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Abstract—A Bayesian approach is adopted for linear re-
gression, and a fast algorithm is given for updating posterior
probabilities. Emphasis is given to the underdetermined and
sparse case, i.e., fewer observations than regression coefficients
and the belief that only a few regression coefficients are non-zero.
The fast update allows for a low-complexity method of reporting
a set of models with high posterior probability and their exact
posterior odds. As a byproduct, this Bayesian model averaged
approach yields the minimum mean squared error estimate
of unknown coefficients. Algorithm complexity is linear in the
number of unknown coefficients, the number of observations
and the number of nonzero coefficients. For the case in which
hyperparameters are unknown, a maximum likelihood estimate
is found by a generalized expectation maximization algorithm.

I. INTRODUCTION

Linear regression is a classical statistical problem. We

consider sparse linear regression with fewer observations than

regression coefficients. Our treatment, while general, is moti-

vated by channel estimation tasks arising in communications,

radar, and medical imaging. We seek five properties in an infer-

ence procedure. First, we seek to exploit domain knowledge,

if available, through physically interpretable priors. Where

hyperparameters are unknown, we seek maximum likelihood

estimates to learn priors from data. Second, we wish to

minimize mean squared error in reconstruction of regression

coefficients. Third, we wish to have low complexity computa-

tion – on the order of orthogonal matching pursuit [1]. Fourth,

we wish to report ambiguity in both variable selection and

regression coefficients; ambiguity may arise due to correlation

among regressor vectors or due to measurement noise. Finally,

we wish to work with complex-valued data that arises from

bandpass signals.

To satisfy these desiderata, we adopt a Bayesian approach

and compute posterior probabilities for all plausible selections

of variables. We present a tree search method, called Fast

Bayesian Matching Pursuit (FBMP) [2]. The key to the success

of the procedure is a fast update of the posterior probability

of the data under a small change to the hypothesized selection

of variables. The FBMP algorithm presents a low-complexity

alternative to stochastic integration such as Markov Chain

Monte Carlo (MCMC).
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Sparse linear regression has received extensive attention

which has been heightened in recent years by works providing

provable performance guarantees for both greedy and convex

programming algorithms [3]–[5].

II. SIGNAL MODEL

We consider problems where unknown coefficients x ∈ CN

are observed through the noisy linear mixture y ∈ CM

y = Ax + w, (1)

for known A ∈ CM×N and for noise w that is white circular

Gaussian with variance σ2, i.e., w ∼ CN (0, σ2IM ) The
columns of A are taken to be unit-norm. Our focus is on the

underdetermined case (i.e., N � M ) with a suitably sparse
parameter vector x (i.e., ‖x‖0 � N ).
To model sparsity, we assume that {xn}

N−1
n=0 , the compo-

nents of x, are i.i.d. random variables drawn from a Q-ary
Gaussian mixture. For each xn, a mixture parameter sn ∈
{0, . . . , Q − 1} is used to index the component distribution.
In particular, when sn = q, then the coefficient xn is modeled

as a circular Gaussian with mean μq and variance σ2
q . The

mixture parameters {sn}
N−1
i=0 are treated as i.i.d. random

variables such that Pr{sn = q} = λq . We choose a point mass

(μ0, σ
2
0) = (0, 0), so that the case sn = 0 implies xn = 0.

Using x = [x0, . . . , xN−1]
T and s = [s0, . . . , sN−1]

T , the

prior model can be written as

x|s ∼ CN (μ(s), R(s)), (2)

where [μ(s)]n = μsn
and where R(s) is diagonal with

[R(s)]n,n = σ2
sn

. The model (1) then implies that the un-

known coefficients and the measurements are jointly Gaussian

when conditioned on the mixture sequence, s. In particular,[
y

x

]∣∣∣∣ s ∼ CN

([
Aμ(s)
μ(s)

]
,

[
Φ(s) AR(s)

R(s)AH R(s)

])
, (3)

where

Φ(s) := AR(s)AH + σ2IM . (4)

III. FAST BAYESIAN MATCHING PURSUIT

A. Minimum mean squared error

The minimum mean squared error (MMSE) estimate of x

from y is

x̂mmse := E{x|y} =
∑
s∈S

p(s|y) E{x|y, s} (5)
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where from (3) it is straightforward to obtain

E{x|y, s} = μ(s) + R(s)AH
Φ(s)−1

(
y − Aμ(s)

)
. (6)

Because brute force evaluation of all QN mixture vectors in

S is impractical for typical values of N , we treat the problem
as a (suboptimal) tree search. The primary challenge in the

computation of the approximate MMSE estimate is to obtain

p(s|y) and Φ(s)−1 for each s in a high-probability subset

S� ⊂ S containing plausible mixture vectors, s. Summing over
the set of dominant mixture vectors S� yields the approximate

MMSE estimate

x̂ammse :=
∑
s∈S�

p(s|y) E{x|y, s}. (7)

Similarly, the conditional covariance Cov{x|y}, whose trace
characterizes the MMSE estimation error, can be closely

approximated as

Cov{x|y} ≈
∑
s∈S�

p(s|y)
[
Cov{x|y, s} + (x̂ammse −

E{x|y, s})(x̂ammse − E{x|y, s})H
]
(8)

Cov{x|y, s} = R(s) − R(s)AH
Φ(s)−1AR(s). (9)

Since, for any s, the values of p(s|y) and p(y|s)p(s) are
equal up to a scaling, the search for S� reduces to the search

for the vectors s ∈ S which yield the dominant values of
p(y|s)p(s). For convenience, we use the monotonicity of the
logarithm to define the mixture selection metric ν(s, y):

ν(s, y) := ln p(y|s)p(s) (10)

= ln p(y|s) + ln p(s) (11)

= −
(
y − Aμ(s)

)H
Φ(s)−1

(
y − Aμ(s)

)
− ln det(Φ(s)) − M ln π +

N−1∑
n=0

ln λsn
. (12)

B. A tree search
In [2], we propose a fast algorithm to search for the set S�

of dominant mixture vectors; as a byproduct, the algorithm

also generates the corresponding values of E{x|y, s} and
Cov{x|y, s}. A tree search begins with the hypothesis s = 0

as the root of the tree, for which

ν(0, y) = − 1
σ2 ‖y‖2

2 − M ln σ2 − M ln π + N ln λ0 (13)

via (12) and the fact that Φ(0) = σ2IM . From the root of the

tree, the metrics ν(s′, y) of all (Q − 1)N single-coefficient

modifications of s(0) := 0 are calculated and, based on these

metrics, a single hypothesis s(1) is chosen to explore further by

maximizing ν(s, y). The procedure continues recursively. If,
at the mth stage, ν(s(m), y) is adequately large or m exceeds
some predetermined threshold, then the search stops, having

evaluated ν(s, y) for some s ∈ Ŝ ⊂ S. The explored vectors
s ∈ Ŝ that lead to significant values of eν(s,y) = p(y|s)p(s)
are then stored in Ŝ�, which constitutes an estimate of S�.
We can approximate the posterior probability of a mixture

vector s using the renormalized estimate:

p(s|y) =
exp{ν(s, y)}∑

s′∈S
exp{ν(s′, y)}

≈
exp{ν(s, y)}∑

s′∈S�

exp{ν(s′, y)}
.

(14)

Likewise, p̂(x|y) provides an approximate density function
describing the uncertainty in resolving x with the noisy

observations,

p̂(x|y) =
∑

s′∈S�

p̂(s|y)p(x|y, s). (15)

The posterior density function is a Gaussian mixture and

reflects the multi-modal ambiguity inherently present in the

sparse inference problem—an ambiguity especially evident

when the signal-to-noise ratio (SNR) is low or there exists

nonnegligible correlation among the columns of A.

C. Update for Φ(s)−1 and ν(s, y)

Central to implementing a tree search (or MCMC methods)

is the need to evaluate the metrics {ν(s′, y)} for all one-
parameter modifications s′ of some previously considered

mixture vector s. For the case that [s]n = q and [s′]n = q′,
where s and s′ are otherwise identical, we now describe an

efficient method to compute Δn,q′(s, y) := ν(s′, y)−ν(s, y).
For brevity, we use the abbreviations μq′,q := μq′ − μq and

σ2
q′,q := σ2

q′ − σ2
q below. Starting with the property

Φ(s′) = Φ(s) + σ2
q′,qanaH

n , (16)

the matrix inversion lemma implies

Φ(s′)−1 = Φ(s)−1 − βn,q′cncH
n (17)

cn := Φ(s)−1an (18)

βn,q′ := σ2
q′,q

(
1 + σ2

q′,qa
H
n cn

)−1
. (19)

In the next subsection, we verify that (16)-(19) imply

Δn,q′(s, y)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

βn,q′

∣∣cH
n

(
y − Aμ(s)

)
+ μq′,q/σ2

q′,q

∣∣2
− |μq′,q|2/σ2

q′,q + ln(βn,q′/σ2
q′,q)

+ ln(λq′/λq)

σ2
q′,q 	= 0

2 Re
{
μ∗

q′,qc
H
n

(
y − Aμ(s)

)}
− |μq′,q|2cH

n an + ln(λq′/λq) σ2
q′,q = 0.

.(20)

Thus, Δn,q′(s, y) quantifies the change to ν(s, y) that results
from changing the nth index in s from q to q′.
The structure of Φ(s)−1 can be exploited to yield complex-

ity O(NM) for (18)-(19). Suppose that s is itself a single-

index modification of spre, for which the npre-th index of

spre was changed from qpre to q in order to create s. If

the corresponding quantities {cpre
n }N−1

n=0 and βpre
npre,q have been

computed and stored, then, since (17)-(18) imply that

cn =
[
Φ(spre)−1 − βpre

npre,qc
pre
nprec

preH
npre

]
an (21)

= cpre
n − βpre

npre,qc
pre
nprec

preH
npre an, (22)

{cn}
N−1
n=0 can be computed using O(NM) operations.

Having computed {cn}
N−1
n=0 , the parameters

{βn,q′}q′=0:Q−1
n=0:N−1 can be computed via (19) with a

complexity of O(MN + QN). If we recursively update
z(s) := y − Aμ(s) with O(MQ) multiplies using

z(s) = y − Aμ(spre)︸ ︷︷ ︸
:= z(spre)

−anpreμq,qpre , (23)
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then {Δn,q′(s)}q′=0:Q−1
n=0:N−1 can be computed via (20) with a

complexity of O(MN + QN). Actually, if σ2
q = σ2

1 ∀q 	=
0, then βn,q′ = βn,1 ∀q′ 	= 0, which leads to a total
complexity of O(MN + MQ). Going further, if we define
C := [c0, . . . , cN−1] and notice that C = Φ(s)−1A, then we

can compute the s-conditional mean and covariance via

E{x|y, s} = μ(s) + R(s)CHz(s) (24)

Cov{x|y, s} =
(
IN − R(s)CHA

)
R(s), (25)

using (6), (9), and that Φ(s) is Hermitian. Because R(s)CH

has only Ks := ‖s‖0 nonzero rows and AR(s) has only Ks

nonzero columns, (24) and (25) can be computed using only

O
(
KsM

)
and O

(
K2

s
M

)
multiplications, respectively.

D. Derivation of (20)

In this subsection, we establish (20) using (16)-(19). Using

the fact that Φ(s)−1an = cn, we find(
y − Aμ(s′)

)H
Φ(s′)−1

(
y − Aμ(s′)

)
=

(
y − Aμ(s) − anμq′,q

)H(
Φ(s)−1 − βn,q′cncH

n

)
×

(
y − Aμ(s) − anμq′,q

)
(26)

=
(
y − Aμ(s)

)H
Φ(s)−1

(
y − Aμ(s)

)
− βn,q′

∣∣cH
n

(
y − Aμ(s)

)∣∣2
− 2 Re

{
μ∗

q′,qa
H
n Φ(s)−1

(
y − Aμ(s)

)}
+ 2 Re

{
μ∗

q′,qa
H
n cnβn,q′cH

n

(
y − Aμ(s)

)}
+ |μq′,q|

2aH
n Φ(s)−1an − |μq′,q|

2βn,q′(cH
n an)2 (27)

=
(
y − Aμ(s)

)H
Φ(s)−1

(
y − Aμ(s)

)
− βn,q′

∣∣cH
n

(
y − Aμ(s)

)∣∣2
− 2 Re

{
μ∗

q′,qc
H
n

(
y − Aμ(s)

)(
1 − βn,q′aH

n cn

)}
+ |μq′,q|

2cH
n an

(
1 − βn,q′aH

n cn

)
. (28)

In the case that σ2
q′,q = 0, we have βn,q′ = 0, and so(

y − Aμ(s′)
)H

Φ(s′)−1
(
y − Aμ(s′)

)
=

(
y − Aμ(s)

)H
Φ(s)−1

(
y − Aμ(s)

)
− 2 Re

{
μ∗

q′,qc
H
n

(
y − Aμ(s)

)}
+ |μq′,q|

2cH
n an. (29)

In the case that σ2
q′,q 	= 0, we have 1 − βn,q′aH

n cn =

−βn,q′σ−2
q′,q, so that(

y − Aμ(s′)
)H

Φ(s′)−1
(
y − Aμ(s′)

)
=

(
y − Aμ(s)

)H
Φ(s)−1

(
y − Aμ(s)

)
− βn,q′

[∣∣cH
n

(
y − Aμ(s)

)∣∣2
− 2 Re

{
cH

n

(
y − Aμ(s)

)μ∗
q′,q

σ2
q′,q

}
+ cH

n an

|μq′,q|2

σ2
q′,q

]
(30)

=
(
y − Aμ(s)

)H
Φ(s)−1

(
y − Aμ(s)

)
− βn,q′

∣∣∣cH
n

(
y − Aμ(s)

)
+

μq′,q

σ2
q′,q

∣∣∣2
+ βn,q′

|μq′,q|
2

σ4
q′,q

[
1 + σ2

q′,qc
H
n an

]
(31)

=
(
y − Aμ(s)

)H
Φ(s)−1

(
y − Aμ(s)

)
− βn,q′

∣∣∣cH
n

(
y − Aμ(s)

)
+

μq′,q

σ2
q′,q

∣∣∣2 +
|μq′,q|2

σ2
q′,q

. (32)

Together, (29) and (32) yield (33).(
y − Aμ(s′)

)H
Φ(s′)−1

(
y − Aμ(s′)

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
y − Aμ(s)

)H
Φ(s)−1

(
y − Aμ(s)

)
− βn,q′

∣∣cH
n

(
y − Aμ(s)

)
+ μq′,q/σ2

q′,q

∣∣2
+ |μq′,q|2/σ2

q′,q

σ2
q′,q 	= 0

(
y − Aμ(s)

)H
Φ(s)−1

(
y − Aμ(s)

)
− 2 Re

{
μ∗

q′,qc
H
n

(
y − Aμ(s)

)}
+ |μq′,q|2cH

n an

σ2
q′,q = 0.

.(33)

Equation (16) then implies that

ln det(Φ(s′)) = ln det
(
Φ(s) + σ2

q′,qanaH
n

)
(34)

= ln
[(

1 + σ2
q′,qa

H
n Φ(s)−1an

)
det

(
Φ(s)

)]
= ln det(Φ(s)) − ln(βn,q′/σ2

q′,q) (35)

ln p(s′) = ln p(s) + ln(λq′/λq), (36)

which, in conjunction with (12) and (33), yield (20).

E. A repeated greedy search

In O((M + Q)N) complexity, the fast update method
evaluates the metrics ν(s, y) for all (Q−1)N single coefficient
modifications at each node visited by the tree search. The

search starts at the root node s = 0 and performs a greedy

inflation search (i.e., activating one mixture parameter at a

time) until a total of P mixture parameters have been activated.
By “greedy,” we mean that the mixture parameter activated at

each stage is the one yielding the largest metric ν(s, y); de-
activation is not allowed. P should be chosen to be slightly
larger than the expected number of nonzero coefficients

E{Ks}, e.g., so that Pr(‖s‖0 > P ) is sufficiently small.1

The tree search may be repeated from the root node, ignoring

previously explored nodes; stopping rules are suggested in [2].

When domain knowledge does not precisely specify the hy-

perparameters, we opt to compute maximum likelihood (ML)

estimates. A generalized expectation maximization (EM) [6]

iteration is adopted for ML estimation of the hyperparameters,

as detailed in [2].

Denoting by D ≤ Dmax the number of greedy searches

performed, DPN(Q − 1) mixture vectors in total are ex-
amined with corresponding metrics ν(s, y). The number of
multiplications required to compute all metrics and PD condi-
tional means is O(DPNM). Computing the PD conditional

covariances {Σ̂
(d,p)

}p=1:P
d=1:D requires an additional O(DP 3M)

multiplies. The generalized EM iteration uses FMBP for each

E-step and O(M) operations per M-step.

1Recall that ‖s‖0 follows the Binomial(N, 1 − λ0) distribution. When
N(1 − λ0) > 5, it is reasonable to use the Gaussian approximation
‖s‖0 ∼ N

(
N(1 − λ0), Nλ0(1 − λ0)

)
, in which case Pr(‖s‖0 > P ) =

1
2

erfc
(

P−N(1−λ0)√
2Nλ0(1−λ0)

)
.
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IV. SIMULATION

Numerical experiments were conducted to investigate the

performance of FBMP with approximate ML estimation of hy-

perparameters from the data2. Since FBMP is able to provide
an approximate MMSE solution to (1) for the signal model

presented in Section II, we would expect to observe near-

optimal performance, in the mean squared error sense, when

testing FBMP on signals generated accoring to such a model.

A more interesting characterization of FBMP’s performance

can be obtained by testing the algorithm on signals that

violate the assumptions of Section II. Such a characterization

demonstrates both the flexibility of the Gaussian mixture

model in approximating other generating distributions and the

utility of allowing FBMP to adaptively select hyperparameters

when such information is unavailable.

In the results presented here, we considered a signal con-

sisting of N = 512 unknown coefficients that followed a
deterministic exponentially decaying profile, that is, xk =
exp{−ρk}, with ρ ∈ [0.10, 0.85]. Such a signal could be
encountered, for instance, in the wavelet coefficients of an

image [7]. For each trial, a random selection of half of the

coefficients were given negative sign, and the coefficients were

randomly shuffled. The 128-by-512 measurement matrices A

were constructed by drawing i.i.d. columns from a normal

distribution, and then scaling the columns to be of unit-

norm. Noise realizations came from a zero-mean Gaussian

distribution with variances chosen to yield 15 dB SNR. The

graphs represent an average of 2000 independent realizations.
For comparative purposes, we also tested five other publicly

available sparse estimation algorithms: SparseBayes [8], OMP

[9], StOMP [10], GPSR-Basic [11], and BCS [12]. StOMP was

tested using a false discovery rate control strategy for threshold

selection, with a rate of q = 0.40. Following [13], we chose
to use the expected noise power as the stopping threshold on

the norm of the residual error. The “compressed,” rather than

sparse, nature of the exponentially decaying signal seemed

to pose problems for OMP in regards to choosing a suitable

stopping criterion, causing OMP to activate many coefficients

in an attempt to fit the noise. For this reason, we opted to

terminate OMP after it had activated as many coefficients

as StOMP, providing some insight into how both algorithms

perform for a specific degree of sparsity. The �1-penalty in

the GPSR algorithm was chosen as τ = 0.1‖AHy‖∞, and
the MSE kept for comparison purposes was the smaller of

the MSEs of the un-debiased and debiased estimates. For

FBMP, hyperparameters were initialized at λ1 = 0.01, μ1 = 0,
σ2 = 0.05, and σ2

1 = 2, for all values of ρ, and the generalized
EM updates were used to compute approximate ML estimates

of the hyperparameters from the data.

In Fig. 1 we plot normalized mean squared error (NMSE),

defined by

NMSE (dB) = 10 log10

{
1

T

T∑
i=1

‖x̂(i) − x(i)‖2
2

‖x(i)‖2
2

}
, (37)

2Color versions of figures in this manuscript, Matlab code, and presentations
are available at http://www.ece.osu.edu/∼zinielj/fbmp/
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Fig. 1. Normalized mean squared error versus ρ.

where T is the number of random trials and superscript
(i) denotes the trial number. For FBMP we provide the
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Fig. 2. Runtime versus ρ.

NMSE of both its MMSE and maximum a posteriori (MAP)

estimates, quantifying the reduction in signal reconstruction

error that results from averaging over multiple models. We

note that FBMP’s estimators are not in fact MMSE or MAP

for the class of signals being considered, but would rather

be (approximately) MMSE and MAP were the signals drawn

from a Gaussian mixture distribution with hyperparameters

obtained through the EM update procedure. The NMSEs

reported by FBMP are the lowest for nearly the entire range

of ρ considered. We attribute this performance in part to the
hyperparameter estimation and also to role of the prior on

s in favoring a sparse solution to a dense one. Likewise,

the estimate from GPSR exhibits very low NMSE, which is

attributable to the exponentially decaying simulated signal: the

sequence x can be viewed as a typical draw from a Laplace

density, and thus is well-matched to the MAP estimator for a

Laplacian prior. The MAP estimator under such a prior can

be cast as a convex optimization problem of the form solved
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Fig. 3. Solution sparsity versus ρ.

by GPSR.

Figure 2 displays average runtimes and quantifies the com-

plexity of implementing a Bayesian model estimator with

FBMP. The FBMP algorithm returns not only a MAP model

selection ŝ�, but also returns ŝammse and a list of high

probability explanations of the data, along with their posterior

probabilities. Thus, FBMP is able to give a fuller interpretation

of the data in the face of ambiguity arising from correlation

in A or from measurement noise. The other five approaches

considered return only a single basis selection and do not

provide a report of model uncertainty. The low complexity

of OMP, StOMP, and GPSR is clearly evident in the figure.

The complexity in the empirical Bayes estimation of model

parameters is illustrated by the comparison of FBMP with and

without the generalized EM update procedure. Accordingly,

there is a complexity reduction for applications in which

hyperparameters are precisely known.

Fig. 3 shows average sparsity of solutions. While the spar-

sity of solutions for almost every algorithm can be modulated

by altering appropriate parameters, it is interesting to observe

the interplay between NMSE and sparsity. Remarkably, the

sparsest solutions, provided by FBMP and GPSR, also have

the lowest values of NMSE.

V. DISCUSSION: RELATEDWORKS

A Gaussian mixture model similar to that in Section II was

adopted by Larsson and Selén [14], who, for Q = 2, also
constructed the MMSE estimate in the manner of (7) but with

an S� that contains exactly one sequence s for each Hamming

weight 0 to N . They proposed to find these s by starting with

an all-active basis configuration and recursively deactivating

one element at a time. Thus, the D = 1 version of the FBMP
algorithm recalls the heuristic of [14], but in reverse. The fast

update presented here has a complexity of only O(NMP ),
in comparison to O(N 3M2) for the technique in [14]. Given
the typically large values of N encountered in practice, the

complexity of FBMP can be several orders of magnitude

lower. Elad and Yavneh [15] adopted MMSE estimation as a

motivation for averaging multiple sparse denoising solutions,

each found via a randomized OMP solution.

For Q = 2, a Gaussian mixture model has been widely
adopted for the Bayesian variable selection problem. (See,

e.g., [16] for a survey.) The published approaches vary in

prior specification, posterior calculation, and MCMC sampling

method. George and McCulloch [17] use a conjugate normal

prior on x|s, σ2 and a Gibbs sampler that requires O(N 2)
operations to compute p(sj |y) from p(si|y), where sj and si

differ in only one position. Smith and Kohn [18] use the point

mass null and the simplifying Zellner-g conditional prior to
achieve a fast update requiring O(NK2

s
) operations. Approx-

imately MN iterations of the Gibbs sampler are suggested,

yielding a total complexity of O(MN 2K2
s
).
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