Know your Unknowns

Techniques for analyzing unknown software

(and dynamic reversing in general)

http://Technologeeks.com/




The Problem

Presented with a new software sample, how do we determine:
- What does it do?

- How does it do it?

- Is it a threat?

http://Technologeeks.com/




Approaches

e Static analysis
e Requires significant RE skills
* May be costly and time consuming
* Binaries may be deliberately obfuscated or use runtime tricks

* Dynamic analysis
* Often a far simpler approach, no disassembly required
* Much easier — just fire up and let it run
* Not without risks of its own

http://Technologeeks.com/




Static Analysis, in a nutshell

* Proper static analysis requires a good disassembler and debugger

* Sometimes you can get lucky with a few simple commands:
* nm-m (orjtool -S)
e strings (orjtool—d _ TEXT. cstring)

* Better grade malware likely to be obfuscated:
 Strings may be “encrypted” (garbled with some key stashed in binary)
* Symbols may be loaded dynamically via dlopen(3) rather than imports

http://Technologeeks.com/




Dynamic Analysis: Caveats

* Binary may behave differently if detecting inspection or quarantine

* Binary may attempt to thwart invasive inspection
e Common trick: PTRACE_ATTACH (Linux) or PT_DENY_ATTACH (*QOS)
* Increasingly common trick: llvm obfuscator, jump into syscalls/gadgets

* Binary may run out of control if not properly quarantined

http://Technologeeks.com/




Dynamic Analysis: What to monitor

* What happens inside a process memory stays inside process memory
* Very hard to track reliably (memory is volatile)
* You'll usually need a debugger, and probably don’t always need to go that deep

* What happens on system-wide objects is of more interest:
* Files and file system activity
* Device/hardware access
* Network sockets

http://Technologeeks.com/




Dynamic Analysis: Techniques*

* Snapshots/Polling
* Always doable, always undetectable
* Prone to racing with target process, may miss critical events

* Continuous Process Monitoring
* Launch binary, keeping close watch on operations using OS tracing APIs
* Gamut ranges from passive (trace/log only) to full invasive (stop, debug)
* Possibly detectable by App.

* System Wide Monitoring
* Inspect overall system performance during target process execution
* Focus on target process in particular
* Likely less detectable by App (and can be masked)

* - Runtime code injection/live debugging techniques intentionally left out scope of this talk.



Snapshots

* Variety of tools can be used to snapshot:
* MacOS: sample(1), Isof
e *OS: procexp (files, regions, threads, core)

* Linux: /proc/pid files (and related tools)
* Specifically, maps, fd/, fdinfo/, wchan, syscall, to name but a few

http://Technologeeks.com/




Process monitoring: file system activity
* Android (Linux): tnotify(7)

* Very basic API, provides file/directory notifications
 Must 1thotify_ add watch(2) for every pathname watched

* DOES NOT provide PID of actor
e Still useful if system is idle save for tested PID

* Alternative: Polling through /proc/pid/fd

http://Technologeeks.com/




Process monitoring: file system activity

e *OS: FSEventsd

« /dev/Tsevents character device
* Caller must be root, open(2) device, and use 1octl (2)
» Subsequent read(2) operations get system-wide activity notifications

* Apple provides FSEventStreamRef APIs through CoreFoundation
» Use CoreServices’ (FSEvents’) fseventsd helper daemon as event relay
* When using fseventsd, don’t need root access, but actor information is lost.

http://Technologeeks.com/




Process monitoring: file system activity

* Tool: filemon

Pays homage to Mark Russinovich’s awesome tool

Displays all file system activity

Can (race to) save all temporary files (by auto-hard linking)

Can (race to) stop process on file access (by auto kill -=STOP)

http://Technologeeks.com/




Demo: filemon

norpheus@Zephyr ~¢ Documents/Work/FileMon/filemon -h
sage: filemon [options]
ere [options] are optional, and may be any of:
-pl--proc pid/procname: filter only this process or PID
-fl--file stringl,string]: filter only paths containing this string (/¥ will catch everything)

-el--event event[,event]: filter only these events

-s|--stop: auto-stop the process generating event

-11--1ink: auto-create a hard link to file (prevents deletion by program :-)
-cl--color {or set JCOLOR=1 first)

http://Technologeeks.com/




Process Monitoring: Network Activity

e *OS: com.apple.network.statistics PF_SYSTEM socket
* Undocumented, described in MOXil (1%), but significantly beefed up since then

* Used by Apple’s nettop (1)

* Unfortunately, a closed source tool ®

* [sock
 Fortunately, an open source tool ©
* http://NewOSXBook.com/

* No comparable notification based mechanism on Linux/Android.

http://Technologeeks.com/




Process Monitoring: Linux/Android

 Standard Tool: strace(1): Trace system calls
e Built-in (Linux) or available via emulator/compilation (Android)

* Expensive — but manageable - overhead of x4 on average

* Traces all system calls in C-style APIs, including:
* Timestamps (-t[t[t]], and —T, for time in call)
* Instruction pointer at time of call (-i)
* Verbose arguments (-v[v])
* Following children processes or threads (-f)

* Semi-standard Itrace(1) can trace library calls

* Downloadable (Linux) or compilable (Android)
 Ridiculously expensive (x20-x100!), uses PTRACE_SINGLESTEP

http://Technologeeks.com/




Process Monitoring: Linux/Android

e Both strace(1) and Itrace(1) are passive — cannot perform any hooks

* Non-standard tool: jtrace
* http://NewAndroidBook.com/tools/jtrace.html

* By itself, an improved version of strace(1) providing:
* Proper ARM64 support, as well as x86_64 and ARMv7
* Android-aware syscall argument support (binder, input messages, etc)

* Colors

http://Technologeeks.com/




Process Monitoring: Linux/Android

* Most powerful feature of jtrace: Plugins

* Provide your own callbacks in an .so, load it into jtrace, and it will:

e ... call you back on your syscalls of interest
e ... provide a simple, architecture agnostic API for you to get args and memory

e ... allow you to also manipulate system call, before and after execution

 All this, without any code injection into target process

http://Technologeeks.com/




Process Monitoring: MacQOS/iOS

* MacOS and iOS already have the world’s most powerful sandbox

* |[dea: Why not harness the sandbox for tracing?
cat /tmp/trace.sb

{version 1)
{(trace "/tmp/tracing.out"})

orpheus@Zephyr # Run some command, under sandbox profile:
orpheus@Zephyr sandbox-exec -f /tmp/trace.sb 1s /

installer. failurerequests

cat /tmp/tracing.out
{version 1) ; Thu Apr 27 22:14:16 2017

{allow process-exec* (path "/bin/1s"})

{allow process-exec* (path "/bin/1s"))

{allow file-read-metadata (path "/usr/lib/dyld")})
{allow file-read-metadata (path "/usr/1lib/dyld"})

e a P a Fa —




Invasive Process Monitoring

* Nothing beats living inside the process — code injection

* Dynamically linked binaries are open to suggestion...
* MacOS/*0S: DYLD INSERT_LIBRARIES
* Linux/Android: LD_PRELOAD
* All systems: runtime code injection®

e Caveat: highly invasive, may undermine target stability if not careful

* - Runtime code injection/live debugging techniques intentionally left out scope of this talk.



#include <fentl.h>

#include <stdlib.h> D . .
Invasive Process Monitorin
#include <sys/socket.h>

#include <arpa/inet.h>

// This is the expected interpose structure
typedef struct interpose_s ({

void *new_func;

void *orig_func;
} interpose_t;

int my_open(const char *path, int oflag, ...)

{
int rec = open (path,oflag);
printf("Opened %s at FD %d\n", path, rc);
return (rc});
}
int my_connect(int socket, const struct sockaddr *address, socklen_t address_len)
{
struct sockaddr_in *sin = (struct sockaddr_in *) address;
if (sin-»>sin_family == AF SYSTEM) ({
printf("connect on system socket\n"):
}
else
printf("Intercepted connect to AF %d, %s:%d\n", sin-»>sin_family, inet_ntoa(sin-»>sin_addr),ntohs(sin-»sin_port));
int re = connect(socket, address, address_len);
return (re);
}

static const interpose_t interposing_functions[] \
__attribute__ ((used,section("__ DATA, _ interpose"))) = {
{ (void *)my open, (void *) open },

{ (void *)my connect, (void *) connect }, http://Technologeeks.com/




System-wide activity monitoring

* Linux/Android: ftrace

* MacOS: dtrace

e *OS: kdebug

http://Technologeeks.com/




System-wide activity monitoring: Linux ftrace

e Linux’s most under-documented feature

* COMPLETE tracing of all kernel operations — functions or subsystems
» Kernel tracing is %#S$%#% unbelievable, but out of scope
* For the scope of our discussion, syscalls or raw_syscalls subsystems suffice

* Exact scope and subsystems depend on compiled kernel options..
* .. But you can always recompile the kernel to suit your needs
* You can get even more granular by compiling your own kernel module

http://Technologeeks.com/




System-wide activity monitoring: MacOS dtrace

* Most powerful tracing API of any OS, period
* Unfortunately (but understandably) not provided by AAPL in iOS variants
* Further impaired in MacOS 10.11+ due to SIP (but still usable)

=i
* Provides a complete language for constructing “probes”
* Superb reference: PH Dtrace book DTI‘a ce

* Probes fire when conditions met
* Probe may read/write/modify target

* Caveat: Expensive.
http://Technologeeks.com/




Demo: dtrace

» Get all syscalls by all processes with one line of code:
 dtrace -n 'syscall:::entry { printf("%d:%s", pid, execname); }'

* Limit to open(2) and friends, show filename:
 dtrace -n 'syscall::open*:entry { printf("%s %s",execname,copyinstr(arg0)); }'

http://Technologeeks.com/




System-wide activity monitoring: kdebug

 Available in all of Apple’s OSes (but requires root)
* Provides a firehose of information on system activity

* Apple’s own tools:
« latency: monitors scheduling and interrupt latency
« 1profiler: Xcode (instrument) profiler
* SC_usage: show system call usage statistics
« Ts_usage: report file system activity syscalls
» trace: generic utility for kdebug facility

* kdebugView (http://NewOSXBook.com/tools/kdv.html)

e Use it or lose it (before AAPL sla 1ps an entltlement on this as well..)
http://Technologeeks.com/




Links, etc:

 Much more on the *OS tools coming in MOXil Il, Vol | (July 2017!)

* Tools available at http://NewOSXBook.com/ (*OS)
http://NewAndroidBook.com/ (Android)

e Check out http://Technologeeks.com/ for:
 MacOS/iOS Internals
 Android Internals




