only three preference parameters: an elasticity of earnings γ, an intertemporal elasticity

of substitution IES, and a time discount factor β. These three parameters are routinely

calibrated in applied work and there is widespread consensus about their plausible magnitudes.

Our optimal portfolio formulas are closely related to the “sufficient statistics” approach to

characterizing optimal policies that has become popular in public finance and macroeconomics

(see Chetty (2009) for an overview). The small-noise expansions that we used are new to

this literature. Prior to our work, the sufficient statistics approach has been used either to

study optimal policies in deterministic models (e.g., the optimal tax problems in Saez (2001)

or Golosov et al. (2014)) or models with very simple stochastic structures (e.g., the optimal

unemployment insurance analysis of Chetty (2006)). Small-noise expansions allow us to extend

this approach to much richer stochastic environments that can be used to study questions such

as portfolio management in realistic settings.

In this section, we use U.S. data to evaluate the target portfolio formulas. We focus on a

portfolio of bonds of different maturities, as bonds are the securities that are most commonly

used by governments to respond to business cycle frequency shocks (we discuss other securities

in Section 5.6). As with all formulas from the “sufficient statistics” literature, it is important

to keep in mind, when bringing data to the theory, that theoretical objects are measured

under optimal policies, while their empirical counterparts are measured under existing policies.

Although we ignore this distinction for now, we return to it in Section 5.2.

4.1 Data

We use U.S. national income and product accounts for data on GDP, primary surplus, tax

revenues and expenditures. We use data on average marginal tax rates from Barro and Redlick

(2011) that we extend to 2017. To measure returns on government debts of different maturities,

we use the Fama Maturity Portfolios published by CRSP. There are 11 such portfolios, of which

ten portfolios correspond to maturities of 6 to 60 months in 6 months intervals, and a final

portfolio for maturities between 60 and 120 months. We add a twelfth portfolio that consists of

the nominal 3-Month Treasury Bill, published by the Federal Reserve Board of Governors. All

data are quarterly, nominal, and extend from 1952 to 2017. Finally, we use data on the yield

curve of High Quality Market (HQM) corporate bonds provided by the U.S. Treasury to infer

the short-maturity return on privately-traded bonds. The shortest maturity that Treasury

reports is one year, and we use the yield curve to impute the 3 month yield. The data for

HQM bonds are available from 1984. More details about data sources and construction are in

19



Appendix B.1.1.

In Table 1, we present summary statistics of contemporaneous covariances, means, and au-

tocorrelations. For convenience, all variables are multiplied by 100 and reported in quarterly

percentage points. Several patterns that emerge from this table will play an important role

in shaping an optimal portfolio. Covariances of excess returns of government bonds of differ-

ent maturities are several orders of magnitude larger than covariances of excess returns with

primary surpluses, tax rates, or liquidity premia. Furthermore, covariances of excess returns

with primary surpluses have opposite signs from covariances of excess returns with liquidity

premia. This reflects that the primary government surplus is procyclical, but that risk and

liquidity premia are countercyclical.

Table 1: COVARIANCE MATRIX

Excess returns rjt for various maturities j Surplus

to

GDP

Tax

rate

Liquidity

pre-

mium

6m 12m 18m 24m 30m 36m 42m 48m 54m 60m 120m Xt/Yt τt lnA0
t

6m 0.092 0.2 0.29 0.36 0.43 0.48 0.5 0.53 0.56 0.61 0.69 -0.01 0.017 0.003

12m 0.49 0.73 0.91 1.1 1.2 1.3 1.4 1.5 1.6 1.8 -0.10 -0.021 0.007

18m 1.1 1.4 1.7 1.9 2.1 2.2 2.4 2.6 3 -0.17 -0.027 0.011

24m 1.8 2.2 2.5 2.7 3 3.1 3.5 3.9 -0.26 -0.068 0.013

30m 2.8 3.2 3.5 3.7 3.9 4.4 5 -0.31 -0.091 0.016

36m 3.6 4 4.3 4.5 5.1 5.8 -0.40 -0.081 0.018

42m 4.4 4.8 5.1 5.6 6.5 -0.45 -0.140 0.020

48m 5.4 5.6 6.2 7.2 -0.50 -0.180 0.021

54m 6.1 6.7 7.7 -0.56 -0.190 0.023

60m 7.8 8.6 -0.62 -0.170 0.023

120m 10 -0.75 -0.290 0.027

Xt/Yt 4.30 0.940 -0.000

τ t 1.900 -0.014

lnA0
t 0.002

Mean 0.076 0.14 0.2 0.23 0.26 0.3 0.33 0.33 0.36 0.29 0.44 2.5 30 0.043

Autocorr -0.11 -0.08 -0.09 -0.08 -0.09 -0.07 -0.05 -0.03 -0.04 -0.07 -0.03 0.96 0.92 0.84

Notes: Excess returns 6m, 12m, ... are the nominal excess returns in Fama maturity portfolios corresponding to

6-12 months, 12-18 months, ... maturity bins, respectively. Surplus is measured as federal tax receipts (including

contributions to social insurance) less federal government consumption expenditure (including transfer payments

to persons) from the BEA. The tax rates series is an average marginal tax rate on income computed by Barro

and Redlick (2011) and extended to 2017. The liquidity premium on the short bond, lnA0
t , is inferred from

prices of government-issued and high quality privately issued bonds. All data are quarterly and in percentage

points. All series are for 1952-2017 with the exception of the short liquidity premium that is for 1984-2017.
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4.2 Target portfolios from U.S. data

Since most U.S. public debt is in the form nominal bonds, we use the nominal versions of

equations (19) and (20) to evaluate target portfolios. We set the three preference parameters

that appear in those formulas to γ = 1
2 , IES = 1, and β = 0.99, which are commonly used

values. We set Γ = 1.005 to target an annual two percent growth rate of real variables, roughly

in line with U.S. data. We set τT = 1
3 and BT

YT
= 4 so that taxes and debt to (quarterly) GDP

are similar to current U.S. levels, and Π = 1.005 to be in line with the U.S. Federal Reserve

target of a two percent annual inflation rate.

We now discuss how population covariance matrices Σ−1
T , ΣQT , Σ

A
T , Σ

X
T can be approximated.

There are several challenges. First, Table 1 reports sample counterparts of ergodic covariances,

while our theory is about covariances conditional on a period-T information set. Second, our

formulas require an inverse of the covariance matrix of returns, Σ−1
T , and it is known10 that

simply calculating an in-sample covariance matrix and then taking its inverse can lead to large

sampling errors. Finally, we need to measure not only covariances of returns with contemporary

realizations of various macroeconomic variables but also their realizations at all future horizons.

We overcome these challenges by adopting a parsimonious dynamic factor structure repre-

sentation.11 Let zt be a stacked vector that consists of excess returns
{
rjt

}
j
for the 11 portfolios

of different maturities j, the liquidity premium lnA0
t , and de-trended nominal lnY ⊥,$

t (con-

structed from nominal GDP and tax rates and the Section 3.2 definition of lnY ⊥,$
t ) and nominal

expenditures lnG$
t . We use zkt to denote the kth element of this vector. We posit the following

stochastic process

zkt = αk + ρkz
k
t−1 + κkft + εkt for all k, (21)

ft = αf + ρfft−1 + εft ,

where ft is a factor and
{
εkt , ε

f
t

}
k,t

are residuals. We set ft to be the first principal component

extracted from observed returns, the government surplus, output, and the risk-free rate, and

denote the variances of the residuals by
{
σ2k, σ

2
f

}
k,f

. We use the subscripts k ∈ {Y,G,A}

to denote the variables lnY ⊥,$
t , lnG$

t , and lnA0
t , and k = j to denote returns on bonds of

maturity j. We report estimates in Table 2.

10See, for example, early work by Jobson and Korkie (1980), Merton (1980), Michaud (1989) and more recent
work by Jagannathan and Ma (2003) and DeMiguel et al. (2007).

11Factor representations are popular in finance for estimating Σ−1
T (see, e.g., MacKinlay and Pastor (2000),

Chan et al. (1999), Senneret et al. (2016)). We superimpose a VAR structure on the factor model to obtain
covariance estimates at all leads and lags. This extension is similar in spirit to the Factor Augmented Vector
Auto Regressions (FAVAR) literature (see, e.g. Bernanke et al. (2005) and Bai et al. (2016)).

21



Table 2: FACTOR MODEL ESTIMATION (BASELINE)

Excess returns r
j
t for various maturities j

6m 12m 18m 24m 30m 36m 42m 48m 54m 60m 120m lnG$
t lnY

⊥,$
t lnA0

t ft

αk 0.086 0.155 0.220 0.245 0.284 0.315 0.346 0.344 0.372 0.304 0.444 -0.177 -0.153 0.006 0.024
(0.014) (0.025) (0.033) (0.035) (0.039) (0.039) (0.038) (0.037) (0.037) (0.043) (0.030) (0.016) (0.008) (0.003) (0.501)

ρk -0.107 -0.057 -0.041 -0.043 -0.042 -0.025 -0.022 -0.008 -0.022 -0.027 0.003 1.000 1.000 0.828 0.000
(0.043) (0.035) (0.030) (0.025) (0.023) (0.020) (0.018) (0.016) (0.015) (0.015) (0.009) (nan) (nan) (0.047) (nan)

κk 0.028 0.074 0.118 0.157 0.199 0.230 0.257 0.285 0.306 0.345 0.404 -0.032 -0.047 0.001 0.000
(0.002) (0.003) (0.004) (0.004) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.004) (0.016) (0.008) (0.000) (nan)

σ2
k 0.044 0.154 0.267 0.300 0.378 0.384 0.356 0.345 0.341 0.460 0.222 4.231 1.147 0.000 63.753

(0.004) (0.014) (0.024) (0.027) (0.034) (0.034) (0.031) (0.031) (0.030) (0.041) (0.020) (0.375) (0.102) (0.000) (5.637)

R2 0.536 0.698 0.771 0.840 0.870 0.898 0.922 0.938 0.946 0.943 0.979 0.015 0.109 0.727 0.000

Notes: This table records the OLS estimates of the factor model (21). Standards errors are in parenthesis.The row titled

“R2” are values of R-squared for each equation in the system (21). The sample for excess returns and primary surpluses

normalized by outputs is 1952-2017, and the sample for the one-period liquidity premium is 1984-2017. The time period

is a quarter.

We consider several variants of this factor model. For concreteness, in the body of the

paper we report results for the special case that satisfies the stationary conditions given in

Definition 4. This requires additional restrictions to (21) that set ρY and ρG to be equal to

one, and ρf to zero. We also estimate our factor model without imposing these restrictions

and find that our results are virtually unchanged. We also allow for heteroskedastic shocks by

estimating
{
σ2k, σ

2
f

}
k,f

for each date and show that that variations in the target portfolio from

time-varying covariances are fairly small.

We are interested in constructing optimal portfolios of bonds for arbitrary sets of maturities—

for instance all bonds of maturities 1 . . . N ≤ ∞ quarters—but CRSP bond return data are

available for only a subset of maturities. To implement our formulas, we extrapolate our

estimates
{
κj , σ

2
j

}
j
from the 11 maturities j for which we have data to any j ≥ 1 using a

convenient functional form κj = e0 − e0 exp
(
−e1j

)
and similarly for σ2j . This functional

form allows for a parsimonious parametrization how the loadings vary with maturities. The

coefficient e1 captures the slope while the coefficient e0 bounds the range of values between[
0, e0

]
.12

The factor model (21) allows us to construct the target portfolio of bonds for any subset of

maturities G as follows. Pick any collection of maturities G. The factor structure (21) implies

that Σ−1
T , ΣQT , Σ

A
T , Σ

X
T for that G can be easily constructed, and we can compute portfolios

12Fits are reported in the appendix. There we also show that our main results change little with an alternative
extrapolation in which we use linear extrapolations for intermediate maturities, and by assuming that

(
κj , σ

2
j

)
for all maturities greater j greater than 40 quarters are equal to

(
κ40, σ

2
40

)
.
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that hedge primary surplus, liquidity and interest rate risks in closed form. Define a constant

χ−2 = σ−2
f +

∑
i∈G κ

2
iσ

−2
i , the components of the optimal portfolio satisfy

Σ−1
T ΣXT

−→
β [j] =

β̂

1− β̂

(
κY

T $
T

Y $
T

− κG
G$
T

Y $
T

)
︸ ︷︷ ︸

≡KX
T

(
κj
σ2j
χ2

)
,

Σ−1
T ΣAT

−→
β [j] =

(
β̂

1− ρA

)[(
1

1− β̂

)
−

(
ρA

1− β̂ρA

)]
κA︸ ︷︷ ︸

≡KA
T

(
κj
σ2j
χ2

)
,

(22)

Σ−1
T ΣQT

−→
β [j] = β̂

j
+
∑
t/∈G

β̂
t
κt︸ ︷︷ ︸

≡KQ
T

(
κj
σ2j
χ2

)
. (23)

These expressions highlight several points about forming optimal portfolios. Consider the

first equality in (22). Fluctuations in lnX⊥,$
t are driven both by the common component,

proportional to ft, and by the idiosyncratic εx,t component orthogonal to the factor. A com-

mon factor shock affects the present value of lnX⊥,$
t proportionally to KX

T . Common and

idiosyncratic shocks also make returns fluctuate. The common component proportional to σ2f

helps hedge primary surplus risk, while the idiosyncratic component that is proportional to

σ2j does not. The ratio χ2/σ2j summarizes this trade-off. Equation (22) shows a simple rule

for hedging surpluses, with bonds that have higher κj/σ
2
j getting higher weights. The second

equation in (22) shows that a portfolio that hedges liquidity risk takes similar form.

Hedging interest rate risk is different. While returns on bond of maturity j can hedge only

a common component of fluctuations in the primary surplus and liquidity, it can hedge both

common and idiosyncratic components of the j-period ahead interest rate. This is the first

term on the right hand side of (23) in which β̂
j
appears because of discounting, since hedging

short- horizon fluctuations in interest rates is more important than fluctuations in very long

term interest rates. For interest rates of duration i /∈ G, only the common component can be

hedged. This component is captured by the second term on the right hand side of (23) and

has the same structure as (22).

While factor structure (21) is particularly simple, it conveys broad principles for forming

hedging portfolios that prevail more generally. This point is useful to keep that in mind as we

describe features of the U.S. data that drive our main quantitative results.

We now turn to discussing quantitative aspects of the target portfolio. Using estimates

from Table 2, we construct target portfolios for two collections of maturities G. First, we
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allow G to consist of all maturities up to some finite number N periods. We set N = 120 so

that the longest maturity is 120 quarters, consistent with long-standing practices by the U.S.

government. We call this a capped target portfolio. Second, we report an optimal portfolio for

when the government can issue bonds of any maturity, N = ∞. We call it the unrestricted

target portfolio. We show these portfolios in Figure 1.

Figure 1(a) shows the capped target portfolio and its interest rate component πQΣ−1
T ΣQT ,

its primary surplus component πXT Σ
−1
T ΣXT , and its liquidity component πATΣ

−1
T ΣAT . Evidently,

the target portfolio almost exactly coincides with its interest rate component, with the other

two components contributing little. This makes sense in light of our Section 4.1 analysis.

As we documented in Table 1, although observed returns on bonds are fairly volatile, co-

movement with macroeconomic variables are small. This makes bonds a poor hedge of these

risks. Consequently, the target portfolio aims mostly to hedge interest rate risk.13
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Figure 1: Portfolio shares of securities with maturities from 2 quarters to 120 quarters. In panel (a) we plot
the target (capped) portfolio and its 3 components that hedge interest rate risk, primary surplus risk, and
liquidity risk, respectively. In panel (b) we plot the capped target portfolio and compared it to the 2017 U.S.
federal debt portfolio (See Appendix B.1.1 for data sources and construction).

Several additional inferences can be made from Figure 1(a). First, the role of primary

surplus and liquidity hedging components increases with increases in a bond’s duration. This

is driven by the fact that returns on longer bonds are more correlated with macroeconomic

variables than are returns on shorter bonds. This can be seen both from Table 1 and from

the fact that coefficients κj/σ
2
j in Table 2 are increasing in j. This is also consistent with

13That bond prices exhibit little systematic co-variation with macroeconomic variables has been documented
by a number of authors (e.g., see references in the handbook chapter of Duffee (2013)). A related literature
on predictability of bond returns (see Cochrane and Piazzesi (2005), Ludvigson and Ng (2009)) also finds
that a significant portion of the predictability of bond excess returns comes from a few linear combinations of
contemporaneous bond prices rather than macroeconomic variables.
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findings of Campbell and Shiller (1991) and Cochrane and Piazzesi (2005) who document that

the predictability in bond returns increases with increases in maturity. While this makes long

bonds a better hedge against fluctuations in macroeconomic variables than shorter bonds, the

magnitudes are small.

Figure 1(a) also shows that that primary surplus and liquidity components have opposite

signs and so offset each other. This is driven by primary surpluses being pro-cyclical while

the liquidity premium is counter-cyclical,14 so hedging the former risk calls for having less

government debt in recessions while hedging the latter risk calls for more government debt.

We now discuss an unrestricted portfolio. First note that limN→∞ χ2 → 0. From equation

(22) and (23), it is easy to see that this implies that maturity by maturity

Σ−1
T ΣXT

−→
β [j] → 0, Σ−1

T ΣAT
−→
β [j] → 0, Σ−1

T ΣQT
−→
β [j] → βj for all j > 0. (24)

But sums (across maturities j) of the three portfolio components 1TΣ−1
T ΣXT

−→
β , 1TΣ−1

T ΣAT
−→
β ,

and 1TΣ−1
T ΣQT

−→
β are finite and satisfy

πXT 1
TΣ−1

T ΣXT
−→
β

πQ1TΣ−1
T ΣQT

−→
β

→ πXT
KX
T

κ∞
,

πAT 1
TΣ−1

T ΣAT
−→
β

πQ1TΣ−1
T ΣQT

−→
β

→ πAT
KA
T

κ∞
(25)

as N → ∞, where κ∞ = limj→∞ κj .
15

Equations (24) and (25) have the following interpretation. As the number of maturities

available grows, the government can reduce the adverse hedging effect of idiosyncratic volatility

from issuing any particular bond by spreading portfolio weights across maturities. Thus, the

contribution of any single maturity to hedging common risk approaches zero roughly at a rate

1/N . This explains equation (24). While the importance of any particular maturity to hedging

the common component of risk diminishes as N increases, the total contribution of the portfolio

to hedging the three risks remains finite. Equation (25) shows that the relative contributions

of the three risks to the target portfolio can be summarized by only three numbers, namely,

KX
T , KA

T and κ∞ as well by the quasi-weights πXT and πAT .

It is easy to use equations (25) and our estimates reported in Table 2 to infer that the

target portfolio mostly focuses on hedging interest rate risks. The two limits in (25), that is,

the sums of the portfolio shares that hedge the primary surplus risk and the liquidity risk are

−0.17 and 0.14, respectively, (see the appendix for the source of these calculations). Thus, the

importance of hedging primary surpluses and liquidity risks is much smaller than hedging of

14This also implies that that covariances of returns with the primary surplus take the opposite sign from their
covariances with the liquidity premium in Table 1.

15Given our functional form for extrapolation, κ∞ = e0.
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interest rate risk. In addition. primary surplus and liquidity risks mostly offset each other. As

a result, hedging interest rate risk contributes most to the target portfolio.

The blue line in Figure 1(b) plots the actual U.S. portfolio of government bonds in 2017.

Relative to the target portfolio, the U.S. government overweights short maturities and under-

weights long maturities in its portfolio. The Macaulay duration, computed as
∑

t∈G tω[t], for

the observed U.S. portfolio is about 5 years, while that for the optimal target portfolio with

capped maturities is about 14 years.

5 Qualifications and extensions

Here we discuss the relationship of this paper to existing work on optimal public portfolios,

dependence of the key formulas (18) and (20) on observed versus optimal allocations, and

implications of relaxing assumptions under the benchmark economy.

5.1 Debt portfolios in neoclassical models

A large literature in macroeconomics starting with, Lucas and Stokey (1983), Zhu (1992) and

Chari et al. (1994), studies optimal public portfolios in “neoclassical” models with complete

markets and a representative agent who has time separable expected utility preferences over

consumption and leisure. Angeletos (2002) showed that it is both feasible and optimal for a

government with access to the full set of pure discount bonds to implement a complete market

allocation. He derives explicit expressions for the required portfolio. Buera and Nicolini

(2004) and Farhi (2010)) found that plausible calibrations of the neoclassical model requires

an optimal portfolio with huge long and short positions.16 Those portfolios differ markedly

from the simple portfolio that we obtained in Section 4.

In this section, we want to understand sources of those differences. We also want to see

how well our simple statistical rules for forming an optimal portfolio perform in environments

where some of the assumptions used to derive our rules are violated, e.g., absence of income

and price effects.17 We follow the model of Buera and Nicolini (2004) closely. We assume that

households are identical, that they maximize

E0

∞∑
t=0

βt

[
c
1−1/IES
t

1− 1/IES
− y

1+1/γ
t

1 + 1/γ

]
16Lustig et al. (2008) study a nominal version of the neoclassical model and impose short-selling as well as

maximum maturity restrictions on the government portfolio. They find that these restrictions are binding and
that an optimal portfolio issues debt almost exclusively in the maximal maturity bond.

17In online Appendix C, we extend our methods to study the target portfolio in a closed economy.
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given their initial debt holdings and subject to a sequence of budget constraints

ct +
∑
i

Qitb
i
t = (1− τ t) yt +

∑
i

(
Qit +Di

t

)
bit−1,

where the set of securities is assumed to be a set of pure discount bonds of all maturities. The

economy is closed, bonds are in the zero net supply, and the government chooses bonds and

taxes τ to finance an exogenous stochastic government expenditure process G. This economy

satisfies all of the conditions that underly our benchmark economy except that it is closed and

that income effects are present.

We first construct an optimal bond portfolio using standard numerical methods. We call

this the theoretical optimal portfolio. We follow Buera and Nicolini (2004) and set IES = 1/2

and γ = 1. We assume that lnGt follows an AR(1) process and calibrate the mean, variance,

and first-order autocorrelation of this process to U.S. data. We discretize this process AR(1)

process by confining possible realizations to be on a grid with 50 points. We set the initial level

of debt to be four times (quarterly) output in a corresponding complete market economy.18

Since the Markov state can take 50 possible values, results of Angeletos (2002) imply that

an optimal allocation can be achieved using only the bonds with the first 50 maturities. We

use formulas that Angeletos derived in his Corollary to his Theorem 1 to compute that optimal

portfolio and report it in the green line in Figure 2.19 By construction, the ratio of the total

market value debt to annual GDP is close to 1, but this conceals large variations in market

values of positions at specific maturities. Consistent with findings of Buera and Nicolini, our

optimal Angeletos portfolio exhibits huge long-short positions and variations in them across

Markov states. Market values of bonds of a given maturity can range from +1, 500 to −1, 000

times annual GDP.

What would our statistical summary approach to approximating an optimal portfolio tell

us for this economy? Returns on different bonds are highly correlated in the neoclassical

economy, which makes the matrix of returns ΣT nearly singular. For that reason, we focus on

formula (18), which does not require inverting ΣT . To make formula (18) operational, we fix

a tolerance level ϵ > 0 and study portfolios −→ω T that satisfy∥∥∥∥ΣT−→ω T −
[
πQΣQT + πXT Σ

X
T + πATΣ

A
T

]−→
β̂

∥∥∥∥ ≤ ϵ, (26)

where ∥·∥ is the L1 norm and the matrix ΣAT of liquidity premia is identically zero. For all

tolerance levels that we have studied, we found that a portfolio that satisfies (26) is very close

18See online appendix B.2 for more details.
19Actually, there are 50 different portfolios, one for each possible value of G. Here we plot portfolio for one of

the middle values (s = 24) of realizations of G for concreteness, but it is representative of the portfolio shapes
in all other states.
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Figure 2: Government portfolio shares ωi of 50 pure discount bonds of maturities i ∈ {1, . . . , 50} quarters.
The dark line is the portfolio implementing the complete market allocation following Angeletos (2002). The
light line is the target portfolio defined by equation (18) taken for the average state 24 in the ergodic distribu-
tion of G. The tolerance is ϵ = 10−5.

to the theoretical optimal portfolio computed above. The red line in Figure 2 presents this

portfolio. Thus, in the Angeletos environment, having ignored income and price effects in

deriving equation (18) seems not to have impaired its ability quantitatively to approximate an

optimal portfolio well.

Since the matrix ΣT is nearly singular, other portfolios also approximately satisfy equation

(18). With highly correlated returns there are multiple portfolios that can attain levels of

welfare that are close to welfare attainable by trading a complete set of Arrow securities. We

find that all such portfolios take large long-short positions. For example, following a suggestion

of Angeletos, we can consider an optimal portfolio that consists of only a one-period bond and

a consol that pays one unit of consumption in perpetuity. It is typically possible to find such

a portfolio that satisfies (26). In this portfolio, it is optimal for the government to issue debt

of 7.46 times annual GDP in the consol and to save −6.46 times annual GDP in the risk-free

bond. This finding is consistent with findings from a similar exercise in Angeletos (2002) and

confirms that in the neoclassical growth model, long maturity debt is an excellent hedge against

primary surplus risk.

Since our statistical formulas are reliable guides for constructing an optimal portfolios in

the neoclassical model, we can use them to understand what drives differences between our

prescribed optimal government portfolio and the one that emerges from the standard growth

model. In the appendix, we produce versions of Tables 1 and 2 but now estimated from
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simulations of a neoclassical growth model instead of U.S. data. We find that simulations

of the neoclassical model generate counterfactual statistics for volatilities of bond prices and

also for their co-movements with macroeconomic aggregates. For instance, for long maturities

the variance of returns is between 0.025 and 0.035, which is 300 times smaller than their

counterparts in U.S. data. The covariances of returns with primary government surpluses

are only 10-20 times smaller, indicating much higher correlations. Furthermore, returns and

surpluses are positively correlated and of opposite sign from those in U.S. data. According to

formula (25), KX

κ∞
is a key determinant of an optimal portfolio. Estimating the factor model

(21) using data simulated from the neoclassical economy gave us a KX

κ∞
that is about 20 times

larger and has an opposite sign to that found from U.S. data.

Thus, a standard neoclassical model misrepresents the asset return movements that shape

an optimal portfolio. It is an inappropriate tool for studying optimal public portfolios, whose

composition depend critically on the properties of co-movements between returns and macroe-

conomic variables.20 Bhandari et al. (2017b) described extensions of a neoclassical growth

model, such as discount factor shocks in the spirit of Albuquerque et al. (2016), that can help

realign theoretical results with statistics summarized in Tables 1 and thereby imply an optimal

public portfolio closer to those prescribed in Section 4.2.

5.2 Current vs optimal policies

Although we have computed statistics called for by formulas (19) and (20) using U.S. data

generated under then-prevailing U.S. policies, the theory that motivates these formulas states

that the statistics are to be computed under outcomes produced by optimal policies. While we

can detect differences between prescribed optimal and observed U.S. portfolios in Figure 1, we

argue here that measuring our key statistics at current policies is unlikely to have substantially

affected our findings.

Our assertion that interest rate risk is the dominant factor shaping an optimal portfolio

would change only if increasing the duration of the U.S. portfolio would materially change the

covariances ΣT , Σ
X
T and ΣAT that govern the optimal portfolio. That seems unlikely for several

reasons.

First, in a large class of macroeconomic models, covariances of returns with other variables

20Researchers have explored optimal portfolios in a neoclassical model when governments face additional
frictions. For example, Faraglia et al. (2018) studied the effect of transaction costs, while Debortoli et al. (2017)
studied the effects of government commitment on the formation of the optimal portfolio. Our results present
reservations about this approach. Government frictions have little effect on asset pricing implications of the
neoclassical model and hence those versions would still have unrealistic predictions about hedging properties of
various bonds and other securities.
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are primarily determined by exogenous shocks;21 changes in government policies have only

modest effects on their values. We have confirmed this assertion both in the neoclassical

model we discussed in Section 5.1 and in an extension of Albuquerque et al. (2016) that uses

discount factor shocks calibrated to match returns on debts in U.S. data.22 In both cases,

we calibrated primitives using a competitive allocation under policies that reflect observed

U.S. policies and also under optimal fiscal policies. We found no substantial differences in

magnitudes of our key statistics.

An alternative approach is to see whether these covariances are affected by government

policies directly in the data. Establishing such causal relationship is a very challenging em-

pirical exercise. We proceed as follows. First, we extended our factor model (21) to allow for

time-varying volatilities in all variables and estimated that GARCH-like specification using

the method of maximum likelihood. That allowed us to construct conditional volatilities at

different dates in the U.S. data. While our estimated conditional volatilities are not constant

and exhibit spikes during recessions, they show little relationship with the duration of U.S.

government portfolio.23

Since the duration of the government portfolio is an endogenous object, we also explored

the following quasi-experiment. Figure 3, taken from Garbade (2007), shows two clear breaks

in the maturity structure of U.S. government debt, one around 1965 and the other around

1975. As Garbade (2007) explains, changes in regulations drove both breaks. For many years,

the U.S. Treasury issued debt mainly in three categories: bills (maturity below 1 year), notes

(below 5 years), and bonds (above 5 years). After 1918 there were a statutory ceiling on bond

coupons of 4.25% and a restriction that bonds had to be issued at par; bills and notes were

not subject to such restrictions. A gradual increase in safe-corporate yields after the war made

those restrictions start to bind around 1965, prompting the Treasury to switch from issuing

bonds to issuing bills and notes. This resulted in a sharp decrease in the average maturity of

U.S. debt over the next decade. In the mid-1970s, Congress enacted several laws that allowed

the Treasury to issue bonds with coupon payments exceeding 4.25% and to issue notes with

maturities up to 10 years. These measures allowed the Treasury to increase the maturity of

its portfolio substantially after 1975.

We investigated whether there were structural breaks in our factor model around 1965

21See for instance Bansal and Yaron (2004), or Albuquerque et al. (2016).
22For details about that exercise, see our earlier version of the paper, Bhandari et al. (2017b).
23While we see systematic spike in volatilities, we do not detect meaningful effects of those spikes on an

optimal public portfolio. In particular, a spike in the liquidity component largely offset the spike in the primary
surplus component of the target portfolio formula. The optimal portfolio seems to adjust somewhat in response
to changes in stochastic volatility, but the associated variation is quantitatively fairly modest. See Figure 8 of
the appendix.
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Figure 3: The duration of outstanding U.S. government debt. Source: Garbade (2007).

and 1975. We did not find evidence that the primary surplus component 1 · πXT Σ
−1
t ΣXt was

affected by those dates. A Chow test did not reject the null that factor loadings summarized

by

(
κY

T $
T

Y $
T

− κG
G$

T

Y $
T

)
were same pre and post 1965 and 1975.

5.3 Government and private bonds are imperfect substitutes

In our baseline economy, we assumed that government bonds are perfect substitutes. We now

extend our theory by relaxing this assumption to derive a formula for the optimal portfolio

when bonds are imperfect substitutes. Quantifying the extra term using U.S. data, we find

small quantitative departures for the optimal portfolio.

Recall, that when government bonds are perfect substitutes, their liquidity wedges are

equal according to Lemma 1. This need not be true in general. We define an excess liquidity

premium ait for i ∈ Gt as
ait ≡

1

A0
t

− 1

Ait
,

and use −→a t to denote a vector of excess liquidity premia for all i ∈ Gt\ {0}.
When bonds are imperfect substitutes, optimality condition (12) becomes

ET
βtMT+t

MT

(
R0
T+2 × ...×R0

T+t

) rjT+1

ξT+t
= − 1

RpvtT

ajT for all T, t ≥ 1, j ∈ GT .

Now the optimality condition has an additional term that reflects that securities can differ

not only in their hedging benefits (the term on the left side of this equation) but also in their

liquidity benefits (the term on the right side of this equation). Like equation (12), this equation
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shows how the government optimally confronts the trade-off between providing hedging and

providing liquidity. It is straightforward to follow the steps taken in Section 3.2 and thereby

extend both Theorem 1 and its corollaries to cover situations when government securities are

imperfect substitutes. In particular, equation (19) would become

ΣTωT ≃
[
πQΣQT + πXT Σ

X
T + πATΣ

A
T

]−→
β + πaT

−→a T ,

where πaT = πAT /
(
1− β̂

)
. It shows that assets with higher excess liquidity premia should have

higher weights in public portfolios.

It is enlightening to extract implications of this formula for an optimal portfolio of bonds.

As before, we use RiT+1 to denote a return on a government issued pure discount bond that

matures in period T + 1 + i. We assume that households can also issue a pure discount bond

that matures in T + 1 + i but that brings no non-pecuniary benefits. We use Ri,pvtT+1 to denote

its return. Let αiT+1 = Ri,pvtT+1 −RiT+1.

From the household optimality condition, we must have

1 = ET
βMT+1

MT
Ri,pvtT+1. (27)

Therefore, we can show that the excess liquidity wedge aiT satisfies

aiT =
1

R0,pvt
T+1

ET
(
αiT+1 − α0

T+1

)
︸ ︷︷ ︸

relative yield slope

+ covT

(
βMT+1

MT
, αiT+1 − α0

T+1

)
︸ ︷︷ ︸

risk correction

. (28)

Equation (28) lets us isolate statistics that determine how excess liquidity premia vary with

maturity i. The “relative yield slope” term captures expected excess returns of privately- vs

publicly-issued bonds. In U.S. data, it is increasing in maturity i. Think about yield curves

for government and private bonds. Yield curves for both government and high quality public

debt are generally upward sloping; but the private yield curve is typically steeper than the

public one. Thus, the relative yield slope statistic implies that longer maturities are, on the

margin, more desirable. The “risk correction” term also depends on i. Depending on the sign

of the correlation of αiT+1 with the household’s stochastic discount factor (SDF)
βMT+1

MT
, the

risk correction statistic can either reinforce or offset the first relative yield curve statistic.

In the appendix, we use a formal factor structure along lines of Koijen et al. (2017) to

estimate a household SDF that prices relatively safe corporate bonds of different maturities

using (27) and estimated aiT . We find that the risk correction term is generally of similar mag-

nitude to but of the opposite sign than the relative yield slope term, implying that coefficients

aiT are small and cannot be statistically distinguished from zero. Thus, we conclude that our
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benchmark portfolios summarized in Figure 1 provide a good approximation to an optimal

maturity structure of public debt even if government bonds are imperfect substitutes.

5.4 Variable elasticity and nonlinear taxation

Our benchmark specification assumes that the elasticity of earnings is a constant γ and that

the tax function is linear. This simplified our derivation of the tax revenue elasticity ξt. More

general specifications of tax functions and preferences about supplying labor will modify the

formula for ξt. Modulo this change, the envelope condition (11), the optimality conditions

(14), construction of X⊥
T+t and Theorem 1 all remain unchanged.

We begin by extending our analysis to cover general preferences

Ut = Ut

(
ct − vt (yt) ,

{
Qitb

i
t

}
i∈Gt

, Gt

)
,

where vt (·) is a twice differentiable, strictly concave function that varies with histories st.

With such preferences, the elasticity of earnings γ now satisfies γt = v′′t (yt) yt/v
′
t (yt) and a tax

revenue elasticity becomes ξt = 1− γtτ t/ (1− τ t).

Next, we consider general non-linear tax functions. Suppose that in period t, the gov-

ernment uses a twice differential tax schedule Tt (·), so that households who earn ŷ receive

after-tax earnings of ŷ − Tt (ŷ). We need to generalize the notion of deadweight losses from

perturbing such a tax schedule. Consider changing the tax function in a direction H (·) so

that households face an earnings tax schedule Tt (·)+ δH (·), where δ is a scalar. Following our

Section 3.1 analysis, we define a tax revenue elasticity as a ratio of the actual change in tax

revenues ∂Tt/∂δ to the statutory change in tax revenues H (Yt), i.e., ξt ≡
∂Tt/∂δ
H(Yt)

. A formula

for ξt in the general non-linear case is

ξt = 1− γ
T ′
t (yt)

1− T ′
t (yt)

1

1 + γ
ytT ′′

t (yt)
1−T ′

t (yt)

ytH′ (yt)

H (yt)
. (29)

Formula (29) might suggest that ξt should depend on the particular perturbation H and

thus take a form ξHt . But this is not the case. Let H be a collection of feasible perturbations.

An immediate consequence of optimality of the tax system is that ξHt should be equal for all

H ∈ H. In particular, if linear perturbations are included in H then to construct an optimal

portfolio we can focus only on them, as we did in Section 3.2.24

24If lump sum taxes are included in H then ξt is always 1 as only lump sum taxes are used to collect revenues.
Our comment still stands, since small perturbations of linear taxes around τ t = 0 are non-distortionary.
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5.5 Endogenous spending and inflation policies

We derived our formulas for an optimal portfolio while holding government spending and infla-

tion policies fixed. In principle, the government can hedge risks by adjusting its expenditures,

which would certainly affect at the very least the covariance matrix ΣXT . Whether the current

path of expenditures is optimal or not requires one to model costs and benefits of a stochastic

process G, which is something outside of the scope of this paper. But regardless of whether a

process G has been optimally chosen, an optimal public portfolio would still satisfy formulas

(19) and (20).

An analogous assertion applies to an extension of our model that includes nominal securi-

ties. Inflation can alter returns on nominal securities and allow a government to put additional

state-contingencies into returns. If a government has full control of the nominal price level,

in principle it can replicate complete markets by altering properties of ΣT , Σ
X
T , and ΣAT . In

practice, the government’s ability to fine-tune inflation appears to be limited: since 2012, when

the U.S. Federal Reserve bank officially announced the 2% inflation target, inflation (measured

using the consumer price index) has been outside a 2%± 0.5% band for 23 out of 42 quarters.

5.6 What are government debts?

Our calculations treated U.S. government bonds as comprehensive measures of U.S. debt.

Auerbach et al. (1994), Lucas and Zeldes (2009), and Lucas (2016) argue that U.S. government

debt is actually much higher as it includes implicit promises embedded in the Social Security

system and guarantees for household mortgages and students loans. But the U.S. government

also owns many assets including public lands and waterways. How should those additional

debts and assets affect our analysis?

It is useful to start by observing that the government’s budget equation (1) is an accounting

identity. Whether we count a promise in period T of a $1 of Social Security payment in period

T + t as part of future expenditures GT+t or as part of current debt of a t period maturity is

arbitrary. What matters for an optimal portfolio problem is which securities can be adjusted

over the frequencies under analysis. In practice, the U.S. holdings of Social Security obligations,

mortgage and debt guarantees, and rivers and parks adjust quite infrequently. The U.S.

Treasury and the Federal Reserve exert substantial day-to-day control over the composition of

government debts of different maturities, but they exercise no control over those assets. For

this reason, we treat all those implicit securities and asset returns as a part of X and focus

instead on an optimal composition of government debts. Having said that, with appropriate

redefinitions of B and X, formula (19) can be used to study how the U.S. government can
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better hedge its risks by adjusting its holdings of public lands and waterways.

5.7 Household heterogeneity

We now extend our framework to include heterogeneous households who differ in their skills

and their access to markets. Heterogeneity adds two motives that affect the optimal portfolio:

hedging fluctuations in inequality and overcoming trading frictions that affect only a subset

of agents. In this section, we show that both motives lengthen the duration of an optimal

portfolio.

Suppose that household h has household-specific productivity θh,t. Also suppose that

households can be partitioned into two sets: T, a set of households who can trade securities,

and N, a set of households who cannot trade securities. We maintain all other assumptions

from our benchmark economy. We then consider our Section 3.2 perturbation. The welfare

effect ∂j,T,ϵV0, of this perturbation is

∂j,T t,ϵV0 = βT+t Pr
(
sT
)∑

h

[
ϖhETβMh,T+t

rjT+1

QT+1,t−1
ξ−1
T+t

yh,T+t
YT+t

]
× sign(ϵ), (30)

whereMh,T+t is the Lagrange multiplier on a type h household’s budget constraint. Comparing

equation (30) to its representative agent counterpart equation (11), there are two new terms

highlighting the new forces that are present in heterogeneous agent settings.

The first is that the inverse tax revenue elasticity is weighted by
yh,T+t

YT+t
, which is the share

of household type h’s income. To the extent these shares fluctuate, there is a motive for the

government to use the returns on its portfolio to hedge those fluctuations. The second is the

presence of the Lagrange multipliers {Mh} on budget constraints for all households. In the

representative agent counterpart, we used household optimality in security markets, that is,

equation (13) to “net out” the implications on government optimality. With heterogeneous

agents, the counterpart of equation (13) holds only for h ∈ T. Thus, fluctuations in the wedge

between the Lagrange multipliers of the traders and non-traders (a measure of deviation from

perfect risk-sharing) capture a planners’ desire to trade on behalf of agents who have trouble

trading.

These two forces are summarized by two new simple statistics. Movements in inequality

are summarized by a measure
∑

h µh,t ln (sh,T+t), where sh,t = yh,t/Yt and
{
µh,t

}
h,t

is a de-

terministic sequence of weights (see the appendix for formulas) that add up to one for all t

and depend on both relative productivities and Pareto weights. It is easy to check that this

measure is decreasing in the dispersion of incomes. Next, define ln (MT,T+t) and ln (MN,T+t)

as an average of the Lagrange multipliers on budget constraints of traders and non traders,
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respectively, e.g., ln (MT,T+t) ≡
∑

h∈T µh,t ln (Mh,T+t)

/∑
h∈T µh,t. The imperfect risk shar-

ing force is captured by ln (MT,T+t) − ln (MN,T+t).
25 Following steps resembling those in our

derivation equation (18), we obtain the following result.

Corollary 4. In a stationary benchmark economy with heterogeneity, an optimal public port-

folio satisfies

ΣTωT ≃
[
πQΣQT + πXT Σ

X
T + πATΣ

A
T + πATΣ

ineq
T + πATΣ

M
T

]−→
β̂ , (31)

where ΣineqT [j, t] = covT

(∑
h µh,t ln

(
1

sh,T+t

)
, rjT+1

)
, ΣMT [t, j] = covT

(
µN,t [ln (MT,T+t)− ln (MN,T+t)] , r

j
T+1

)
and constants β̂, πQ, πXT , π

A
T are the same as in Corollary 1.

We now discuss the implications of the extra terms in the optimal portfolio relative to

expression (18) that we derived in the benchmark economy. The concerns for inequality fluc-

tuations manifest in the sign and the magnitude of ΣineqT . A literature in macro and labor

(see Storesletten et al. (2004), Guvenen et al. (2014)) documents that income inequality is

countercyclical. Our Section 4.1 description of bond excess returns emphasized they too are

countercyclical with larger predictable components for longer duration bonds. That makes us

expect ΣineqT to be positive and larger in magnitude for longer bonds. Equation (31) then im-

plies that concerns for fluctuating income shares should push the government to issue additional

debts at longer maturities.

We get a sense of the magnitude of the inequality-hedging portfolio from the following

back of the envelope calculation. Assume that a household type h = L represents a group

of individuals who are in the left-tail (or bottom L percentile) of the income distribution,

and that the planner sets µL,t = 1. Then ΣineqT [j, t] depends on how the income share of the

bottom L percentile covaries with returns. We can use our factor model in equation (21) with

an additional equation to parameterize πATΣ
−1ΣineqT

−→
β [j] = πAT

β̂κineq

1− ρineqβ̂︸ ︷︷ ︸
≡Kineq

T

(
κj
σ2
j
χ2

)
with two

new objects: κineq, a loading of inequality on the common factor, and ρineq, the first-order

autoccorelation in a measure of inequality. We set L = 25% and use income share data from

Guvenen et al. (2014) to obtain κineq = 0.002 and ρineq = 0.92.26 Our estimate of Kineq
T

25The formulation of government optimality using aggregated Lagrange multipliers of various groups is closely
related to “multiplier approach” of Chien et al. (2011) who show that equilibria of a large class of heterogeneous
agent, incomplete markets environments can be characterized and efficiently computed using a multipliers
representation.

26Guvenen et al. (2014) use SSA data and provide means as well as quantiles of labor earnings at an annual
frequency from 1978-2011. We first detrend the raw measure of inequality and then project it onto the unem-
ployment rate to obtain a quarterly inequality series. We estimated κineq and ρineq by applying OLS to the
regression equation ln Yt

yL,t
= αineq + ρineq ln

Yt−1

yL,t−1
+ κineqft + σineqϵineq.
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is about 10 times smaller in magnitude than KX
T and KA

T , which capture the fiscal hedging

and liquidity hedging components, respectively, and that the parts of the portfolio that hedge

inequality accounts for less than 1% of total debt. This finding reflects the weak correlation of

bond returns with macro factors, especially with movements in income inequality.

Besides fluctuations in income inequality, equation (31) shows that heterogeneity adds a

term that depends on how ratios of the average Lagrange multipliers across agents vary across

time. Movements in this ratio reflect differences in trading frictions across households. When

non-traders have more volatile consumption (presumably because they have fewer avenues to

smooth) than the traders, the government can use its debt portfolio to shift some risk from

non-traders to traders and improve average welfare.

To get a sense of what heterogeneous trading frictions mean for the duration of an optimal

portfolio, we capture the differences in consumption risk using a parsimonious formulation that

sets ln (MN,T+t) = (1+ψ) ln (MT,T+t); the scalar parameter ψ is intended to measure strength

of trading frictions. When non-traders face more risk, so that multiplier ln (MN,T+t) is more

volatile than ln (MT,T+t), the parameter ψ > 0. Substituting into the definition of ΣMT we get

ΣMT [t, j] = −ψµN,tcovT
(
ln (MT,T+t) , r

j
T+1

)
(32)

Equation (32) has several insights. It says that when ψ > 0, the government should borrow

more using securities that have larger negative values of the covariance covT

(
ln (MT,T+t) , r

j
T+1

)
.

A security whose returns are low when marginal values of wealth are high are more “risky”

from an investor’s perspective. A strategy in which the government borrows more in such risky

securities and invests more in (or lowers issuance of) the risk-free asset makes the overall public

portfolio less risky. On the margin, it generates a welfare gain because it allows the government

to lower the volatility of the non-traders after-tax incomes. When such risky securities are of

longer duration (which is generally the case with long duration bonds), such a strategy would

increase the duration of the public portfolio.

Although equation (32) is stated in terms ofMT,T+t, we can use the counterpart of equation

(32) for the traders and rewrite it as

−covT

(
ln (MT,T+t) , r

j
T+1

)
≃ ET rjT+1 − covT

(
lnQT+1,t−1, r

j
T+1

)
+ covT

(
lnAT+1,t−1, r

j
T+1

)
,

where all the terms on the right-hand side can be measured from return data that we used in

Section (4). In the appendix, we use estimates from our Section 4.2 factor model to quantify

those terms for a special case in which the government trades a risk-free and a growth-adjusted

consol.
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5.8 Responses of prices to government policies

In this section, we investigate the implications of relaxing the assumption that government

trades have no effect on asset prices.

Two broad classes of price determination models are commonly used in the literature that

studies government portfolio: closed economy models (Lucas and Stokey (1983); Angeletos

(2002); Debortoli et al. (2017); Faraglia et al. (2018)) in which a representative household prices

all securities, and various models of segmented markets or preferred habitats (Greenwood and

Vayanos (2014); Koijen and Yogo (2019); Bigio et al. (2019)) in which a group of outside

investors prices assets. We focus here on preferred habitat models and utilize their simplicity

and flexibility in matching data. We leave analysis of closed economy models to the online

appendix.27

We build on Greenwood and Vayanos (2014) (GV) in which all marginal changes in a

government portfolio are absorbed by outside investors that they call “arbitrageurs” and who

are short-lived, risk-averse, and optimally choose their holdings of government debts of different

maturities. Following GV, assume that (a) foreign demand for the risk-free bond is perfectly

elastic, and (b) prices of all securities and supplies of government bonds satisfy

lnQit = λ [i]− Λ [i, j]Bj
t , (33)

where i refers to all securities, j ∈ Gt\{0} are government bonds, and (c) price impacts operate

by changing compensation for duration risk, which means that Λ = ∂σΛ = 0.

Our perturbation remains the same as in Section 3.2. The envelope theorem implies that

our perturbation affects welfare because it changes taxes and asset prices. In the benchmark

economy without price effects, those welfare effects were summarized by
(
MT+1

ξT+1

)
rjT+1. The

counterpart of government optimality in preferred habitat models is

0 = ϑjT + ET
βMT+1

MT
rjT+1

(
1

ξT+1

)
, (34)

where

ϑjT ≡ 1

ξT (sT )

∑
i

∂j,T,t,ϵQ
i
T

(
Bi
T −Bi+1

T−1

)
+
∑
i≥1

∂j,T,t,ϵQ
i
T

(
biT−1 − biT

)
+
∑
i

(
1− 1

AiT

)
biT
(
sT
)
∂j,T,t,ϵQ

i
T

(
sT
)
.

27In a closed economy, a perturbation of portfolio at some history sT affects prices at all past and future
histories. In online appendix C, we show how to adapt the variational approach of Section 3.2 to such settings.
There we derive a formula for the target portfolio and also show that price responses in the closed economy
model are inconsistent with their empirical counterparts.
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In preferred habitat models there are two additional effects. The first is an effect on government

revenues from changing bond prices and the consequent change in taxes. This effect is given

by
(
MT
ξT

) (∑
i ∂j,T,t,ϵQ

i
T

(
Bi
T −Bi+1

T−1

))
, where ∂j,T,t,ϵQ

i
T tells how much the price of security i

is affected by the perturbation. A second effect instigated by a price response comes through

private sector decisions and is given by a sum of two terms: (i) MT
∑

i ∂j,T,t,ϵQ
i
T

(
biT−1 − biT

)
,

which is a household analog of the effect on income coming from changes in asset prices, and

(ii) MT
∑

i

(
1− 1

Ai
T

)
biT
(
sT
)
∂j,T,t,ϵQ

i
T

(
sT
)
, which captures effects on direct utilities provided

by asset holdings and trading frictions.

Implications of optimality condition (34) largely parallel those in our Section 3 analysis

of equation (12). To illustrate the additional insights concisely, we focus on the stationary

economy and further assume that domestic households’ portfolio of government debts are

described by a rule ϕTBi,T ≈ bi,T so that ϕT is the fraction of the public debt held by domestic

households.

Given our timing assumptions, we refer to −→ω T as the end of t period portfolio to distinguish

it from what we shall define as a beginning of period portfolio. A beginning of period portfolio

was chosen in the previous period but is evaluated at current prices; we denote it using a

vector −→ω +
T with elements ω+

T [i] =
Qi

TB
i+1
T−1

BT
. Let ΛQET [i, j] ≡ YT∂j,T,t,ϵ lnQ

i
T ≈ YTΛ [i, j]

(
Γ
β̂

)j
be a transformation of Λ [i, j] that allows us to express it as semi-elasticities of bond prices

with respect to a change in the ratio of the value of government debts to GDP. We have

Corollary 5. Let −→ω ∗
T be the target portfolio when price effects are zero. In our preferred

habitat benchmark economy with ϕTBi,T ≈ bi,T , the optimal portfolio of government bonds

satisfies
−→ω T ≃ −→ω ∗

T − (1− ϕT ξT )π
QE
T Σ−1

T ΛQET
(−→ω T −−→ω +

T−1

)
(35)

with

πQET =

(
ΓζT

1− β̂

)(
Γ

β̂

)2

.

Corollary 5 indicates that with price impacts an optimal portfolio consists of the Section

3 target portfolio −→ω ∗
T plus an additional term that comes from costs of portfolio rebalancing

and is proportional to ΛQET
(−→ω T −−→ω +

T−1

)
. The gap −→ω T − −→ω +

T−1 captures the magnitude of

portfolio rebalancing in period T ; we scale that gap with the matrix of price elasticities ΛQET

to get the costs of rebalancing. Formula (35) shows that how price responses imply deviations

from the target portfolio.

When price effects are large, target and optimal portfolios can have complicated dynamics.

However, if −→ω ∗
T consists mainly of the interest rate risk, which Section 4 shows to be the
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empirically relevant case for the U.S., then Corollary 5 has the following sharp implication

about an optimal public portfolio.

Corollary 6. Suppose that −→ω ∗
T = (1− β)

−→
β̂ . Then the optimal portfolio of bonds in a sta-

tionary preferred habitat economy satisfies

−→ω T ≈ −→ω ∗
T .

A remarkable aspect of Corollary 6 is that an optimal portfolio does not depend on magni-

tudes of price responses to government portfolio adjustments. To interpret the economic force

behind this outcome, recall from Section 4 that interest rate risk is best hedged by construct-

ing a portfolio that minimizes rebalancing. In stationary environments, such a portfolio sets
−→ω T −−→ω +

T−1 = 0; so the last term in equation (35) disappears for any value of ΛQE .

Magnitudes of price effects. The Corollary 6 condition holds only approximately in our

Section 4 estimates. To reassess our conclusions about the target portfolio, we next use GV’s

estimates of price impacts of QE type policies.

In the GV model, price impact on government debts of different maturities are functions

of only one statistic, the duration defined as Dt = B0
T +

∑∞
i=1 (i+ 1)Bi

T , and take an affine

form

lnQit = λ0 + λiDt, (36)

where λ0 and
{
λi
}∞
i=1

are parameters. GV use instrumental variables to estimate

ln yieldit = b0 + bi
Dt

GDP
+ controlst + noiseit, (37)

where ln yieldit ≡ −
(

1
i+1

)
lnQit. GV infer point estimates bi ≈ [ .2100 ,

.4
100 ] that imply that a

one GDP decrease in maturity-weighted debt28 would bring a 30 to 40 basis point decrease in

yields. That finding is consistent with the view that QE actions lower duration risk borne by

bond investors, with that lower duration risk being accompanied by lower term spreads.29

It is easy to recover a matrix ΛQET from
{
bi
}
i
. Using the definition of yields and the

fact that GV assume that government bond prices are functions only of the duration of the

government portfolio (36), it turns out that in a stationary economy

ΛQET [i, j] = (i+ 1)× bi

[
j + 1

[Q0]j
− 1

Q0
T

]
. (38)

28For example, in a typical QE the government simultaneously buys long-maturity debt and issues short
maturity debt.

29Although GV don’t explicitly test β1 = 0, their theory implies that prices of risk-free debt are unaffected
by duration risk; they include risk-free debt prices among their controls in (37)
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We use the GV point estimates of bi for their reported maturities and extrapolate to other

maturities by fitting the functional form for factor loadings that we used in our benchmark

model.30 In the appendix we report the fit and a heatmap of ΛQE (all normalized by its mean

value) computed using equation (38) and the extrapolated {bn} sequence. Price impacts are

large when securities involved are both of longer maturities. We set ϕT = 0.7 to obtain a

domestic share of US debt at 70%, an estimate that we obtain from FRED.

We can now describe the implied optimal portfolio of public debts using equations (35). We

use Section 4.2 parameter estimates that imply that ω∗
T,, π

QE
T+t, and ΣT+t are all independent

of t. Still, formula (35) prescribes a non-trivial dependence of portfolio −→ω T on portfolio −→ω T−1.

We focus on the following stationary point of equation (35),

−→ω =

I + (1− ϕξ)

(
Γζ

1−Q
0
Γ

)(
1

Q
0

)2

Σ−1ΛQE
(
I − L+

)−1

−→ω ∗,

where matrix L+ is such that −→ω + = L+−→ω .

Figure 4 reports the optimal capped portfolio −→ω in our preferred habitat model and com-

pares it to an optimal capped portfolio in the Section 4 small open economy. Evidently,

incorporating price impacts increases holdings of short maturities and decreases holding of

long maturities. This maturity tilting reflects that the GV calibration provides larger price

impacts at longer maturities. The government now faces a tradeoff with respect to longer

maturities. Issuing long maturities can help to hedge interest rate risk but requires keeping

the share of debt in those roughly constant. If the number of available maturities is capped,

frequent balancing is required. Since costs of rebalancing are larger for longer maturities, the

planner tilts the portfolio toward shorter maturities. However, the associated decline in the

Macaulay duration is only about 6 months. So the two portfolios appear to be quite similar.

The economics underlying this outcome flows from Corollary 6: empirically −→ω ∗
T is close to(

1− β̂
)−→
β̂ , so price responses have small effects on an optimal public portfolio.

30In particular, Table 2 of GV reports estimates for bonds of maturities 2, 3, 4, 5, 10 years. We assume that
bn = b0 + b0 exp

(
−b1 × n

)
and find coefficients

{
b0, b1

}
that minimize squared errors. Our results are robust

to other extrapolation schemes.
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Figure 4: Portfolio shares of securities with maturities from 2 quarters to 120 quarters. The red line is the
optimal portfolio without price effects, and the orange line is the optimal portfolio with price effects. The
blue line plots the 2017 U.S. federal debt portfolio (see Appendix B.1.1 for data sources and construction).

6 Conclusion

We have proposed an analytical framework that includes a broad class of dynamic stochastic

equilibrium models containing various heterogeneities among households, limits on market

participations, sources of liquidity and stochastic discount factors. We show how to characterize

policies that transcend details of particular models in this class with a small number of statistics

that are functions only of asset prices and macroeconomic variables. We have used small-

noise expansions to characterize and approximate optimal public portfolios in terms of those

statistics. For U.S. data, we find that an optimal portfolio is simple and stable over time,

and that it approximately replicates a growth-adjusted consol. We show that the source of

differences between our findings and those provided by earlier computations of optimal public

portfolios in neoclassical models comes from features of those earlier models that cause them

to misrepresent covariances of asset returns with macroeconomic aggregates.

This paper focuses exclusively on economies in which a government commits and does not

default. A natural next step is to alter those assumptions by proceeding along lines advocated

by Arellano and Ramanarayanan (2012), Aguiar et al. (2019), Bocola and Dovis (2019), and

others. We hope to take steps in those directions next.
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Online Appendix

A Appendix: Theoretical analysis

A.1 Proof of Lemma 1

Proof. Let βt Pr
(
st
)
M
(
st
)
N
(
st
)
be the vector of Lagrange multipliers on constraints (5) and

let Wt,sk (Vt+1) be the derivative of Wt with respect to Vt+1

(
st, sk

)
for any sk. The optimality

condition for bit
(
st
)
in any competitive equilibrium can be written as[(
W0,s1 × ...×Wt−1,st

Pr (st)Mt (st)

)
∂Ut

(
st
)

∂
(
Qitb

i
t

) +N
(
st
)
·
∂φt

(
st
)

∂
(
Qitb

i
t

) − 1

]
(39)

+ β
∑
st+1|st

Pr
(
st+1|st

)Mt+1

(
st+1

)
Mt (st)

Rit+1

(
st+1

)
= 0,

where st = (s1, .., st). When government securities are perfect substitutes,
∂Ut(st)
∂(Qi

tb
i
t)

and
∂φt(st)
∂(Qi

tb
i
t)

are the same for all i ∈ Gt. Therefore, this equation implies that Ait = A0
t and

Et
βMt+1

Mt
rjt+1 = 0 for all t, j ∈ Gt (40)

in any competitive equilibrium.

A.2 Proofs for Section 3.2

Let xt (σ) be any equilibrium variable in the σ-economy. We use second order Taylor expansions

of the equilibrium conditions with respect to σ around σ = 0. Let xt, ∂σxt, ∂σσxt be the zeroth-,

first- and second-order terms in these expansions. In this notation,

xt (σ) ≃ xt + σ∂σxt +
σ2

2
∂σσxt, xt (σ) ≈ xt.

Note that the statement that xt ≈ 0 is equivalent to xt = 0. We first show several preliminary

results that will be used throughout this section.

Lemma 2. In the optimal equilibrium in the benchmark economy, rjT+1 = ET∂σrjT+1 = 0 for

all T, j ∈ GT , which also implies that

QT+1,t = QT+1,t, ET+1∂σQT+1,t = ET+1∂σQT+1,t for T, t. (41)
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Proof. We first show that rjT+1 = ET∂σrjT+1 = 0 for all T, j ∈ GT under conditions of the

lemma. The zeroth order expansion of equation (12) for t = 1 is

MT+1

rjT+1

ξT+1

= 0 for all T, j ∈ GT . (42)

Neither MT+1 nor ξT+1 can be zero, which implies that rjT+1 = 0. Using this result, the

first-order approximation of equation (12) for t = 1 is

MT+1

rjT+1

ξT+1

ET∂σrjT+1 = 0 for all T, j ∈ GT ,

which implies that ET∂σrjT+1 = 0. Applying this result to first-order expansions of Qt,k and

Qt,k in equation (8) gives (41).

The previous lemma also implies the following useful corollary.

Corollary 7. For any equilibrium variables xt, z
′
t,z

′′
t in the optimal equilibrium in the bench-

mark economy, the following relationship holds for any T , j ∈ GT .

ET
[
z′T+1z

′′
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]
covT
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j
T+1

)
≃ ET

[
z′T+1

]
ET
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]
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(
xT+1, r

j
T+1

)
≃ z′T+1z
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T+1ET∂σxT+1∂σr

j
T+1.

Proof. Using Lemma 2, we have

ET
[
xT+1r

j
T+1

]
≃ ET

[
∂σxT+1∂σr

j
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1

2
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2
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,

and, therefore,
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(
xT+1, r

j
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)
=
[
ETxT+1r

j
T+1 − ETxT+1ET rjT+1

]
≃ ET∂σxT+1∂σr

j
T+1.

Since covT

(
xT+1, r

j
T+1

)
= ∂σcovT

(
xT+1, r

j
T+1

)
= 0, we obtain

ET
[
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(
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Lemma 3. Equation (14) holds in the optimal equilibrium of the benchmark economy.

Proof. The second-order expansion of (13), invoking results of Lemma 2, gives

0 =
1

2

[
MT+t

QpvtT+1,t−1

]
ET∂σσrjT+1 +

[
MT+t

QpvtT+1,t−1

]
ET∂σ lnMT+t∂σr

j
T+1 −

[
MT+t
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]
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j
T+1

=
1

2
ET∂σσrjT+1 + ET∂σ lnMT+t∂σr

j
T+1 − ET∂σ lnQpvtT+1,t−1∂σr

j
T+1.
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Similarly, the second-order expansion of (12) gives

0 =
1

2
ET∂σσrjT+1 + ET∂σ lnMT+t∂σr

j
T+1 − ET∂σ lnQT+1,t−1∂σr

j
T+1 − ET∂σ ln ξT+1∂σr

j
T+1.

Combine these two equations and use the fact that lnAT+1,t−1 = lnQT+1,t−1 − lnQpvtT+1,t−1 to

get

ET∂σ ln ξT+1∂σr
j
T+1 = −ET∂σ lnAT+1,t−1∂σr

j
T+1.

This equation implies (14) by Corollary 7.

Lemma 4. Equation (15) holds in the optimal equilibrium of the benchmark economy.

Proof. Lemma 2 implies that the zeroth order approximation of equation (9) is

∞∑
t=1

QT+1,tXT+t−1 = BTR
0
T+1. (43)

Multiply equation (9) by rjT+1 and take expectations at time T. The Law of Iterated Expecta-

tions implies

ET
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t=1

QT+1,t−1XT+tr
j
T+1 = ETBT

R0
T+1 +

∑
i≥1

ωiT r
i
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 rjT+1. (44)

Take the second-order expansion of equation (44), note that the terms multiplying ∂σσr
j
T+1

cancel out due to (43) and that ET∂σQT+1,t−1∂σr
j
T+1 = ET (ET+1∂σQT+1,t−1) ∂σr

j
T+1 =
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T+1 by Lemma 2 to obtain
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 .
(45)

Finally, note that QT+1,0 = 1 and, therefore, ∂σQT+1,0 = 0. Together with Corollary 7 this

establishes equation (15).

Lemma 5. Equation (16) holds in the optimal equilibrium of the benchmark economy.

Proof. From (7), we have lnYt = ln θt + γ ln (1− τ t), therefore lnY ⊥
t = ln θt. Thus, using

Corollary 7, we have

covT

(
X⊥
T+t, r

j
T+1

)
≃ τT+tYT+tET∂σ lnY ⊥

T+t∂σr
j
T+1 −GT+tET∂σ lnGT+t∂σrjT+1.
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Similarly, XT+t = τT+tYT+t −GT+t and thus
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∂στT+t. Therefore, we
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Combine with the previous equation, use definition of ζT+t and Corollary 7 to obtain (16).

We need to prove the following result before proceeding to study stationary economy.

Lemma 6. In any equilibrium Wt,sk (Vt+1) = Pr
(
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)
and, therefore, in any equilibrium the
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Proof. Consider any random variable ϵ = {ϵ (sl)}l with
∑

l Pr
(
sl|st

)
ϵ (sl) = 0. Let Ft (σ) ≡

Wt ({x+ σϵl}l) . Its derivatives is F ′
t (0) =
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sk
Wt,sk ({x}l) ϵ (sk). Since W is increasing in the

second-order stochastic dominance, F ′
t (0) ≤ 0. Together with

∑
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first condition can be written as∑
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Since ϵ is arbitrary, Wt,sk ({x}l) = Pr
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The consumption optimality condition for household is

W0,s1 × ...×Wt−1,st × Uc,t
(
st
)
= Pr

(
st
)
Mt

(
st
)
,

where st = (s1, .., st), which implies that

δT+tUc

(
cT+t −

1

θ
1/γ
T+t

y
1+1/γ
T+t

1 + 1/γ
,
{
Q
i
T+tb

i
T+t

}
i∈GT+t

, GT+t

)
=MT+t.

Since Rj,pvtT+t satisfies

(
1

Rj,pvt
T+t+1

)
=
βMT+t+1

MT+t
, for all j,we obtain the result of the lemma.
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We are now ready to show the properties of stationary economy.

Lemma 7. In a stationary optimal equilibrium of the benchmark economy, for all t ≥ 1,

τT+t ≈ τT , QT+t ≈ βΓ−1/IES,

ET
XT+t+1

XT+t
≈ ET

YT+t+1

YT+t
≈ ET

BT+t+1

BT+t
≈ Γ,

and ET XT+t

YT+t
≈ (1−β̂)

β̂

BT
YT

where β̂ = βΓ1−1/IES.

Proof. Since Aj,pvtt = 1 for all j, t,

1 =

(
βMT+t+1

MT+t

)
R
j,pvt
T+t+1 =

(
βMT+t+1

MT+t

)
R for all j, t

by condition (iii) of the definition of stationarity. Therefore, equations (11) and (12) imply

1

ξT+t
=

(
βMT+t+1

MT+t

)
R

1

ξT+t+1

for all t,

which, in turn, implies τT+t = τT for all t. The optimality condition of households (7) and

condition (i) then implies that
(
YT+t+1

YT+t

)
= Γ and, therefore,

(
XT+t+1

XT+t

)
= Γ for all t.

Let Q ≡ 1/R. The government budget constraint (9) is BT =
∑∞

t=1Q
tXT+t =

QΓ
1−QΓXT ,

which implies that
(
BT+t+1

BT+t

)
= Γ and(

XT+t

YT+t

)
=

(
1−QΓ

QΓ

)(
BT+t
YT+t

)
=

(
1−QΓ

QΓ

)(
BT
YT

)
. (46)

The household optimality condition for ct in the benchmark economy is

W0,s1 × ...×Wt−1,st × δt
(
st
)
Uc
(
st
)
= Pr

(
st
)
Mt

(
st
)
.

Lemma 6 implies that the zeroths order approximation of this equation is

δT+tUc

(
cT+t −

1

θ
1/γ
T+t

y
1+1/γ
T+t

1 + 1/γ
,
{
b
i
T+t

}
i∈Gt

, GT+t

)
=MT+t

and, therefore, by the properties (iii) and (iv) and the definition of IES we have

Q =

(
βMT+t+1

MT+t

)
= βΓ−1/IES .

Thus, QΓ = βΓ1−1/IES . This, together with definition of β̂ and (46), implies(
XT+t

YT+t

)
=

1− β̂

β̂

(
BT
YT

)
.

The statement of the lemma then follows from applying Corollary 7.
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Note that the only place where we used condition (iv) in the proof is in deriving expression

Q in terms of growth rates of real variables and obtaining weights β̂ in terms of growth rates of

real variables on balanced growth path. Condition (iv) is necessary for a balanced growth path

but not for our results. For concreteness, suppose that U is separable in the first argument

and let ut ≡ ct− 1

θ
1/γ
t

y
1+1/γ
t
1+1/γ and Γut ≡

(
ut
ut−1

)
. Conditions (i)-(iii) imply that Γut is independent

of t and so that Q = β (Γu)−1/IES . Thus, the only thing that changes in the analysis is that

we replace Γ1−1/IES with Γ× (Γu)−1/IES and adjust the definition of β̂ accordingly.

A.2.1 Proof of Corollary 1

Proof. Equation (17) can equivalently be written as

∞∑
t=1

Q
0
TQT+1,t−1

(
Y T+t

Y T

)(
XT+t

Y T+t

)
ET∂σ lnQT+1,t−1∂σr

j
T+1 +

∞∑
t=1

Q
0
TQT+1,t−1

(
Y T+t

Y T

)
ET

∂σX
⊥
T+t

Y T+t

∂σr
j
T+1

+
∞∑
t=1

Q
0
TQT+1,t−1

(
Y T+t

Y T

)
ζT+tET∂σr

j
T+1∂σ lnAT+1,t−1 = Q

0
T

BT

Y T

ET

∑
i≥1

∂σr
j
T+1∂σr

i
T+1ω

i
T

 .

By Lemma 7, in the stationary economy Q
0
TQT+1,t−1

(
Y T+t

Y T

)
= β̂

t
, ζT+t = ζT and

XT+t

Y T+t
=

1−β̂
β̂

BT
YT
. Substitute these expressions and re-arrange to obtain

(
1− β̂

) ∞∑
t=1

β̂
tET

∂σ lnQT+1,t

Q0
T

∂σr
j
T+1 + β̂

−1
Γ
Y T

BT

∞∑
t=1

β̂
tET

∂σX
⊥
T+t

Y T+t

∂σr
j
T+1

+ ζTΓ
Y T

BT

∞∑
t=1

β̂
tET∂σrjT+1∂σ lnAT+1,t = ET

∑
i≥1

∂σr
j
T+1∂σr

i
T+1ω

i
T

 .

Apply Corollary 7 and write in matrix form to get (18).

A.2.2 Proof of Corollary 2

Corollary 2 follows from the following lemma.

Lemma 8. Let QtT , r
t
T be the period-T price and excess return of a pure discount bond that

expires in period T + t. Then in the optimal equilibrium of the baseline economy

covT

(
lnQtT+1,t, r

j
T+1

)
≃ covT

(
lnQT+1,t, r

j
T+1

)
(47)

and

Q0
T covT

(
rtT+1, r

j
T+1

)
≃ covT

(
lnQT+1,t, r

j
T+1

)
(48)

for all j ∈ GT . The latter implies ΣT ≃ ΣQT when the government trades the full set of pure

discount bonds.
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Proof. From the definition ofAt+1
T andRtT , we have the following recursion: Q

t+1
T = ET βMT+1

MT
At+1
T QtT .

This implies that price Qt+1
T must satisfy

= ET+1

[(
βtMT+t

MT+1

)(
AtT+1 ×At−1

T+2 × ...×A0
T+t−1

)]
= ET+1

[(
βtMT+t

MT+1

)(
A0
T+1 ×A0

T+2 × ...×A0
T+t−1

)]
= ET+1

[
βMT+2A

0
T+1

MT+1
× ...×

βMT+tA
0
T+t−1

MT+t−1

]
,

where the second equation follows form Lemma 1. Similarly, QT+1,t is given by

QT+1,t = ET+1

βMT+2A
0
T+1

MT+1
× ...× ET+t−1

βMT+tA
0
T+t−1

MT+t−1
.

Using the Law of Iterated Expectations, we obtain

ET∂σ lnQT+1,t∂σr
j
T+1 = ET

[
ET+1∂σ ln

βMT+2A
0
T+1

MT+1
∂σr

j
T+1 + ...+ ET+t−1∂σ ln

βMT+tA
0
T+t−1

MT+1
∂σr

j
T+1

]

= ET

[
∂σ ln

βMT+2A
0
T+1

MT+1
∂σr

j
T+1 + ...+ ∂σ ln

βMT+tA
0
T+t−1

MT+1
∂σr

j
T+1

]
= ET∂σ lnQtT+1∂σr

j
T+1.

This expression is equivalent to (47) by Corollary 7.

To show (48), first observe that rtT+1 = QtT+1/Q
t+1
T − 1/Q0

T and, therefore,

ET∂σrtT+1∂σr
j
T+1 =

(
QtT+1

Qt+1
T

)
ET
[
∂σ lnQ

t
T+1∂σr

j
T+1 − ∂σ lnQ

t+1
T ∂σr

j
T+1

]
−
(

1

Q0
T

)
ET∂σ lnQ0

T∂σr
j
T+1

=

(
QtT+1

Qt+1
T

)
ET
[
∂σ lnQ

t
T+1∂σr

j
T+1

]
=

(
1

βMT+1A0
T /Mt

)
ET
[
∂σ lnQ

t
T+1∂σr

j
T+1

]
=

(
1

Q0
T

)
ET
[
∂σ lnQ

t
T+1∂σr

j
T+1

]
,

where the second equation follows from the fact that ∂σ lnQ
t+1
T and ∂σ lnQ

0
T are measurable

with respect to T and ET∂σrjT+1 = 0 by Lemma 2. This equation is equivalent to (48) by

Corollary 7.

A.3 Nominal economy

We now describe a nominal version of the economy. Let Pt be the price level and suppose

all securities are nominal. Security 0 now refers to a nominal one-period bond that pays one
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dollar next period. The household and government budget constraint in the nominal economy

are

Ptct +
∑
i

Qitb
i
t = Ptyt − τ tPtyt +

∑
i

(
Qit +Di

t

)
bit−1

and

PtXt +
∑
i∈Gt

QitB
i
t =

∑
i∈Gt−1

(
Qit +Di

t

)
Bi
t−1,

respectively. All returns and liquidity premia are now in nominal terms. It is irrelevant in

the benchmark economy where Ut, φt,
{
Bit
}
i
are functions of nominal or real value of security

holdings. The definition of competitive equilibrium and optimum competitive equilibrium

remain unchanged except in nominal economy they are defined for (G,P) rather than G.

Our analysis of the benchmark economy extends with minimal changes to nominal economy.

For any real variable xt we use notation x
$
t to denote its nominal value, x$t ≡ Ptxt. All variables

are defined in the same way as in Section 3 and it is easy to see that Lemma 1 continues to

hold in this settings.

It is easy to see that the perturbation we considered in Section 3 requires tax adjustments

riT+1/
(
QT+1,t−1ξT+tY

$
T+t

)
so that equation (12) remain unchanged. The budget constraint

now holds in nominal terms so that equation (15) in the nominal economy becomes
∞∑
t=2

ETX$
T+tcovT

(
QT+1,t−1, r

j
T+1

)
+

∞∑
t=1

ETQT+1,t−1covT

(
X$
T+t, r

j
T+1

)
≃ BT

∑
i≥1

ωiT covT

(
riT+1, r

j
T+1

)
.

(49)

If we define X⊥,$
T+t as

X⊥,$
T+t ≡ ETT $

T+t ×
(
lnY $

t − γ ln (1− τ t)
)
− ETG$

T+t × lnG$
T+t

and follow the steps of Lemma 5, we obtain

covT

(
X$
T+t, r

j
T+1

)
≃ covT

(
X⊥,$
T+t, r

j
T+1

)
− ET ζT+tETY $

T+tcovT

(
ln ξT+t, r

j
T+1

)
. (50)

Use equations (49) and (50) and follow the steps of proof of equation (17) to obtain

ET

∑
i≥1

∂σr
j
T+1∂σr

i
T+1ω

i
T

Q
0
T

BT

P TY T

=

−
∞∑
t=1

Q
0
TQT+1,t−1

(
P T+t

P T

Y T+t

Y T

)
ζT+t

(
Et∂σrjT+1∂σ lnAT+1,t−1

)
+

∞∑
t=1

Q
0
TQT+1,t−1

(
P T+t

P T

Y T+t

Y T

)
ET

∂σX
⊥,$
T+t

P T+tY T+t

∂σr
j
T+1

+
∞∑
t=1

Q
0
TQT+1,t−1

(
P T+t

P T

Y T+t

Y T

)(
XT+t

Y T+t

)
ET∂σ lnQT+1,t−1∂σr

j
T+1. (51)
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In the stationary nominal economy,
PT+t

PT

Y T+t

Y T
= (ΠTΓ)

t, the price of a nominal one-period

government bond to the zeroth order satisfies

Q
0
T+t = β

Uc,T+t+1

Uc,T+t

P T

P T+1

=
βΓ−1/IES

ΠT
,

the nominal discount rate QT+1,t−1 satisfies QT+1,t−1 =
(

β
ΠT

Γ−1/IES
)t−1

, and BT

PTXT
=∑∞

t=1

(
β

ΠT
Γ−1/IESΓΠT

)t
β

ΠT
Γ−1/IES

,
−→
β̂ T [t] = Q

0
TQT+1,t−1

(
PT+t

PT

Y T+t

Y T

)
=
(
βΓ1−1/IES

)t
= β̂

t
. Use these

expressions in equation (51) and apply Corollary 7 to get

ET

∑
i≥1

∂σr
j
T+1∂σr

i
T+1ω

i
T

 =
(
1− β̂

) ∞∑
t=1

β̂
t
covT

(
lnQT+1,t

Q0
T

, rjT+1

)

+

(
ΓΠT

β̂

)(
Y $
T

BT

) ∞∑
t=1

β̂
t
covT

(
X⊥,$
T+t

ETY $
T+t

, rjT+1

)
+ (ΓΠT ζT )

(
Y $
T

BT

) ∞∑
t=1

β̂
t
covT

(
lnAT+1,t, r

j
T+1

)
In matrix form this equation becomes

ΣT
−→ω T ≃

[
πQΣQT +ΠTπ

X
T Σ

X
T +ΠTπ

A
TΣ

A
T

]−→
β̂ ,

which proves the nominal version of equation (18) given in Corollary 3. The returns with the

full set of nominal bonds satisfy ΣT ≃ ΣQT , which implies the nominal version of (20) given in

Corollary 3.

A.4 Household Heterogeneity

Suppose household h has household specific productivity θh,t and we partition the households

into two groups: T represent the set of households who can trade bonds and N represent the set

of households who cannot trade bonds. Other than that, we focus on the baseline economy, in

which all government assets are perfect substitutes and economy is small and open. Individual

optimality implies

yh,t = θ1+γh,t (1− τ t)
γ

and we can define total output as Yt =
∑

h yh,t. Assuming a linear tax function, we have

∂Υt

∂τ t
= Yt + τ t

∑
h

∂yh,t
∂τ t

= Yt − γ
τ t

1− τ t

∑
h

yh,t = Yt

(
1− γ

τ t
1− τ t

)
,

so tax revenue elasticity is the same as before.

ξt = 1− γ
τ t

1− τ t
.
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Consider a perturbation in which the government swaps ϵ of security j ∈ GT for a risk-free

bond in period T , undoes this perturbation in period T +1 and realized excess return rjT+1 and

then rolls it over for t periods using one-period bond before returning it back to the household.

The same analysis as with the representative agent yields a welfare gain for agent h as

∂j,T,ϵVh,0 ∝ ETMh,T+t (QT+1,t−1)
−1 rjT+1yh,T+t

∂τT+t
∂ΥT+t

= ETβtMh,T+t (QT+1,t−1)
−1 rjT+1

yh,T+t
YT+t

1

ξT+t
.

So an optimality condition will be

ET
∑
h

ϖhMh,T+t (QT+1,t−1)
−1 rjT+1

yh,T+t
YT+t

1

ξT+t
= 0,

where ϖh are Pareto weights. A second-order expansion of this equation then yields

0 = ET
{
1

2

∑
h

ϖh

[
Mh,T+t

] (
QT+1,t−1

)−1
∂σσr

j
T+1

[
yh,T+t
YT+t

1

ξT+t

]
+
∑
h

ϖh

[
Mh,T+t

] (
QT+1,t−1

)−1
∂σ ln (Mh,T+t) ∂σr

j
T+1

[
yh,T+t
YT+t

1

ξT+t

]
+
∑
h

ϖh

[
Mh,T+t

] (
QT+1,t−1

)−1
∂σ ln

(
yh,T+t
YT+t

)
∂σr

j
T+1

[
yh,T+t
YT+t

1

ξT+t

]
−
∑
h

ϖh

[
Mh,T+t

] (
QT+1,t−1

)−1
∂σ ln

(
ξT+t

)
∂σr

j
T+1

[
yh,T+t
YT+t

1

ξT+t

]
−
∑
h

ϖh

[
Mh,T+t

] (
QT+1,t−1

)−1
∂σ ln

(
QrfT+1,t−1

)
∂σr

j
T+1

[
yh,T+t
YT+t

1

ξT+t

]}
.

Canceling out the terms that do not depend on h and dividing out by the coefficient on

ET∂σσrjT+1 yields the optimality condition

0 =ET

[
1

2
∂σσr

j
T+1 +

∑
h

µh,T+t∂σ ln (Mh,T+t) ∂σr
j
T+1 + ∂σ ln

(
ξT+t

)
∂σr

j
T+1 + ∂σ ln (QT+1,t−1) ∂σr

j
T+1

+
∑
h

µh,T+t∂σ ln

(
yh,T+t
YT+t

)
∂σr

j
T+1

]
(52)

where µh,T+t ≡ ϖh

[
Mh,T+t

]
sh,T+t

/(∑
hϖh

[
Mh,T+t

]
sh,T+t

)
are a deterministic sequence of

weights that sum to one with sh,T+t ≡
yh,T+t

YT+t
.

As government bonds are perfect substitutes, for all h ∈ T we must have

ETMh,T+t

(
QpvtT+1,t−1

)−1
rjT+1 = 0.
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Expanding this equation yields

0 =
1

2

[
Mh,T+t

] (
QpvtT+1,t−1

)−1
∂σσr

j
T+1 −

[
Mh,T+t

] (
QpvtT+1,t−1

)−1
∂σ ln

(
QpvtT+1,t−1

)
∂σr

j
T+1

+
[
Mh,T+t

] (
QpvtT+1,t−1

)−1
∂σ ln (Mh,T+t) ∂σr

j
T+1

for all h ∈ T. This simplifies to

0 = ET
[
1

2
∂σσr

j
T+1 − ∂σ ln

(
QpvtT+1,t−1

)
∂σr

j
T+1 + ∂σ ln (Mh,T+t) ∂σr

j
T+1

]
.

Since lnQpvtT+1,t−1 = lnQT+1,t−1 − lnAT+1,t−1, we have.

1

2
ET∂σσrjT+1 = ET

[
−∂σ lnAT+1,t−1∂σr

j
T+1 + ∂σ ln (QT+1,t−1) ∂σr

j
T+1 − ∂σ ln (Mh,T+t) ∂σr

j
T+1

]
(53)

As this holds for all h ∈ T we can average over all traders, using weights µh,T+t, to obtain

1

2
ET∂σσrjT+1 = ET

[
−∂σ lnAT+1,t−1∂σr

j
T+1 + ∂σ ln (QT+1,t−1) ∂σr

j
T+1 − ∂σ ln (MT ,T+t) ∂σr

j
T+1

]
(54)

where ln (MT,T+t) is the average SDF of all traders:

ln (MT,T+t) ≡
∑
h∈T

µh,T+t ln (Mh,T+t)

/∑
h∈T

µh,T+t.

The same equation does not hold for the non-traders but we do have that for all h ∈ N

1

2
ET∂σσrjT+1 =ET

[
− ∂σ lnAT+1,t−1∂σr

j
T+1 + ∂σ ln (QT+1,t−1) ∂σr

j
T+1 − ∂σ ln (Mh,T+t) ∂σr

j
T+1

+ (∂σ ln (Mh,T+t)− ∂σ ln (MT ,T+t)) ∂σr
j
T+1

]
. (55)

We can now use equations (53) and (55) substitute for 1
2∂σσr

j
T+1 in (52) to get

−ET∂σ ln ξT+t∂σr
j
T+1 =ET

[
∂σ lnAT+1,t−1∂σr

j
T+1 + ∂σ

{∑
h

µh,T+t ln

(
1

sh,T+t

)}
∂σr

j
T+1

+ ∂σ

{∑
h∈N

µh,T+t (ln (MT,T+t)− ln (Mh,T+t))

}
∂σr

j
T+1

]
.

We can further simplify this expression by defining

ln (MN,T+t) ≡
∑
h∈N

µh,T+t ln (Mh,T+t)

/(∑
h∈N

µh,T+t

)
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as the “average” SDF of the non-traders, then

−covT

(
ln ξT+t, r

j
T+1

)
≃covT

(
∂σ lnAT+1,t−1∂σr

j
T+1

)
+ covT

(∑
h

µh,T+t ln

(
1

sh,T+t

)
, rjT+1

)
+ µN,T+tcovT

(
ln (MT,T+t)− ln (MN,T+t) , ∂σr

j
T+1

)
(56)

where µN,T+t ≡
(∑

h∈N µh,T+t
)
is the “share” of non-traders. Equation (56) adds two ad-

ditional terms to equation (14) in main text that capture the effect of heterogeneity on the

planners desire to smooth taxes. The first term, covT

(∑
h µh,T+t ln

(
1

sh,T+t

)
, rjT+1

)
, captures

the planners desire to raise taxes in states of the world where inequality is high. The second

term, µN,T+tcovT

(
ln (MT,T+t)− ln (MN,T+t) , ∂σr

j
T+1

)
, captures the fact that the planner is

trading on behalf of agents without access to asset markets and therefore will want to raise

taxes in states of which the non-traders place less weight on relative to those agents with access

to asset markets. This effect is scaled by the relative size of the non-traders. Following the

steps of Theorem 1 and Corollary 1 we get

ΣTωT ≃
[
πQΣQT + πXT Σ

X
T + πATΣ

A
T + πATΣ

ineq
T + πATΣ

M
T

]−→
β̂

where ΣineqT [t, j] = covT

(∑
h µh,T+t ln

(
1

sh,T+t

)
, rjT+1

)
is covariance matrix of returns with

inequality and

ΣMT [j, t] = µN,T+tcovT

(
ln (MT,T+t)− ln (MN,T+t) , r

j
T+1

)
,

is the covariance of returns with the relative stochastic discount factors of traders and non-

traders.

We can get a feel for how trading frictions affect the optimal portfolio by studying a special

case. We further specialize to a simpler market structure in which the government trades only

a risk-free security and a growth-adjusted consol. Let excess return on the consol be denoted

by r∞t . Finally, we impose that the stochastic discount factor of the non-traders is scaled

version of the stochastic discount factor of the traders: ln (MN,T+t) = (1 + ψ) ln (MT,T+t) .

This introduces a new parameter, ψ, that captures the severity of trading frictions as ψ > 0

implies that the SDF of the non-traders is more volatile of those of the traders.

Under this last assumption the covariance of the relative stochastic discount factors sim-

plifies to

covT

(
ln (MT,T+t)− ln (MN,T+t) , r

j
T+1

)
= −ψcovT

(
ln (MT,T+t) , r

j
T+1

)
.

As the traders trade the consol, we can use the traders’ Euler equation, equation (54), to

substitute out for this covariance and obtain

−covT

(
ln (MT,T+t) , r

j
T+1

)
≃ ET rjT+1 − covT

(
lnQT+1,t−1, r

j
T+1

)
+ covT

(
lnAT+1,t−1, r

j
T+1

)
.
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Under our stationarity assumptions we have µN ,T+t = µN ,T and can therefore express ΣMT as

the sum of three terms

ΣMT = µN,Tψ
(
RT −Q

0
TΣ

Q
T +ΣAT

)
where RT [j, t] = β̂

−1ET rjT+1.

The effect of non-traders on the optimal portfolio is given by πATΣ
−1
T ΣMT

−→
β̂ . This simplifies

under this market structure of a growth adjusted consol and a risk free bond as ΣT is now a

single number representing the conditional covariance of the growth adjusted consol. We can

also make progress on the components of ΣMT

−→
β̂ , starting with RT

−→
β̂ =

ET r
j
T+1

1−β̂
. Next we note

that

ΣQT

−→
β̂ =

∞∑
t=1

β̂
t
covT

(
1

Q0
T

lnQT+1,t, r
∞
T+1

)
≃ Γ

β̂

∞∑
t=1

β̂
tET∂σ lnQT+1,t∂σr

∞
T+1

≃ Γ

β̂
ET

∞∑
t=1

Γt∂σQT+1,t∂σr
∞
T+1

≃ Γ

β̂
ET∂σQ∞

T+1,t∂σr
∞
T+1

≃ Γ

1− β̂
covT (r

∞
T+1, r

∞
T+1) =

Γ

1− β̂
ΣT .

Finally, we have that ΣAT

−→
β̂ =

∑
t≥1 β̂

t
covT

(
lnArfT+1,t, r

∞
T+1

)
. All put together we have that

Σ−1
T ΣMT

−→
β̂ ≈

µN,Tψ

1− β̂

 ET r∞T+1

varT (r∞T+1)
− β̂ + (1− β̂)

∑
t≥1 β̂

t
covT

(
lnArfT+1,t, r

∞
T+1

)
varT (r∞T+1)

 .

Our empirical estimates have found that holding period returns on government debts of all ma-

turities co-vary positively with the liquidity premium so we can assume that
∑

t≥1 β̂
t
covT

(
lnArfT+1,t, r

∞
T+1

)
.

This implies that

Σ−1
T ΣMT

−→
β̂ >

µN,Tψ

1− β̂

( ET r∞T+1

varT (r∞T+1)
− β̂

)
. (57)

So the presence of non-traders will lengthen the maturity as long as
ET r

∞
T+1

varT (r∞T+1)
> β̂. We can

construct estimates for both ET r∞T+1 and varT (r
∞
T+1) using the fact that the growth adjusted

consol is the infinite sum of zero coupon bonds of all maturities weighted by β̂
j
. To check

equation (57), we use the estimates of the factor model and find that the left hand side is 137

which is significantly larger that β̂ < 1.

A.5 Price Effects

In this section we fill in the steps to derive formula (35) and the proof of Corollary 6.
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Lemma 9. In the preferred habitat benchmark economy with ϕTBi,T ≈ bi,T , the government

optimality is given by

covT

(
ln ξT+1+k, r

j
T+1

)
+ covT

(
lnA0

T+1,k, r
j
T+1

)
≃ ξTQ

−1ϑjT . (58)

and equation (35) is satisfied.

Proof. Assumption ϕTBi,T ≈ bi,T implies

−
∑
i

[
∂j,T,t,ϵQ

i
T

(
sT
) (
biT
(
sT
)
− biT−1

(
sT−1

))]
≈ ϕT

∑
i

[
∂j,T,t,ϵQ

i
T

(
sT
) (
Bi
T

(
sT
)
−Bi

T−1

(
sT−1

))]
.

From assumption Λ = ∂σΛ = 0 and equation (34) it follows that rjT+1 = ET∂σrjT+1 = 0 and as

before, stationarity implies AiT ≈ 1. Now, take second-order expansion of equation (34) to get

0 = (1− ϕT ξT )

∑i≥1 ∂σσ∂j,T,t,ϵQ
(
B
i
T −B

i+1
T−1

)
ξT


+ ET

βMT+1

MT

rjT+1

ξT+1+k

[(
βMT+2

MT+1
R0
T+2

)
× ...

(
βMT+1+k

MT+k
R0
T+1+k

)]
(59)

Under our perturbation and exploiting the form (33), we get

∂j,T,t,ϵ lnQ
i
T =

ΛT [i, j]

QjT
− ΛT [0, j]

Q0
T

which combined with the GV assumption ΛT [0, j] = 0 and Λ = ∂σΛ = 0 imply that ∂σσ∂j,T,t,ϵQ
i
T =

Q
i
TΛT [i,j]

Q
j
T

. Using this, it is easy to see that

∑
i≥1

∂σσ∂
j
ϵQ

i
T

(
Bi
T −Bi+1

T−1

)
=

(
BT
YT

)∑
i≥1

(
YTΛT [i, j]

Q
j
T

)(
ωT [i]− ωT−1 [i+ 1]

Q
i
T

Q
i+1
T−1

BT−1

BT

)

=

(
BT
YT

)∑
i≥1

ΛQET [i, j]
(
ωT [i]− ω+

T−1 [i]
)

(60)

Following the same steps as in Lemma (3), we get

ET
βMT+1

MT

rjT+1

ξT+1+k

[(
βMT+2

MT+1
R0
T+2

)
× ...

(
βMT+1+k

MT+k
R0
T+1+k

)]
= −ξ−1

T QET

[
ET∂σrjt+1∂σ lnA

0
T+1,k

]
− ξ−1

T QET∂σ log ξT+1+k∂σr
j
t+1. (61)

Substitute (60) and (61) in (59) and applying Lemma (7) to get equation (58), where the extra

term ϑjT simplifies to

ϑjT = (1− ϕT ξT )

(
BT
YT

)(
1

ξT

)∑
i≥1

ΛQET [i, j]
(
ωT [i]− ω+

T−1 [i]
)
. (62)
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where ΛQET [i, j] ≡ YTΛ [i, j]
(
Γ
β̂

)j
and ω+

T−1 [i] ≡ β̂
−1
ωT−1 [i+ 1]. 31

The final expression (35) follows from substituting the budget constraint (50), and equations

(58) and (62) for all j.

Lemma 10. Corollary 6 holds

In a stationary economy

QiT ≈ Q = βΓ1−1/IES
Bi+1
T−1

BT
≈ Γ−1ωT−1[i+ 1].

From the definition of ω+
T [i] =

Qi
TB

i+1
T−1

BT
, we get that

ω+
T [i] = βΓ−1/IESωT−1[i+ 1]. (63)

When ΣX = ΣA = 0, from Lemma 2 we get ω∗
T =

(
1− β̂

)−→
β̂ and substituting for β̂ =

βΓ1−1/IES , we obtain

ω∗
T−1[i+ 1] =

(
1− βΓ1−1/IES

)(
βΓ1−1/IES

)i+1
. (64)

Substitute in (64) in (63) to get

ω+
T [i] =

(
1− βΓ1−1/IES

)(
βΓ1−1/IES

)i
= ω∗

T [i].

The statement of the corollary follows from noticing that the second term in equation (35)

drops out when ω+
T = ω∗

T .

B Appendix: Empirical analysis

B.1 Results reported in Section 4

B.1.1 Data

Output, expenditures, tax revenues

We use the U.S. national income and product accounts to measure output, tax revenues. For

our measure of output Y $
t we use U.S. GDP. We measure nominal tax revenues T $

t as Federal

Total Current Tax Receipts + Federal Contribution To Social Insurance and public expendi-

tures G$
t as Federal Consumption Expenditures + Federal Transfer Payments To Persons from

BEA. All series are nominal and de-trended with constant time trends.

31Lemma 7 continues to hold in the stationary preferred habitat economy because rjT+1 = ET ∂σr
j
T+1 = 0.
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Figure 5: Summary of macroeconomic time series. Panel (a) plots detrended log nominal GDP, panel (b)
plots the nominal government expenditure measured as Federal Consumption Expenditures + Federal Trans-
fer Payments To Persons divided by nominal GDP, panel (c) plots nominal revenues divided by nominal GDP,
panel (d) plots the imputed 3 month return on privately-issued debt, panel (e) plots the average marginal tax
rate on income, panel (f) plots two ways of detrending the series in panel (e).
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Tax rates

As a measure of tax rates τ t we use the measure of the average marginal federal tax rate from

Barro and Redlick (2011). Their series end in 2012 but we follow their steps and extrapolate

this series for the years 2013-2017 using the Statistics of Income publicly available data from

the Taxstats website. The series for the raw tax rates are plotted in Figure 5(e). It is clear

from the series that there is a structural break in taxes around 1975. In our analysis we use

want to focus on movements in taxes around business cycle frequencies and therefore we want

to remove this break. We pursue two ways of doing that. First, we follow the business cycle

literature and apply a Hodrick-Prescott (HP) filter with the penalty parameter set to 1,600.

The resulting series is shown as the teal-blue line in the right panel Figure 5(f). While this

procedure eliminates the low frequency movements in taxes, it also makes the resulting series

“too smooth” post 1975. As an alternative, we adjust the penalty parameter until we achieve

both goals: remove low frequency movements around 1975 and preserve the volatility of tax

rates after and before 1975. The resulting series is show in the red line (at a penalty parameter

of 100,000) in the right panel. We use the red line as a baseline measure of tax rates, but all

our results are virtually unchanged if we use the teal line instead (see sub-section B.1.4).

Asset returns and government portfolio of bonds

We use the Fama Maturity Portfolios published by CRSP. There are 11 such portfolios, out

of which ten portfolios correspond to maturities of 2 to 20 quarter in 2 quarter intervals, and

a final portfolio for maturities between 30 and 40 quarters. We use the convention that the

upper cut-off for each maturity corresponds to j in the mapping of data to the theory. That

is, we use returns on portfolio of bonds of maturities between 2 to 4 quarter to measure rjt to

j = 4, between 4 to 6 quarters to measure rjt for j = 6, etc. With this convention j = 40 is the

largest maturity. We aggregate monthly log-returns by summing them across months within

each quarter.

To measure returns on private bonds we use the yield curve of High Quality Market (HQM)

Corporate Bonds computed by the U.S. Treasury.32 The yields are available for select maturi-

ties with the shortest one being one year, while our quarterly model requires imputing returns

on 3-months private bonds. For our baseline dataset, we followed McCulloch (1975) and in-

terpolated the nominal bond yields using cubic splines and then used that interpolation to

obtain the 3-month returns. We experimented with alternative extrapolation procedures, such

32The data can be accessed at https://www.treasury.gov/resource-center/economic-policy/corp-bond-
yield/pages/corp-yield-bond-curve-papers.aspx
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as using quadratic splines, and did not find any meaningful effect on our results. We use these

returns to construct the liquidity premium lnA0
t .

Maturity structure of the U.S. government debt

We use the CRSP Treasuries Monthly Series to get the amount outstanding Bi
t for all (including

TIPS and other inflation-protected bonds) federally issued (marketable) debt between 1952 and

2017, normalized by its face value. Each bond is uniquely identified by its cusips number n.

CRSP also supplies us the Macaulay duration i for the outstanding amount, and the nominal

market price Qn,it of each bond outstanding. For a few bonds where duration is absent, we set

the duration equal to maturity date − current date.

We follow Jiang et al. (2019), and construct at each date t, the market value QitB
i
t held by

the US government in bonds of Macaulay duration i, by summing across cusips n, such that

QitB
i
t =

∑
nQ

n,i
t Bn,i

t . We then sum across all Macaulay duration i to get the market value

of the government debt portfolio Bt ≡
∑

i∈Gt
QitB

i
t at each date t. We finally compute the

portfolio weight in the US government debt portfolio for each maturity i using that ωit =
Qi

tB
i
t

Bt
.

B.1.2 Estimations and extrapolations

We estimate model our factor model (21) using OLS. In the main text (Table 2), we report

the estimates for the baseline specification in which we restricted ρG = ρY = 1 and ρf = 0.

This estimation procedure produces estimates of
(
αj , ρj , κj , σ

2
j

)
for eleven j, with the highest

being j = 40. For constructing our target portfolios, we need to extrapolate
(
ρj , κj

)
for all

j > 1. In the baseline extrapolation, we estimate δj and σ2j by fitting the closest exponential

function: f(j) = e0 − e0 exp(−e1 × j) for f (j) ∈
{
δj , σ

2
j

}
. We fit the parameters e0 and

e1 to minimize sum of squares between fitted and actual values of δj and σ2j . Alternatively,

we also experimented to linearly extrapolate between any two adjacent j, and assume that(
κj , σ

2
j

)
=
(
κ40, σ

2
40

)
for j > 40. The point estimates and this extrapolation is reported in

Figure 6(a). We also experimented with alternative extrapolation, presented in Figure 6(b)

that we report in Section B.1.4.

B.1.3 Deriving equations (22) and (23)

We start from the factor structure (21), which we rewrite in matrix form for each subscripts

k ∈ {Y,G,A} as:

Ak
[
zkt+T
fT+t

]
= αk + Bk

[
zkt+T−1

fT+t−1

]
+ εkT+t,
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(a) Fit for extrapolation of the factor model estimates of
(
κj , σ

2
j

)
using

f(j) = e0 − e0 exp(−e1 × j)(21)

(b) Fit for extrapolation of the factor model estimates of
(
κj , σ

2
j

)
using linear

splines(21)

Figure 6

where we have stacked the coefficients as follows:

αk ≡
[
αy
αf

]
,Ak ≡

[
1 −κk
0 1

]
,Bk =

[
ρk 0
0 ρf

]
, εkT+t =

[
εkT+t
εf,T+t

]
.

We then invert this VAR(1) representation to get to the vector MA(t):[
zkT+t
fT+t

]
=
(
Ak
)−1

αk +
(
Ak
)−1

Bk
[
zkT+t−1

fT+t−1

]
+
(
Ak
)−1

εkT+t

=
(
Ak
)−1

[
αk + Bk

[
zkT+t−2

fT+t−2

]]
+
(
Ak
)−1

εkT+t +
(
Ak
)−1

Bk
(
Ak
)−1

εkT+t−1

...

= ET
([
zkT+t
fT+t

])
+

t−1∑
τ=0

((
Ak
)−1

Bk
)τ (

Ak
)−1

εkT+t−τ .

From the first row of this vector MA(t)representation, we can read MA(t) representation for

each component zkT+t:

zkT+t = ET
[
zkT+t

]
+

t−1∑
τ=0

ρτkεkT+t−τ + κk

(
ρτ+1
f − ρτ+1

k

)
ρf − ρk

εf,T+t−τ

 .
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We use the MA(t) representation to obtain formula for the matrices Σ−1
T , ΣQT , Σ

A
T , Σ

X
T . First,

note that for any k and any t ≥ 1:

covT

(
zkT+t, r

j
T+1

)
= covT

ρt−1
k εkT+1 +

κk

(
ρtf − ρtk

)
ρf − ρk

εf,T+1, ε
j
T+1 + κjεf,T+1


=

(
ρtf − ρtk

)
ρf − ρk

κkκjσ
2
f + ι{k=j}σ

2
j .

Applying that formula for t = 1 and k = j, we get

ΣT [j, t] = covT

(
rjT+1, r

t
T+1

)
= κjκtσ

2
f + ι{t=j}σ

2
j .

Furthermore we can easily check that, using that χ−2 = σ−2
f +

∑
t∈G κ

2
tσ

−2
t ,

Σ−1 [i, j] = ι{i=j}σ
−2
i − χ2κiκjσ

−2
i σ−2

j .

Using Corollary 2, when the set of government securities consists of the full set of pure

discount bonds, we have ΣQT [j, t] ≃ ΣT [j, t], and hence

ΣQT [j, t] ≃ κjκtσ
2
f + ι{t=j}σ

2
j .

We then use stationarity and the definition of X⊥,$
T+t ≡ Γ

[
T $
T × lnY ⊥,$

T+t −G$
T × lnG$

T+t

]
to get

that

ΣXT [j, t] = covT

(
X⊥,$
T+t

ETY $
T+t

, rjT+1

)

=
T $
T

Y $
T

covT

(
lnY ⊥,$

T+t, r
j
T+1

)
−
G$
T

Y $
T

covT

(
lnG$

T+t, r
j
T+1

)
= κj

(
T $
T

Y $
T

κY
ρtf − ρtY
ρf − ρY

−
G$
T

Y $
T

κG
ρtf − ρtG
ρf − ρG

)
σ2f . (65)

Finally, we use the definition of At,k ≡ A0
t × ...×A0

t+k−1 and that A0
t = 1 to compute

ΣAT [j, t] = covT

(
AT+1,t, r

j
T+1

)
= covT

(
A0
T+1 × ...×A0

t+T , r
j
T+1

)
≃

t−1∑
ℓ=0

covT

(
AT+1+ℓ, r

j
T+1

)

≃
t−1∑
ℓ=0

(
ρℓ+1
f − ρℓ+1

A

)
ρf − ρA

κAκjσ
2
f

≃
κAκjσ

2
f

ρf − ρA

[
ρf

1− ρtf
1− ρf

− ρA
1− ρtA
1− ρA

]
. (66)
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In the third line, we use the ≃ sign because we take a first-order approximation of the product

of A0. Note that in our baseline case with ρG = ρY = 1 and ρf = 0, those formula simplify to

ΣXT [j, t] = κj

(
T $
T

Y $
T

κY −
G$
T

Y $
T

κG

)
σ2f ,Σ

A
T [j, t] = κAκjσ

2
f

1− ρtA
1− ρA

.

We can now compute the three components determining the portfolio allocation. First note

that: ∑
ℓ∈G

Σ−1
T [j, ℓ]κℓ =

∑
ℓ∈G

(
ι{j=ℓ}σ

−2
j − χ2κjκℓσ

−2
j σ−2

ℓ

)
κℓ

= κjσ
−2
j

[
1−

∑
ℓ∈G κ

2
ℓσ

−2
ℓ

σ−2
f +

∑
t∈G κ

2
tσ

−2
t

]

=
κjσ

−2
j

1 +
∑

t∈G κ
2
tσ

2
fσ

−2
t

.

The primary surplus component πXT Σ
−1
T ΣXT

−→
β is given by

πXT Σ
−1
T ΣXT

−→
β [j] = πXT

∑
ℓ≥1

Σ−1
T [j, ℓ]κℓ

∑
t≥1

(
T $
T

Y $
T

κY
ρtf − ρtY
ρf − ρY

−
G$
T

Y $
T

κG
ρtf − ρtG
ρf − ρG

)
σ2f β̂

t


= KX,T

κj
σ2j
χ2,

with KX,T = πXT β̂

(
T $
T

Y $
T

κY
ρf−ρY

[
ρf

1−β̂ρf
− ρY

1−β̂ρY

]
− G$

T

Y $
T

κG
ρf−ρG

[
ρf

1−β̂ρf
− ρG

1−β̂ρG

])
. Similarly, the

liquidity component πATΣ
−1
T ΣAT

−→
β is

πATΣ
−1
T ΣAT

−→
β [j] ≃ πAT

∑
ℓ≥1

Σ−1
T [j, ℓ]κℓ

∑
t≥1

κAσ
2
f

ρf − ρA

[
ρf

1− ρtf
1− ρf

− ρA
1− ρtA
1− ρA

]
β̂
t

σ2f

= KA,T
κj
σ2j
χ2,

with KA,T = πAT β̂

(
κA

ρf−ρA

[
ρf

1−ρf

[
1

1−β̂
− ρf

(1−β̂ρf)

]
− ρA

1−ρA

[
1

1−β̂
− ρA

(1−β̂ρA)

]])
. Finally, the in-
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terest rate risk component πQΣ−1
T ΣQT

−→
β is given by

πQΣ−1
T ΣQT

−→
β [j] = πQ

(∑
ℓ∈G

Σ−1
T [j, ℓ]κℓ

)∑
t≥1

(
κtσ

2
f +

ι{t=ℓ}σ
2
ℓ

κℓ

)
β̂
t


= πQκjσ

−2
j

 ∑
t≥1 κtσ

2
f β̂

t

σ−2
f +

∑
t∈G κ

2
tσ

−2
t


· · ·+ πQ

(∑
ℓ∈G

[
ι{j=ℓ}σ

−2
j −

κjκℓσ
−2
j σ−2

ℓ

σ−2
f +

∑
t∈G κ

2
tσ

−2
t

]
σ2ℓ β̂

ℓ

)
= β̂

j
+KQ,T

κj
σ2j
χ2,

where KQ,T = πQ
[∑

t≥1 κtβ̂
t −
∑

t∈G κtβ̂
t
]
. From here it is easy to see that as the number of

maturities go to infinity, KQ,T → 0.

In our baseline case with ρG = ρY = 1 and ρf = 0, these formula simplify to expressions

(22) and (23).

We quantify the coefficients KX ,KA,KQ for the capped portfolio using the estimates

from our factor model. The constants χ2 =
1

σ−2
f︸︷︷︸

0.015

+
∑
i∈G

κ2iσ
−2
i︸ ︷︷ ︸

74.76︸ ︷︷ ︸
0.013

, πXT = β̂
−1

Γ︸ ︷︷ ︸
1.015

YT /BT︸ ︷︷ ︸
0.25︸ ︷︷ ︸

0.2537

, πAT =

Γ︸︷︷︸
1.005

ζT︸︷︷︸
0.605

YT /BT︸ ︷︷ ︸
0.25︸ ︷︷ ︸

0.152

, πQ = 1− β̂︸ ︷︷ ︸
0.01

and

KX,T =

(
β̂

1− β̂

)
︸ ︷︷ ︸

98.99

 κY︸︷︷︸
−0.47

T $
T

Y $
T︸︷︷︸

0.17

− κG︸︷︷︸
−0.0317

G$
T

Y $
T︸︷︷︸

0.15


︸ ︷︷ ︸

−0.00321

,

︸ ︷︷ ︸
−0.320

KA,T =


κA︸︷︷︸

0.00098

β̂︸︷︷︸
0.99

1− ρA︸︷︷︸
0.827


︸ ︷︷ ︸

0.0056


1

1− β̂︸ ︷︷ ︸
99.99

−

ρA︸︷︷︸
0.827

1− β̂ρA︸︷︷︸
0.819︸ ︷︷ ︸

4.59


︸ ︷︷ ︸

95.4

,

︸ ︷︷ ︸
0.534
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(a) Autocorrelated factor ft (b) Alternative extrapolation of the factor model (21)

(c) Alternative tax series (d) Bi-annual frequency

Figure 7: The capped target portfolio −→ω ∗
T for various alternatives (in yellow) versus the baseline capped tar-

get portfolio (in red)

KQ,T =

( ∞∑
t/∈G

β̂
t
κt

)
︸ ︷︷ ︸

0.153

.

We see that the magnitude of πXT KX,T is roughly equal to πATKA,T but they have opposite

signs and is much smaller than
(
1− β̂

)
. This explains why the portfolio that hedges primary

surplus offsets the portfolio that hedges liquidity risks but both are less important than hedging

interest rate risks.
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Table 3: FACTOR MODEL ESTIMATION RESULTS (AR(1) FACTOR STRUCTURE)

Excess returns r
j
t for various maturities j

6m 12m 18m 24m 30m 36m 42m 48m 54m 60m 120m lnG$
t lnY

⊥,$
t lnA0

t ft

αk 0.086 0.155 0.220 0.245 0.284 0.315 0.346 0.344 0.372 0.304 0.444 -0.177 -0.319 0.006 0.026
(0.014) (0.025) (0.033) (0.035) (0.039) (0.039) (0.038) (0.037) (0.037) (0.043) (0.030) (0.016) (0.008) (0.003) (0.502)

ρk -0.107 -0.057 -0.041 -0.043 -0.042 -0.025 -0.022 -0.008 -0.022 -0.027 0.003 1.001 1.009 0.828 -0.035
(0.043) (0.035) (0.030) (0.025) (0.023) (0.020) (0.018) (0.016) (0.015) (0.015) (0.009) (0.008) (0.004) (0.047) (0.063)

κk 0.028 0.074 0.118 0.157 0.199 0.230 0.257 0.285 0.306 0.345 0.404 -0.032 -0.048 0.001 0.000
(0.002) (0.003) (0.004) (0.004) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.004) (0.016) (0.008) (0.000) (nan)

σ2
k 0.044 0.154 0.267 0.300 0.378 0.384 0.356 0.345 0.341 0.460 0.222 4.231 1.125 0.000 63.676

(0.004) (0.014) (0.024) (0.027) (0.034) (0.034) (0.031) (0.031) (0.030) (0.041) (0.020) (0.375) (0.100) (0.000) (5.65)

R2 0.536 0.698 0.771 0.840 0.870 0.898 0.922 0.938 0.946 0.943 0.979 0.985 0.996 0.727 0.001

Notes: This table records the OLS estimates of the factor model (21) without imposing ρf = 0, ρY = ρG = 1. Standards

errors are in parenthesis. The sample for excess returns and primary surpluses normalized by outputs is 1952-2017, and

the sample for the one-period liquidity premium is 1984-2017. The time period is a quarter.

B.1.4 Robustness

AR(1) factor structure In this section, we consider the general estimation of (21) without

any a-priori restrictions on parameters. Table 3 presents estimation results.

The construction of matrices Σ−1
T and ΣQT remain unchanged while matrices ΣAT and ΣXT

are now constructed using expressions (65) and (66). We construct the capped target portfolio

implied by the general AR(1) structure and compare to our baseline portfolio in panel (a) of

Figure 7.

Alternative extrapolation method, tax series, time aggregation, calculation of re-

turns In Section B.1.2 we discussed an alternative extrapolation procedure for coefficients(
κj , σ

2
j

)
, while in Section B.1.1 we presented an alternative procedure to de-trend tax series.

None of these alternative approached affect our conclusions in any meaningful way. We re-

ported the implied unrestricted target portfolios under this alternative procedures respectively

in panel (b) and (c) of Figure 7.

We also experimented with alternative ways to calculate returns with different time fre-

quencies. In the baseline, we used quarterly measures of returns, surpluses and taxes to ensure

the largest sample such that we could measure asset prices and macro data in a consistent

way. To verify if our results are driven by our choice of the frequency, we use returns and

other macro variables at biannual frequencies. The shortest maturity available is now of 6

months, which we take as our measure of the one-period government bond R0
t . As before, we

construct the biannual holding period return by summing monthly returns for each portfolio
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which are separated by 6 month intervals. For other macro variables, we aggregate two consec-

utive quarters to obtain the biannual series. Using this data, we apply the same procedure as

the baseline (extracting the factor, estimating the factor model, constructing the conditional

covariances) and obtain the optimal portfolio. We show the implied unrestricted target port-

folios in the panel (d) of Figure 7. In order to compare it to our baseline results which have

portfolios by quarterly bins, we aggregate the baseline portfolio weights to biannual weights

using ωbiannual [i] ≡ ω [2i− 1]+ω [2i],where i indexes the 6 month intervals and the right hand

size is the baseline target portfolio. We find that that the two biannual portfolios are very

similar.

B.2 Results reported in Section 5

B.2.1 Additional discussion for Section 5.1

To simulate the neoclassical model, we solve a complete markets Ramsey allocation as in

Lucas and Stokey (1983) by posing the following maximization problem. Given some t = 0

state s0 ∈ S and household savings b0
(
s0
)
, the Ramsey problem can be expressed as

max
ct(st),yt(st)

E0

∞∑
t=0

U

(
ct,

yt
θt

)
(67)

subject to

yt
(
st
)
= ct

(
st
)
+G (st) , (68)

b0
(
s0
)
uc
(
s0
)
=

∞∑
t=0

∑
st

βtπt
(
st
) [
uc
(
st
)
ct
(
st
)
+ uy

(
st
)
yt
(
st
)]
, (69)

where the implementability constraints, equation (69) is derived by taking the time-0 budget

constraint and replacing after-tax wages as well as bond prices.

We assume that the state space S is discrete (described below) and non-linearly solve

the optimal allocation using the first-order conditions of the Ramsey planning problem. The

resulting optimal allocation is represented using two sets of vectors of dimension 2|S|, one set

for consumption and labor choices at t = 0 and another set for all st ∈ S for t ≥ 1. Using the

Ramsey allocation {ct, yt}, we can back out other related objects such tax rates τ t = 1−
(

yt
θt

)γ
c−σ
t

; primary surplus Xt = τ tyt −Gt; and zero-coupon bond prices Qnt = Et
c−σ
t+n

c−σ
t

.

We follow Buera and Nicolini (2004) and assume that the preferences of households are

isoelastic U
(
ct,

yt
θt

)
=

c1−σ
t
1−σ −

(
yt
θt

)1+γ

1+γ with parameters σ = 2 and γ = 1. The economy is

closed, so the demand of assets from foreign investors is zero and there are liquidity services
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provided by government bonds. The only source of uncertainty comes from the exogenous

stochastic process of government expenditures Gt, which follows an AR(1) process

lnGt = αG + ρG lnGt−1 + σGϵt

We set (αG, ρG, σG) to obtain a mean G/Y of 15%, auto correlation of 0.95 and a standard

deviation 1.2
15 which are in line with the U.S. data that we use in Section 4.1. We discretize the

lnGt process with |S| = 50 grid points. For our calculations, we set the level of initial debt B0

so that the annualized initial level of government liabilities to GDP is 100%.

We use this parameterization to construct several versions of the optimal portfolio. First,

for a given s ∈ S, we apply Corollary to Theorem 1 in Angeletos (2002) and obtain the

optimal portfolio ωCM,n
T

(
sT
)
= ωCM,n (sT = s) for n = 1, . . . 50 maturities that implements

the complete markets allocation. We use the bond prices and present value of primary surpluses

all of which can be backed out given the objects from the Ramsey allocation. In Figure 2, red

color line, we plot
{
ωCM,n

}50
n=1

for sT = s24 which is the modal state.

Details for Figure 2 To obtain the target portfolio −→ω T given some history sT , we need to

solve for a vector of portfolio shares that satisfies

ΣT
−→ω T =

[
πQTΣ

Q
T + πXT Σ

X
T

]−→
β̂ .

Before explaining how we get −→ω T , we make two observations. First, given the properties of

the Ramsey allocations, ΣT , π
Q
T , π

X
T ,Σ

X
T only depend on state sT , which we set to s24 and as

before can be computed in closed form using the complete market allocation that we have

already solved. Second, as mentioned in the main text the returns of different bonds are highly

correlated in the neoclassical economy, which makes the matrix of returns ΣT to be effectively

non-invertible and there are a range of portfolios that satisfy inequality (26) for a given ϵ. To

obtain the target portfolio that is plotted in Figure 2 blue color, we set ϵ = 1e − 3 and pose

the following minimization problem

min
ω̃

∥∥∥ω̃ −−→ω ABN
T

∥∥∥
such that ∥∥∥∥ΣT ω̃n − [πQΣQT + πXT Σ

X
T + πATΣ

A
T

]−→
β̂

∥∥∥∥ ≤ 1⊺ϵ.

where || · ∥ we mean the sup norm . This formulation conveniently delivers an objective that is

quadratic while the constraint set is linear and convex; and we use a standard methods (OSQP

library) to solve the minimization problem.
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From the outcomes in Figure 2, there are two clear observations. First, even though

Corollary 1 abstracted from income and price effects, the resulting target portfolio provides

an excellent fit to the optimal portfolio that replicated the complete market allocation in this

neoclassical economy. Second, the portfolio in the neoclassical economy are very different than

our target portfolio computed using U.S. data. It has large negative (695 times annual GDP

in risk-free assets) positions in the risk-free bond and large and offsetting positions in risky

bonds with flipping signs. As a point of reference, in the target portfolio that is calibrated to

US data, positive debt is issued in all maturities with the maximum being around 1 percent,

and the share in the risk-free debt is quite small 0.7 percent.

Risk-free bond and consol We chose the first 50 maturity zero coupon bonds to keep the

discussion closer to the market structure analyzed in Section 4. The formula Theorem 1 of

Angeletos (2002) can be applied to any |S| securities. Furthermore, if we replace inverse in

equation (12) of Angeletos (2002) of with pseudo-inverse33, we can also obtain the formula for

a set of securities smaller than |S|. Our online codes are flexible to implement any market

structure but since the general patterns are not that different we discuss only one special case,

in which the market structure has a risk-free bond and consol. Besides being a case analyzed in

detail in Angeletos (2002), an attractive feature of risk-free bond and consol market structure

is that ΣT is a scalar, and the target portfolio (also a scalar) is uniquely pinned down. In this

case, using the modified Angeletos (2002) formula, we find that the holdings in the consol,

ωconsol is 746 percent of annual GDP and an offsetting position of in the risk free bond ω0

of −646 percent of annual GDP. The counterpart −→ω T =

[
πQ
T ΣQ

T
ΣT

+
πX
T ΣX

T
ΣT

]−→
β̂ for our target

portfolio, we get 677 percent in the consol and an offsetting −577 percent in the risk-free

bond. This fact both the portfolios are so close to each other reasserts the validity of our

formula for the target portfolio.

Next comparing the share of holdings in the consol (741 percent of total debt ) to the sum

of shares of the portfolio that hedges primary surplus risk 1⊺Σ−1
T πXT Σ

X
T (-15% in the baseline

with 120 maturities and -17% in the theoretical unrestricted target portfolio which we estimate

from the US data in Section 4), we find that it is about 40-50 times larger with an opposite

sign.

Understanding the sources of differences between the optimal portfolios We want

to understand the sources that drive the differences between the optimal portfolios computed

33A pseudoinverse is minimum (Euclidean) norm solution to a system of linear equations with multiple
solutions. See also discussion in Section V.B in Angeletos (2002).
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using U.S. data and the neoclassical model. First, we construct the counterpart of Table

1 using data simulated for 265 quarters from neoclassical model economy. The results are

reported in Table 4 below. Compared to Table 1 in the main text, we see that returns in the

simulated economy are much less volatile. For instance, for long maturities the variance of

returns is between 0.025 and 0.035 which is 300 times smaller than what we get for the U.S.

counterparts. The covariances of returns with primary surplus are only 10-20 times smaller

signaling a much higher correlation. Furthermore, the sign of the covariance with primary

surplus is positive for long maturities while it is negative in for the U.S. data.

Table 4: COVARIANCE MATRIX FOR NEOCLASSICAL MODEL

Excess returns rjt for various maturities j Surplus

to

GDP

Tax

rate

Liquidity

pre-

mium

6m 12m 18m 24m 30m 36m 42m 48m 54m 60m 120m Xt/Yt τt lnA0
t

6m 0.00015 0.00042 0.00067 0.00089 0.0011 0.0013 0.0014 0.0016 0.0017 0.0019 0.0023 0.0029 0 0

12m 0.0012 0.0019 0.0026 0.0031 0.0037 0.0041 0.0046 0.0049 0.0053 0.0066 0.0083 0 0

18m 0.003 0.0041 0.005 0.0058 0.0066 0.0072 0.0079 0.0084 0.01 0.013 0 0

24m 0.0054 0.0066 0.0078 0.0088 0.0097 0.01 0.011 0.014 0.018 0 0

30m 0.0082 0.0095 0.011 0.012 0.013 0.014 0.017 0.022 0 0

36m 0.011 0.013 0.014 0.015 0.016 0.02 0.025 0 0

42m 0.014 0.016 0.017 0.018 0.023 0.029 0 0

48m 0.017 0.019 0.02 0.025 0.032 0 0

54m 0.02 0.022 0.027 0.034 0 0

60m 0.023 0.029 0.037 0 0

120m 0.036 0.046 0 0

Xt/Yt 0.58 0 0

τ t 0 0

lnA0
t 0

Mean 0.0008 0.0023 0.0036 0.0047 0.0058 0.0067 0.0076 0.0083 0.009 0.0096 0.012 4.1 18 0

Autocorr0.11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.92 0.84 0

We simulate the neoclassical model for 265 quarters that correspond to the sample period 1952-2017. Excess

returns 6m, 12m, ... are the nominal excess returns in Fama maturity portfolios corresponding to 6-12 months,

12-18 months, ... maturity bins, respectively. All data is quarterly and in percentage points.

Our factor structure suggests a parsimonious way to understand why the neoclassical port-

folio has the features we highlighted, that is, large savings in risk-free bonds and offsetting

positions in risky assets. To see that, consider a limiting case when the market structure has

bonds of all maturities. In the main text equations (22) provides closed-form expressions for

the share in the risk-free security and the risky portfolio as a function of of the factor loadings

and highlights the role of the ratio KX

κ∞
in driving the differences.
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Excess returns r
j
t for various maturities j

6m 12m 18m 24m 30m 36m 42m 48m 54m 60m 120m lnG$
t lnY

⊥,$
t lnA0

t ft

αk 0.001 0.003 0.004 0.006 0.007 0.008 0.009 0.010 0.010 0.011 0.014 -0.098 5.503 0.000 -0.003

(0.001) (0.002) (0.003) (0.004) (0.005) (0.006) (0.007) (0.008) (0.008) (0.009) (0.011) (0.170) (0.017) (0.000) (0.025)

ρk -0.034 -0.035 -0.036 -0.037 -0.037 -0.038 -0.038 -0.039 -0.039 -0.040 -0.041 0.455 0.452 0.000 0.861

(0.061) (0.061) (0.061) (0.061) (0.061) (0.061) (0.061) (0.061) (0.061) (0.061) (0.060) (0.025) (0.025) (0.000) (0.032)

κk -0.006 -0.019 -0.030 -0.039 -0.049 -0.057 -0.064 -0.071 -0.077 -0.082 -0.103 3.869 0.387 0.000 0.000

(0.001) (0.003) (0.004) (0.006) (0.007) (0.008) (0.009) (0.010) (0.011) (0.012) (0.014) (0.170) (0.017) (0.000) (nan)

σ2
k 0.000 0.001 0.003 0.004 0.007 0.009 0.012 0.014 0.017 0.019 0.030 1.908 0.019 0.000 0.163

(0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.003) (0.169) (0.002) (0.000) (0.014)

R2 0.173 0.174 0.174 0.175 0.175 0.175 0.176 0.176 0.176 0.176 0.177 0.936 0.936 nan 0.745

Table 5: Factor model estimation results Neoclassical model

Notes: This table records the OLS estimates of the factor model (21) without imposing ρf = 0, ρY = ρG = 1. Standards

errors are in parenthesis. All series are for a 265 quarters that correspond to the sample period 1952-2017.

We follow the same steps as in Section 4.2 and estimate the factor model but now using

data simulated from the neoclassical economy. We make two changes relative to the baseline.

We allow for ρG and ρY to be smaller than 1 as the neoclassical model had AR(1) as the data

generating process. Second, to estimate κ∞ we extrapolate using κj = a0−a1 exp
(
−a2 × j

)
.34

Plugging in for the values of KX , κ∞, we obtain KX

κ∞
equals 9.72 in the neoclassical economy as

compared to −0.6 using the U.S. data. Thus, from the lens of our expression (25), a big part

of the differences between the optimal portfolios can be understood from the fact that KX

κ∞
in

the neoclassical model is much larger and of opposite sign from what we obtained in Section

4.2 using US data. Qualitatively it implies a larger and position with opposite opposite in

the portfolio that hedges primary surplus risk. Quantitatively, the finding that KX

κ∞
is about

20 times larger than in the neoclassical economy explains well the gaps in the portfolio that

hedges the primary surplus risk. The reason for this can be traced back to observations we

made about covariance of returns with each other and primary deficits in Table 4.

B.2.2 Additional discussion for Section 5.2

Heteroskedastic shocks In the main text, we assumed that the shocks εt were homoskedas-

tic, that is, we imposed that {σk} for k ∈{j, Y,G,A, f} are constant through time. We relax

that assumption and augment the baseline factor model 21 with the following univariate GARH

34This is a slightly general version so that its fits the neoclassical data well. Our results are virtually the same
if we use the linear splines extrapolation as in the Online Appendix B.1.2.
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processes {σk}

σ2k,t = σ2k +

p∑
j=1

ρGARCHkp ε2zt−p +

q∑
j=1

ϱGARCHkq σ2εz,t−q

and impose that all ε are standard Gaussian and independent of each other. We now estimate

the system using maximum likelihood and assuming p = 2 and q = 1.

The consequence of heteroskedastic shocks is that structure of the expressions for ΣT and

Σ−1
T as well as ΣkT for k ∈ {X,A,Q} remains the same but they have time-varying parameters

σf,t and σj,t for each return maturities j.35 We use the same extrapolation scheme as the

baseline to obtain (σj , κj) for other maturities. And finally, as an implication, the optimal

target portfolio and its components also inherit that time-variation.36

Results In Figure 8, we plot the time-series for elements in {σj,t} and σf,t. The volatilities

for returns (including the factor) and macroaggregates are high in the early 80s and the great

recession of 2008-2010 and quite stable in the intervening periods.

Keeping everything else the same, periods when the factor is more volatile increases the

covariance of returns with each other as well as the covariance of returns with surpluses and

liquidity risk. Thus, a priori the effect on the optimal portfolio is ambiguous. To gauge how

much the portfolio moves overtime, we start by plotting in Figure 9), the 90-10 interval by

maturity, that is, for each maturity we construct the 90th and 10th percentile across dates.

We see that for lower maturities the portfolio shares varies by as much as 20-25 basis points

and the fluctuations are much smaller for larger maturities.

To understand the sources of this variation, we separate out the primary surplus risk

portfolio and the liquidity risk portfolios using expressions (22) and report the sum of the

portfolio shares across maturities for every period. In Figure 10, we see that both these shares

are quite stable through time, and more or less offset each other.

B.3 Additional details for Section 5.3

In this section we estimate excess liquidity premia ai and statistically test Eait = 0. We first

describe the estimation framework and then our findings.

35The time-variation in
{
σ2
G, σ

2
Y , σ2

A

}
drops out because the covariances of hedging terms are driven by the

common component captured in the factor
{
σ2
f,t

}
.

36In principle, the fiscal risk and liquidity risk portfolio could vary because quasi-weights πX
T and πA

T or β⃗ vary
with time. To focus on the impact of heteroskedastic shocks, we keep them constant and equal to the values
that we used in the main text and only allow the target portfolio to vary due to time-varying covariances.
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Figure 8: Conditional volatilities of returns, factor, using the estimated GARCH model

Figure 9: 90-10 interval of portfolio shares (maturities from 2 quarters to 120 quarters) with heteroskedastic
shocks.
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Figure 10: Components of target portfolio with heteroskedastic shocks. The blue line plots the sum of the
shares of the portfolio that hedges the primary surplus risk, that is, 1 · πX

T Σ−1
t ΣX

t and the red line plots the
negative of sum of the shares of the portfolio that hedges the liquidity risk, that is, −1 · πA

TΣ
−1
t ΣA

t .

Framework From equation (10), we know that

ait = −Et
βMt+1

Mt

(
Rit+1 −R0

t

)
= −Et

βMt+1

Mt
rit.

To back out a, we need to estimate βMt+1

Mt
. We start by assuming that the SDF is affine in a

vector of some demeaned factors fpvtt :

βMt+1

Mt
= −c0 − c1 · fpvtt ,

and then use the fact that the there is no liquidity wedge for privately traded bonds. Thus we

are looking for (c0, c1) that minimize the error in Et βMt+1

Mt
Rpvt
t = 1 for a given set of returns

on private bonds Rpvt
t . This yields a familiar expression for estimates of (c0, c1)

c0 = −
(
ER0,pvt

t

)−1
,

c
′
1 = −c0E

(
rpvtt+1

)⊺ (
E
[
rpvtt+1

] (
fpvtt+1

)⊺)([
Efpvtt+1

([
rpvtt+1

])⊺] [
E
[
rpvtt+1

] (
fpvtt+1

)⊺])−1
.

Fama and MacBeth (1973) show that (c0, c1) can be estimated using a two step process in

which we first run a return by return time-series regression to estimate security specific “betas”

and then we run a cross section regression for each date to back out “lambdas” or factor risk

premia, λpvtt

rpvt,jt = γj + βj · fpvtt + ϵjt ,

rpvtt = αt + β′ · λpvtt ,
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and we can recover (c0, c1) using

c0 = −E
[
R0,pvt
t

]−1
,

c1 = −c0
(
Σf
t

)−1
E
[
λpvtt

]
.

Using Fama McBeth procedure is useful because it immediately lends to an application for

Delta method for computing the standard errors on the a. Let̂be the estimated counterparts

of the theoretical objects. We can express Ê
[
ait
]
as some function s (·) such that

Ê
[
ait
]
≡ s

({
rit+1

}
t≥0

,
{
R0,pvt
t

}
t≥1

,
{
fpvtt

}
t≥1

,
{
λpvtt

}
t≥1

)
.

Applying the Delta method, we get that:

σ2(E
[
ait
]
) = T ×∇s′Σa∇s,

where

∇s = − 1

T


Ê
[
R0,pvt
t

]−1
1T×1[

Ê
[
rit+1

]
+
(
Σ̂f
t

)−1
Ê
[
λpvtt

]
ĉovt(f

pvt
t , rit+1)

]
Ê
[
R0,pvt
t

]−2
1T×1

0

Ê
[
R0,pvt
t

]−1 (
Σ̂f
t

)−1
ĉovt(f

pvt
t , rit+1)1T×1

 Σa = cov



{
rit+1

}
t≥0{

R0,pvt
t

}
t≥1{

fpvtt

}
t≥1{

λpvtt

}
t≥1

 .

Estimation To estimate the excess liquidity premia and its standard errors, we need three

things: a set of factors Factors fpvtt , a measure of private risk-free rate R0,pvt, and a set of

excess returns rpvtt . We describe those choices and then our results.

For the SDF βMt+1

Mt
estimation, we impose a 3 factors structure to the SDF as in Koijen et al.

(2017). The first factor is Cochrane and Piazzesi (2005)’s “CP factor”. The second factor is the

level (LVL) factor, which is constructed as the first component of the forward rate covariance

matrix, following Cochrane and Piazzesi (2008). The third factor is the value-weighted stock

market excess return from CRSP. We then estimate the SDF with the returns on 5 portfolios

of corporate bonds of credit ratings AAA, AA, and A, constructed from Bloomberg (formerly

Barclays) indices,37 and available from 1989 to 2015. These indices measure the investment

grade, fixed-rate, taxable corporate bond market. They include USD-denominated securities

publicly issued by US and non-US industrial, utility and financial issuers.38 We use as a private

37We thank Alexandros Kontonikas for sharing with us the data used in and used in Guo, Kontonikas and
Maio (2020)

38For more details, see https://www.bloomberg.com/professional/product/indices/bloomberg-fixed-income-
indices-fact-sheets-publications/

82

https://www.bloomberg.com/professional/product/indices/bloomberg-fixed-income-indices-fact-sheets-publications/
https://www.bloomberg.com/professional/product/indices/bloomberg-fixed-income-indices-fact-sheets-publications/


risk free rate R0,pvt
t our previous estimates of A0

t such that R0,pvt
t =

R0
t

1−A0
t
.39

We then apply our estimation framework. Our findings are reported in Table 6. We see

that although the point estimates are negative relfecting the larger share of risk-adjustment,

the main takeaway is that that all maturities the estimates are statistically not different from

zero. Thus we cannot reject Eait = 0.

Table 6: Estimates of the time-averaged excess liquidity premium Ê
[
ait
]

maturity i Ê
[
ait
]

s.e t-stat p-value

6 months -0.03 (0.12) -0.24 0.81
12 months -0.05 (0.33) -0.16 0.87
18 months -0.05 (0.63) -0.07 0.94
24 months -0.06 (0.83) -0.07 0.94
30 months -0.08 (1.04) -0.07 0.94

36 months -0.09 (1.23) -0.07 0.94
42 months -0.10 (1.47) -0.07 0.95
48 months -0.10 (1.65) -0.06 0.95
54 months -0.10 (1.85) -0.05 0.96
60 months -0.10 (1.92) -0.05 0.96
120 months -0.11 (2.28) -0.05 0.96

Notes: This table records the estimates of the average excess liquidity premium, its standard errors, and the

associated t-statistics and p-value for the 11 Fama Maturity Portfolios. We take an average liquidity premium of

0 as our null hypothesis. The sample is 1989-2015. The units of the average excess liquidity premium is quarterly

and in percentage points. We follow Fama and MacBeth (1973) and control for cross-sectional correlations but

we assume that there is no serial correlations in the estimation of the SDF. We compute the standard errors

using the Delta method.

B.4 Details for Section 5.8

Next we describe the how we build ΛQET from the Greenwood and Vayanos (2014) estimates.

We use the GV point estimates of bi for their reported maturities and extrapolate for other

maturities by fitting the same functional form that we used in the baseline for factor loadings.40

The fit is reported in the left panel of Figure 11. In the right panel of Figure 11, we show

the heatmap of ΛQE (all normalized by its mean value) computed using expression (38) and

the extrapolated {bn}. The price impacts are larger around the south east region around the

39Alternatively, we also use the return on the portfolio of AAA corporate bonds of intermediate maturities
(1 to 10 years) from Barclays as our (private) risk-free rate R0,pvt

t . That doesn’t affect much the results (the
point estimates are modified but still very non-significant).

40In particular, Table 2 of GV reports estimates for bonds of maturities 2, 3, 4, 5, 10 years. We assume that
bn = b0 + b0 exp

(
−b1 × n

)
and find coefficients

{
b0, b1

}
that minimize the least square errors. The results are

robust to other extrapolation schemes.
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Figure 11: The left panel plots the fit for coefficients bn. The right panel shows the normalized heatmap for
the price impact matrix: ΛQE

diagonal. Thus price impacts are large when securities involved are both of longer maturities.

C Closed Economy

In this appendix, we study a closed neoclassical version of our benchmark economy. Unlike

the benchmark open economy specification in Section 3, a change in the governments port-

folio will necessarily change the price of assets in economy; and, compared to the segmented

markets version of the benchmark economy presented in Section 5.8, a change in the portfolio

composition at date T will also affect the price of securities in all other periods.

In what follows, we show how to to adjust our variational approach to incorporate such

effects on prices. Our main result is to characterize the price effects and using that we show

that the closed economy neoclassical setting implies price responses that are counterfactual

relative to the evidence reviewed in Section 5.8. Besides the different structure on price effects,

the rest of the analysis of a closed economy including the steps to obtain the expression for

the optimal portfolio are identical to Section 3.2. In Section C.1, we formally describe the

neoclassical closed economy environment that we study, then introduce the perturbation and

analyze the welfare effects and optimality of the government. The proofs of the main results

are in Section C.2.

C.1 Analysis

In addition to the assumptions of the benchmark economy we assume that:
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1. Household preferences are time separable

Vt = Ut

(
ct −

(yt/θt)
1+1/γ

1 + 1/γ

)
+ βEtVt+1.

Following the neoclassical tradition, we abstract from trading frictions and non-pecuniary

benefits of government debt by assuming that {Qitbit}i∈Gt does not enter into the utility

function and φt
(
{Qitbit}

)
≡ 0.

2. Government expenditures G are exogenous.

3. Foreign investors are absent, Bi = 0, for all i and all assets are in zero net supply.41

4. The set of available securities can replicate a consol. We will let Q∞
t denote the price of

the consol at date t.

Under these assumptions asset market clearing implies that

bit = Bi
t

and

ct +Gt = Yt.

Absence of trading frictions and non-pecuniary benefits of government securities the household

optimality conditions imply

EtMt+1R
i
t+1 =Mt or MtQ

i
t = Et

[
Mt+1

(
dit+1 +Qit+1

)]
(70)

Perturbation Following Section 3.2, we use a variational approach to isolate the optimal

public portfolio. We consider any competitive equilibrium and introduce a perturbation at

a particular history sT by assuming that the government purchases ϵ

Qj
T (sT )

units of security

j which is funded by selling ϵ

Qrf
T (sT )

of the risk free bond. This asset swap produces an

additional rjT+1(s
T+1)ϵ of excess returns at all histories sT+1 following sT . We assume that the

government uses those resources to purchase an additional
rjT+1(s

T )ϵ

1+Q∞
T+1(s

T+1)
of the consol while

keeping its holdings of all other assets constant. Due to its nature of swapping a longer security

for a risk-free bond we will refer to this as a Quantitative Easing (or QE) perturbation and

41That all assets are in zero net supply is for notational simplicity. Assuming positive net supply simply adds
another term to the resource constraint equivalent to changing exogenous government expenditures.
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formally define it by

∂j,T,ϵB
i
t(s

t) =



ϵ
Q0

T (sT )
if i = rf and st = sT ,

− ϵ

Qj
T (sT )

if i = j and st = sT ,

− 1
1+Q∞

T+1(s
T )

(
rjT+1

(
sT+1

))
ϵ if i = ∞ and st ≻ sT ,t > T ,

0 otherwise.

The change in portfolio composition necessarily requires a change in taxes to balance the

governments budget constraint,

Gt +
∑
i≥0

(Qit + dit)B
i
t−1 = τ tYt +

∑
i≥0

QitB
i
t.

Differentiating with respect to ϵ in the direction of the QE perturbation yields the following

response of tax revenues

−∂j,T,ϵ (τ tYt) =
rjT+1

(
sT+1

)
1 +Q∞

T+1 (s
T+1)

(
I{st≻sT }

)
+
∑
i≥0

∂j,T,ϵQ
i
t(s

t)
(
Bi
t(s

t−1)−Bi
t−t(s

t)
)

(71)

where I{st≻sT } is an indicator returning 1 if history st follows from sT and zero otherwise.

Intuitively the effect of the perturbation on tax revenues is a combination of two effects. The

first,
rjT+1(s

T+1)
1+Q∞

T+1(s
T+1)

(
I{st≻sT }

)
, are the direct effects that are a result of the excess returns

generated by the asset swap. The second,
∑

i≥0 ∂j,T,ϵQ
i
t

(
Bi
t(s

t)−Bi
t−1(s

t−1)
)
, is the indirect

effect that arises because the asset swap in period T changes prices not only in all future

periods but also in all past periods starting from the initial date 0.

Assuming that the equilibrium manifold is sufficiently smooth, we can apply the envelope

theorem to the household’s maximization problem to obtain the welfare impact of this pertur-

bation as ϵ→ 0. The welfare effect of this perturbation comes from its effect on both tax rates
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and security prices and is given by

∂j,T,ϵV0 = E0

∑
t≥0

Mt

−
∂j,T,ϵ (τ tYt)

ξt
+
∑
i≥0

∂j,T,ϵQ
i
t

(
bit−1 − bit

)
= E0

∑
t≥0

Mt

−
∂j,T,ϵ (τ tYt)

ξt
+
∑
i≥0

∂j,T,ϵQ
i
t

(
Bi
t−1 −Bi

t

)
= E0

∑
t≥0

Mt

∑
i≥0

∂j,T,ϵQ
i
t

(
ξtB

i
t−1 −Bi

t−1

ξt
− ξtB

i
t −Bi

t

ξt

)
+
∑
t≥T+1

(
Mt

ξt

)(
I{s̃t≻sT }

)( rjT+1

1 +Q∞
T+1

)
= E0

∑
t≥0

Mt

(
ξt − 1

ξt

)∑
i≥0

∂j,T,ϵQ
i
t

(
Bi
t−1 −Bi

t

)
+
∑
t≥T+1

(
Mt

ξt

)(
I{s̃t≻sT }

)( rjT+1

1 +Q∞
T+1

)
= Pr0

(
sT
)
MT

(
sT
)PEj,T,ϵ + ET

∑
k≥1

(
MT+k

MT

)(
rjT+1

1 +Q∞
T+1

)
1

ξT+k

 (72)

with

PEj,T,ϵ =
1

Pr0 (sT )MT (sT )
E0

∑
t≥0

Mt

(
ξt − 1

ξt

)∑
i≥0

∂j,T,ϵQ
i
t

(
Bi
t−1 −Bi

t

) .
The term ET

∑
k≥1

(
MT+k

MT

)(
rjT+1

1+Q∞
T+1

)
1

ξT+k
parallels the effect of the same perturbation in the

open economy benchmark model, and can be analyzed in a similar manner. Now, in addition to

that term, we also have PEj,T,ϵ that captures the effect on asset prices for all histories starting

from time 0 onward. In the next section we will show how our second order expansions can

allow us express that term using covariances that can be measured in the data.

Characterizing the Price Effects The perturbation affects asset prices through its effect

on the stochastic discount factor of the household. This can be seen by differentiating the

household Euler equation (70) with respect to ϵ in the direction of the perturbation to get

(∂j,T,ϵMt)Q
i
t +Mt

(
∂j,T,ϵQ

i
t

)
= Et

[
∂j,T,ϵMt+1

(
dit+1 +Qit+1

)
+Mt+1

(
∂j,T,ϵQ

i
t+1

)]
.

As the perturbation affects the stochastic discount factor through changes in tax rates we

define ξM,t ≡
∂ logMt

∂(τ tyt)
as the semi-elasticity of logMt with respect to the tax revenues which

implies ∂j,T,ϵMt =MtξM,t∂j,T,ϵ (τ tyt) . Under our assumptions, this semi-elasticity is given by

ξM,t = −ψt ×
1

Yt −Gt − θtv (Yt)
×
(
ξt − 1

ξt

)

where ψt ≡
−[ct−vt(Yt)]U

′′
(ct−vt(Yt))

U ′ (ct−vt(Yt))
is the coefficient of relative risk aversion.
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To get a better understanding of how these terms contribute the price effects in the closed

economy we’ll focus on a stationary version of the economy

Definition 5. An optimal competitive equilibrium is stationary from time T if there exists a

constant RT such that for all t > T (i) ETGt ≈ GT (ii) ET δt ≈ δT (iii) ETRit ≈ RT for all i

and (iv) ET ct ≈ cT .

This definition of stationary differs from the stationarity of the main text in that we assume

a growth rate of Γ = 1. All of our results extend to a positive growth rate assuming that the

utility function is CRRA.42 Our first set of results concern the asset pricing implications of the

QE perturbation. We will leave the proof of both propositions to the end of the section.

Proposition 1. For a neoclassical model which is stationary from time T

1. The QE perturbation keeps asset prices zero to the first-order

∂σ∂j,T,ϵQ
i
t = 0 ∀ i, t ≥ 0

2. The QE perturbation only affects risk-premia at T

Et∂σσ∂j,T,ϵrit+1 = 0 ∀ t ̸= T

and at date T

ET∂σσ∂j,T,ϵriT+1 =
2ψT

YT −GT − θT v (YT )
×
(
1− ξT
ξT

)(
1

1 +Q
∞
T+1

)
Et∂σrjt+1∂σr

i
t+1 > 0,

where ψT is coefficient of relative risk aversion.

This proposition states that the QE perturbation does not effect prices to zeroth or first

order. This is inline with our modeling of price effects in Section 5.8 where we assume that

the effect prices is at second order. Intuitively, to zeroth and first-order all assets have the

same expected return so the QE perturbation only changes the risk profile of the household’s

stochastic discount factor which, in turn, will only effect prices to second order. Moreover,

the proposition states that the effect on asset prices in the closed economy are counterfactual

to what has been documented in the data. Estimates by Greenwood and Vayanos (2014) and

others find that find that ΛQE [rf, j] ≈ 0 and ΛQE [i, j] > 0 for i > rf which implies that

expected excess returns should decrease with the QE perturbation rather than increase:

ET∂σσ∂j,T,ϵriT+1 = −
Q
i
T+1

Q
i
T

∂σσ∂j,T,ϵQ
i
T

Q
i
T

< 0.

42The main difference is that we will require that the government smooth excess returns using a growth-
adjusted consol rather than a pure consol.
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When governments buy back long term debt by issuing short term debt, short term rates

appear to be unchanged so expected excess returns are driven by the fall in the term premia

as the increased demand drives up prices.

In contrast, in the closed economy, the government returns the excess returns from the QE

swap via taxes which results in making states of the world where excess returns are high (low)

better (worse) for the household by lowering (raising) tax rates in those states. As a result, the

value of the asset decreases which raises the risk-premia. As noted, this is in inconsistent with

the segmented market literature which finds that the excess returns on long maturity debt are

lower after QE.

Finally, we are able to use our expansions to characterize the price effects

Proposition 2. For a neoclassical economy which is stationary from time 0, if all initial debt{
Bi

−1

}
i
was risk-free then PEj,T,ϵ ≃

(
ξ

ξ−1

)−1
ΨT
(
sT
)
where

ΨT
(
sT
)
=

−2BξM (Q
rf − 1)(

1−B(Q
rf − 1)ξM

) ∞∑
t=T+1


(
Q
rf
t

)t−T
1 +Q

∞
T+1

 covT

(
∂σ lnMt, ∂σr

j
T+1

)

− 2ξMB(
1−B(Q

rf − 1)ξM

) ∑
t=T+1


(
Q
rf
t

)
−T

1 +Q
∞
T+1

 covT

(
∂σr

j
T+1, ∂σ lnQ

rf
t

)

− 2ξM(
1−B(Q

rf − 1)ξM

)∑
j≥1

Q
rf
t

1 +Q
∞
T+1 (s

T+1)
covT

(
∂σr

j
T+1, ∂σr

j
T+1

)

− 2B(
1−B(Q

rf − 1)ξM

) ∞∑
t=T


(
Q
rf
t

)t−T
1 +Q

∞
T+1

covT

(
∂σξM,t − ∂σξM,t+1, ∂σr

j
T+1

)
As we have noted without any assumptions price effects are given by

PEj,T,ϵ =
1

Pr0 (sT )MT (sT )
E0

∑
t≥0

Mt

(
ξt − 1

ξt

)∑
i≥0

∂j,T,ϵQ
i
t

(
Bi
t−1 −Bi

t

)
where a swap of securities at a particular history can affect asset prices at all other histories—

past and future—due to general equilibrium effects on the stochastic discount factor that now

directly depends on the tax rates. Proposition 2 allows us to characterize these price effects

with a closed form expression using entirely time T covariances that are measurable in the

data.
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C.2 Proofs for Propositions 1 and 2

C.2.1 Proof of Proposition 1

We begin by noting that at the zeroth order, we get ξ
j
M,t = − ψt

Y t−Gt−θtv(Y t)
×
(
ξt−1

ξt

)
= ξM,T ,

is independent of time and the details of the perturbation. We proceed by proving a series of

lemmas documenting the results of Proposition 1

Lemma 11. Expected excess returns are zero to the zeroth and the first order

Proof. The zeroth of (70) gives us

rit+1 = 0

Take first-order expansion to get

Et∂σrit+1Mt+1 + Etrit+1∂σMt+1 = 0

and thus

Et∂σrit+1 = 0.

Lemma 12. To the first-order, price effects are zero, that is, for all i, t: ∂σ∂j,T,ϵQ
i
t = 0

Proof. Start from the definition of Qit

Qit
(
st
)
= Est

∑
k≥1

Mt+k

Mt
Di
t+k.

∂σ∂j,T,ϵQ
i
t = Et

∑
k≥1

(∂j,T,ϵ∂σ logMt+k − ∂j,T,ϵ∂σ logMt)

(
Mt+k

M t

)
Di
T+k.

A necessary and sufficient condition for price effects to be zero at the firs-order is that k ≥ 1

Et (∂j,T,ϵ∂σ logMt+k − ∂j,T,ϵ∂σ logMt) = 0 (73)

Use the definition of ξM
(
st
)
to get ∂j,T,ϵ logMt

(
st
)
= ∂j,T,ϵ

(
τ t
(
st
)
Yt
(
st
))

× ξM
(
st
)
. To

first-order

∂σ∂j,T,ϵ logMt = ∂σ∂j,T,ϵ (τ tYt)× ξM,t

Then (73) is equivalently expressed as

Et (∂σ∂j,T,ϵ logMt+k − ∂σ∂j,T,ϵ logMt) = ξM,t (Et∂σ∂j,T,ϵ (τ t+kYt+k)− ∂σ∂j,T,ϵ (τ tYt))

We check condition (73) by guess and verify.
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Suppose ∂σ∂j,T,ϵQ
i
t = 0 for t ≥ 0, then for all t ≥ 0 and from equations (71)

−∂σ∂j,T,ϵ (τ tYt) = ∂σ

(
rjT+1

(
sT+1

)
1 +Q∞

T+1 (s
T+1)

)
I{st≻sT+1} =

∂σr
j
T+1

(
sT+1

)
1 +Q

∞
T+1

I{st≻sT+1}

When t ≥ T + 1

Et (∂σ∂j,T,ϵ logMT+1+k − ∂σ∂j,T,ϵ logMT+1) = ξM,T+1

(
∂σr

j
T+1

(
sT+1

)
1 +Q

∞
T+1

−
∂σr

j
T+1

(
sT+1

)
1 +Q

∞
T+1

)
I{st≻sT+1} = 0

When t ≤ T , we can use the fact that to the first order, expected excess returns are zero from

Lemma (12) to establish that (73) holds.

Lemma 13. In the closed economy the effect of the perturbation on expected excess returns is

Et∂σσ∂j,T,ϵrit+1 = 0 ∀ t ̸= T

and at date T

ET∂σσ∂j,T,ϵriT+1 =
2ψT

YT −GT − θT v (YT )
×
(
1− ξT
ξT

)(
1

1 +Q
∞
T+1

)
Et∂σrjt+1∂σr

i
t+1 > 0

Proof. The first-order expansion ∂j,T,ϵMt after using Lemma 12 gives us

∂σ∂j,T,ϵMt+1 = −ξM,tM t+1

{
∂σ

(
rjT+1

1 +Q∞
T+1

)
I{st≻sT+1}

}

Use this along with the second order expansion of households optimality condition (70) to

obtain

0 = Et∂σrit+1

(
−ξM,tM t+1

{
∂σ

(
rjT+1

1 + q∞T+1

)
I{st≻sT+1}

})
+ Et∂σσ∂j,T,ϵrit+1M t+1

For t < T , I{st≻sT+1} = 0 and thus Et∂σσ∂j,T,ϵrit+1 = 0.

For st ≻ sT+1, use Law of iterated expectations to get

0 = ET+1+k∂σr
i
T+1+k

−ξM,T+1+kMT+1+k ET+1

{
∂σ

(
rjT+1

1 +Q∞
T+1

)}
︸ ︷︷ ︸

=0

+ET+1+k∂σσ∂j,T,ϵr
i
T+k+2MT+2+k

and use Lemma (12) to get Et∂σσ∂j,T,ϵrit+1 = 0 for st ≻ sT+1.

Finally for t = T

0 = ET∂σriT+1

(
−ξM,TMT+1

{
∂σ

(
rjT+1

1 + q∞T+1

)})
+ Et∂σσ∂j,T,ϵrit+1MT+1.
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Substitute for ξM,T and simplify to to get

ET∂σσ∂j,T,ϵriT+1 ≃
2ψT

YT −GT − θT v (YT )
×
(
1− ξT
ξT

)(
1

1 +Q
∞
T+1

)
Et∂σrjT+1∂σr

i
t+1.

Since ξT = 1 − γ τT
1−τT < 1, YT − GT − θT v (YT ) > 0 from Inada conditions, and ψT > 0, we

get that ET∂σσ∂j,T,ϵrjT+1 > 0.

C.2.2 Proof of Proposition 2

The second order expansion of the price effects

∂σσ
(
Pr0

(
sT
)
MT

(
sT
)
PEj,T,ϵ

)
= E0

∑
t≥0

(
ξt − 1

ξt

)
Mt

∑
i≥0

∂σσ∂j,T,ϵQ
i
t

(
B
i
t−1 −B

i
t

) (74)

which equals

(
ξ0 − 1

ξ0

)
M0

∑
i≥0

∂σσ∂j,T,ϵQ
i
0B

i
−1+

(
ξ0 − 1

ξ0

)
E0

∑
t≥0

∑
i≥0

B
i
t

(
M t+1∂σσ∂j,T,ϵQ

i
t+1 −M t∂σσ∂j,T,ϵQ

i
t

) .
(75)

Its easy to see that
(
ξ0−1

ξ0

)
M0

∑
i≥0 ∂σσ∂j,T,ϵQ

i
0B

i
−1 =

(
ξ0−1

ξ0

)
M0

∑
i ̸=rf ∂σσ∂j,T,ϵQ

i
0B

i
−1 = 0

under the assumption that initial debt was risk-free.

The household pricing equation implies

MtQ
i
t = Et

[
Mt+1

(
Qit+1 +Di

t+1

)]
(76)

Differentiating by ∂j,T,ϵ gives

(∂j,T,ϵMt)Q
i
t +Mt∂j,T,ϵQ

i
t = Et

[
(∂j,T,ϵMt+1)

(
Qit+1 +Di

t+1

)
+Mt+1∂j,T,ϵQ

i
t+1

]
Let’s start by looking at t < T , We know that ∂σ∂j,T,ϵMt+1 = 0 so taking the second derivative

with respect to σ yields

Et
[
M t+1∂σσ∂j,T,ϵQ

i
t+1 −M t∂σσ∂j,T,ϵQ

i
t

]
= Q

i
tEt
[
(∂σσ∂j,T,ϵMt)− (∂σσ∂j,T,ϵMt+1)R

rf
t+1

]
.

For t > T and st ≻ sT we have
∂j,T,ϵMt

Mt
= ξjM,t∂j,T,ϵ (τ tYt) and hence ∂σ∂j,T,ϵMt =M tξM,t

∂σr
j
T+1

1+Q
∞
T+1

.

The second-order expansion of equation (76) is

2∂σ∂j,T,ϵMt∂σQ
i
t + (∂σσ∂j,T,ϵMt)Q

i
t +M t∂σσ∂j,T,ϵQ

i
t = Et

[
2∂σ∂j,T,ϵMt+1∂σ

(
Qit+1 +Di

t+1

)]
+ (∂σσ∂j,T,ϵMt+1)

(
Q
i
t+1 +Di

t+1

)
+M t+1∂σσ∂j,T,ϵQ

i
t+1
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We know that

Et
[
∂σ∂j,T,ϵMt+1∂σ

(
Qit+1 +Di

t+1

)]
= ξM,T+1

∂σr
j
T+1

1 +Q
∞
T+1

Et
[
M t+1∂σ

(
Qit+1 +Di

t+1

)]
so we get

Et
[
∂σ∂j,T,ϵMt+1∂σ

(
Qit+1 +Di

t+1

)]
− ∂σ∂j,T,ϵMt∂σQ

i
t

=
∂σr

j
T+1

1 +Q
∞
T+1

ξM,T+1

(
Et
[
M t+1∂σ

(
Qit+1 +Di

t+1

)]
−M t∂σQ

i
t

)
=

∂σr
j
T+1

1 +Q
∞
T+1

ξM,T+1Q
i
t

(
∂σMt − ∂σMt+1R

rf
t+1

)
with the last equality coming from

∂σMtQ
i
t +M t∂σQ

i
t = Et

[
∂σMt+1

(
Q
i
t+1 +D

i
t+1

)
+M t+1∂σ

(
Qit+1 +Di

t+1

)]
.

Note that this only depends on i through Q
i
thus for t > T

Et
[
M t+1∂σσ∂j,T,ϵQ

i
t+1 −M t∂σσ∂j,T,ϵQ

i
t

]
= Q

i
tEt

[
(∂σσ∂j,T,ϵMt)− (∂σσ∂j,T,ϵMt+1)R

rf
t+1 − ξM,T+1M t

∂σr
j
T+1

1 +Q
∞
T+1

∂σQ
rf
t

Q
rf
t

]

where the last term is simplified by noting that M t
∂σQ

rf
t

Q
rf
t

= Et
[

1

Q
rf
t

∂σMt+1 − ∂σMt

]
.

Finally, we have the t = T and st = sT term which gives

ET
[
MT+1∂σσ∂j,T,ϵQ

i
T+1 −MT∂σσ∂j,T,ϵQ

i
T

]
= Q

i
TEt

[
(∂σσ∂j,T,ϵMT )− (∂σσ∂j,T,ϵMT+1)R

rf
T+1 −

ξM,T+1MT+1

1 +Q
∞
T+1 (s

T+1)
∂σr

j
T+1∂σr

i
T+1

]
.

Now we note that all the termsM t+1∂σσ∂j,T,ϵQ
i
t+1−M t∂σσ∂j,T,ϵQ

i
t in the price effect sum have

a component Q
i
t

(
(∂σσ∂j,T,ϵMt)− (∂σσ∂j,T,ϵMt+1)R

rf
t+1

)
in them. We gain some tractability

by substituting ∂σσ∂j,T,ϵMt = M tξM∂σσ∂j,T,ϵ (τ tYt) + 2M t∂σξM,t∂σ∂j,T,ϵ (τ tYt) and doing so
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makes

E0

∑
t≥0

∑
i≥0

B
i
t

(
M t+1∂σσ∂j,T,ϵQ

i
t+1 −M t∂σσ∂j,T,ϵQ

i
t

)
= E0

[ ∞∑
t=0

BtM tξM,t (∂σσ∂j,T,ϵ (τ tYt)− ∂σσ∂j,T,ϵ (τ t+1Yt+1))

]

− 2Pr(sT )ξM,T+1ET

[ ∑
t=T+1

BtM t

∂σr
j
T+1

1 +Q
∞
T+1

∂σQ
rf
t

Q
rf
t

]
(77)

− 2Pr(sT )ξM,T+1ET

∑
j≥1

MT+1

1 +Q
∞
T+1 (s

T+1)
∂σr

j
T+1∂σr

i
T+1


+ 2Pr(sT )ET

[ ∞∑
t=T

BtMt

(
∂σξM,t∂σ∂j,T,ϵ (τ tYt)− ∂σξM,t+1∂σ∂j,T,ϵ (τ t+1Yt+1)

)]
(78)

Most of these objects we can easily put some structure on except for

E0

[ ∞∑
t=0

BtM tξM,t (∂σσ∂j,T,ϵ (τ tYt)− ∂σσ∂j,T,ϵ (τ t+1Yt+1))

]
,

there we have note that Bt = B0 = B, M t =
(
Qrf

)t
M0 and ξM,t = ξM,0 = ξM . Put together

we have

E0

[ ∞∑
t=0

BtM tξM,t (∂σσ∂j,T,ϵ (τ tYt)− ∂σσ∂j,T,ϵ (τ t+1Yt+1))

]

= BξM,E0

[ ∞∑
t=0

(
Qrf

)t
(∂σσ∂j,T,ϵ (τ tYt)− ∂σσ∂j,T,ϵ (τ t+1Yt+1))

]
M0

= BξM,E0

[ ∞∑
t=0

(
Qrf

)t
(Qrf − 1)∂σσ∂j,T,ϵ (τ tYt)

]
M0
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we can then plug into ∂σσ∂j,T,ϵ (τ tYt) to get

E0

[ ∞∑
t=0

BtM tξM,t (∂σσ∂j,T,ϵ (τ tYt)− ∂σσ∂j,T,ϵ (τ t+1Yt+1))

]

= B(Qrf − 1)ξMM0E0

 ∞∑
t=0

(
Qrf

)t∑
i≥0

∂σσ∂j,T,ϵQ
i
t

(
B
i
t−1 −B

i
t

)
+BξMM0(Q

rf − 1)Pr(sT )ET

[ ∞∑
t=t+1

(
Qrf

)t
∂σσ

(
rjT+1

(
sT+1

)
1 +Q

∞
T+1

)]

=B(Qrf − 1)ξM
ξ

ξ − 1
∂σσ

(
Pr0

(
sT
)
MT

(
sT
)
PEj0

(
sT
))

(79)

+BξMM0(Q
rf − 1)Pr(sT )ET

[ ∞∑
t=t+1

(
Qrf

)t
∂σσ

(
rjT+1

(
sT+1

)
1 +Q

∞
T+1

)]

Going back to the HH version of this perturbation we get

ET

[ ∞∑
t=T+1

Mt

rjT+1

1 +Q
∞
T+1

]
= 0

As second order expansion of this gives

M0ET

[ ∞∑
t=T+1

(
Qrf

)t
∂σσ

(
rjT+1

(
sT+1

)
1 +Q

∞
T+1

)]
= −2ET

[ ∞∑
t=T+1

∂σMt

∂σr
j
T+1

(
sT+1

)
1 +Q

∞
T+1

]
(80)

Putting all together we get (combining equations (74),(77),(79), and (80) )(
ξ

ξ − 1

)
∂σσPEj,T,ϵ =

−2ξM(
1−B0(Qrf − 1)

)
(Qrf )

T
ET

[ ∑
t=T+1

Bt

∂σr
j
T+1

1 +Q
∞
T+1

∂σQ
rf
t

Q
rf
t

]

− 2BξM (Qrf − 1)(
1−B(Qrf − 1)

)ET [ ∞∑
t=T+1

(
Qrf

)t−T
∂σ lnMt

∂σr
j
T+1

(
sT+1

)
1 +Q

∞
T+1

]

−2ξM(
1−B(Qrf − 1)

)
(Qrf )

T
ET

∑
j≥1

Qrf

1 +Q
∞
T+1 (s

T+1)
∂σr

j
T+1∂σr

i
T+1


− 2B(

1−B(Qrf − 1)
)ET [ ∞∑

t=T

(
Qrf

)t−T ∂σrjT+1

(
sT+1

)
1 +Q

∞
T+1

(
∂σξM,t − ∂σξM,t+1

)]

as desired.
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