Reference Interval Validation
American Society for Clinical Laboratory Science – Michigan 2016 Annual Meeting
April 1, 2016

Jennifer Thomas DVM, PhD, DACVP
Section Chief, Clinical Pathology
Diagnostic Center for Population and Animal Health
What are reference intervals (RIs)?

- Distribution of numerical test results expected in representative population of healthy individuals
- Used to make medical decisions about diagnosis, treatment & prognosis
- Population based RIs most commonly used
Can RI be shared?

- RIs are specific to laboratory
 - Can be significant differences in results from the same sample analyzed by different labs
- Validation required to use RI from another source

Fig 1.5

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Lowest value</th>
<th>Highest value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT (U/L)</td>
<td>20</td>
<td>55</td>
</tr>
<tr>
<td>Albumin (g/dL)</td>
<td>2.4</td>
<td>3.9</td>
</tr>
<tr>
<td>ALP (U/L)</td>
<td>107</td>
<td>280</td>
</tr>
<tr>
<td>AMS (U/L)</td>
<td>385</td>
<td>1258</td>
</tr>
<tr>
<td>Cl⁻ (mmol/L)</td>
<td>96</td>
<td>117</td>
</tr>
<tr>
<td>Cholesterol (mg/dL)</td>
<td>185</td>
<td>239</td>
</tr>
<tr>
<td>CK (U/L)</td>
<td>5</td>
<td>53</td>
</tr>
</tbody>
</table>
How should RIs be used clinically?

- RIs do not determine health or illness
 - Common in healthy individual to have value(s) outside reference limits in panel of tests
 - Value within RI may not be normal

- RI ≠ decision limit
 - Decision limit = threshold at which result above or below value triggers medical decision
Road map for presentation

- **De novo generation of population based RI**
 - Steps to develop RI
 - Advantages and disadvantages

- **Alternatives to de novo generation of population based RI**
 - Transference & validation
 - Multicenter studies
 - Advantages and disadvantages

- **Subject-based RI**
Population based RI

• 1970: IFCC formed Expert Panel on Reference Values that proposed standards for determination of RI
 – Adopted by groups including CLSI

• Updated by CLSI in 2008 to include:
 – Methods to transfer and validate RI from other labs or sources
 – Recommendations for use of robust methods to determine RI using small sample sizes
Step for de novo RI determination

- Literature search
- Define reference population
- Questionnaire to ID reference individuals
- Determine # of individuals in reference population
- Select reference individuals
- Collect samples
- Analyze samples

- Histogram to evaluate data
- ID outliers
- Determine distribution of reference data
- Statistical analysis to determine upper & lower reference limits
- Determine if need to partition data
- Document all steps used and create summary report
Reference Population

Sources of reference individuals: direct

- Preferred method
- Use set of defined criteria to select reference individuals from reference population
 - A priori – inclusion criteria applied before collection
 - A posteriori – inclusion criteria applied post-collection
- Collect samples from individuals specifically to generate de novo RIs
Sources of reference individuals: indirect

- Mining of reference values from database: sample collected for reasons other than RI determination
 - Determination of reference individuals based upon mathematical assumptions used to define “normal”
 - Can be improved if selection of values incorporates clinical information in database
- Higher risk of including values from unhealthy individuals
Selection criteria for reference population

- Biologic criteria: age, sex, breed/ethnicity
- Clinical findings: history, PE, diet, preventative care, husbandry
- Geographic location/environment
- Should not be restrictive to extent reference population is no longer representative

http://www.pedigree.co.nz/dog-breed-information/

Exclusion criteria for reference population

- Not healthy
- Not properly prepared for collection (e.g., not fasted, heavy exercise prior to sample collection)
- Sample collection problems
- Sample appearance
- Drug therapy
- Physiology – lactation, pregnancy
How large should the reference population be?

- Traditionally calculated to include central 95% of reference values
- ≥ 120 reference individuals allows traditional calculation of 90% confidence intervals
- Smaller sizes often used but associated with higher degree of uncertainty
What are confidence intervals?
Sample collection

- Standardize patient preparation
- Standardize collection technique
- Standardize sample handling
- Standardize sample type
- Reject poor quality samples that do not meet collection protocol
Analysis

• Use consistent method
 – Analyzer
 – Reagents or assay kits
 – Manufacturers
• Use appropriate controls
• Do not control normal daily variables
 – Technologists performing assays
 – Lot numbers of kits
Graph data & ID outliers

- Graph data to assess distribution
- Test visual outliers
 - Dixon-Reed’s test
 - Tukey’s method

(a) Gap
 Range

(b) Gap
 Range
What is an outlier?

• Value that is discordant from majority of reference values and does not belong

• Arise from inclusion of unhealthy individuals, recording errors, collection/handling issues, analytic errors, or biologic variation

• Minimized by rigorous adherence to population selection criteria, pre-analytic protocols, & analytic protocols
Determine data distribution

• Assess for normality visually using histogram
 – Confirm with goodness of fit test (e.g., Anderson-Darling, Kolmogorov-Smirnov)

• Gaussian (“Normal”) distribution
 – Can use parametric testing

• Non-Gaussian distribution
 – Transform to Gaussian distribution
 – If cannot transform use non-parametric testing
Determine reference interval

Table 4. Recommended procedures for establishing RI based on reference sample size and distribution.

<table>
<thead>
<tr>
<th>Sample size</th>
<th>Data distribution (raw or transformed)</th>
<th>Statistical method</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 120</td>
<td>Not applicable</td>
<td>Nonparametric with 90% CI of reference limits</td>
</tr>
<tr>
<td>40 ≤ x < 120</td>
<td>Gaussian</td>
<td>Robust with 90% CI of reference limits</td>
</tr>
<tr>
<td></td>
<td>Non-Gaussian</td>
<td>Parametric with 90% CI of reference limits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Robust with 90% CI of reference limits (preferred)</td>
</tr>
<tr>
<td>20 ≤ x < 40</td>
<td>Gaussian</td>
<td>Parametric with 90% CI of reference limits†</td>
</tr>
<tr>
<td></td>
<td>Non-Gaussian</td>
<td>Robust with 90% CI of reference limits†</td>
</tr>
<tr>
<td>10 ≤ x < 20</td>
<td>Not applicable</td>
<td>Do not calculate reference intervals†</td>
</tr>
<tr>
<td>< 10</td>
<td>Not applicable</td>
<td>Do not report reference values</td>
</tr>
</tbody>
</table>

Vet Clin Pathol 41:446, 2012
RI stats

Reference Value Advisor: a new freeware set of macroinstructions to calculate reference intervals with Microsoft Excel

Anne Geffré¹, Didier Concordet², Jean-Pierre Braun¹.², Catherine Trumel¹

¹Department of Clinical Sciences and ²UMR181 Physiopathologie et Toxicologie Expérimentales INRA, ENV, Ecole Nationale Vétérinaire, Toulouse, France

- Provides descriptive stats, normality testing, outlier testing
- Calculates 5 RI: standard nontransformed & transformed, robust nontransformed & transformed, non-parametric
- Calculated 90% confidence intervals for upper & lower reference limit
- Provides recommendations based upon updated IFCC/CLSI guidelines
De novo neutrophil RI in dogs

<table>
<thead>
<tr>
<th>Method</th>
<th>RI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std para non-trans</td>
<td>1.4-7.9</td>
</tr>
<tr>
<td>Robust non-trans</td>
<td>0.8-7.5</td>
</tr>
<tr>
<td>Std para trans</td>
<td>2.4-8.1</td>
</tr>
<tr>
<td>Robust trans</td>
<td>2.3-7.8</td>
</tr>
<tr>
<td>Non parametric</td>
<td>2.7-10.6</td>
</tr>
</tbody>
</table>

- N = 71 including 2 outliers
- Range 2.5 to 10.9 $\times 10^3/\mu L$
- Non-Gaussian distribution with & without transformation
- Two outliers Tukey’s

![chart](chart.png)
Neutrophil RI determination in dogs

<table>
<thead>
<tr>
<th>Method</th>
<th>RI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std para non-trans</td>
<td>1.9-7.0</td>
</tr>
<tr>
<td>Robust non-trans</td>
<td>1.6-6.7</td>
</tr>
<tr>
<td>Std para trans</td>
<td>2.7-7.6</td>
</tr>
<tr>
<td>Robust trans</td>
<td>2.7-7.6</td>
</tr>
<tr>
<td>Non parametric</td>
<td>2.7-7.6</td>
</tr>
</tbody>
</table>

- N = 69 with outliers removed
- Range 2.5-7.6
What impacts width of RI?

- Intra-individual variability
- Inter-individual variability
- Analytic variability = imprecision
- Pre-analytic variability
Data partitioning

- Partitioning = dividing reference population into subgroups
- Use if expect significant physiologic impact on PI
 - ↑ diagnostic utility by narrowing RI
 - ↓ inter-individual variability within partitioned group
- Easiest with variables that are distinct choices (e.g., sex)
- More challenging with continuous variables
Data partitioning

- Create different RI for each subgroup within reference population
- Minimum of 40 in each partitioned group
- Various methods to determine if partitioning of value
 - Calculate the significance of the difference between the means of the subgroups
 - Partition if >4% or <0.9% of values in subgroup fall outside RI of non-partitioned group
Document RI process

- Information about reference population
- Pre-analytic preparations
- Specifics about analysis
- Data analysis methods
- Report should be available to clients

http://www.eventbrite.co.uk/e/report-writing-workshop-tickets-6525713585
Problems with de novo RI determination

- Expensive & time consuming
- High inter-individual variability decreases usefulness
- No universal definition of “healthy”
- Challenging to collect sufficient numbers of reference individuals
 - Almost impossible to randomly recruit reference individuals
RI review and revalidation

• Should be routinely reviewed and revalidated at minimum of every 3-5 years
• Critical anytime change methodology or sample preparation/handling
• Consider review if clinicians note excess false positives and false negatives
Transference & validation of RI

• Allows adaptation of RI from manufacturer or other sources

• Requires:
 – Similar reference population
 – Similar sample handling & collection protocols
 – Similar methodology
 ▪ Ideally same analyzer but may be acceptable if use similar methodology & different analyzer
 ▪ Presence of bias will prevent direct RI transfer
Transference & validation of RI

- Depends upon correct initial determination of RI
- Information from the RI must be available & reviewed by the laboratory adopting RI
 - Should include patient demographics, pre-analytic protocols, analytic procedures, and statistics used
Select appropriate RI from another source

Select 20 reference individuals for your laboratory

Measure analyte(s) – determine outliers & replace

Modified from Vet Clin Path 38:295, 2009
Compare results with RI from other source

- ≤ 2 Outside RI
 - Validate RI

- ≥ 5 Outside RI
 - Cannot use RI

3 or 4 values outside RI

- Test another 20 individuals

> 2 Outside RI

- ≤ 2 Outside RI
 - Validate RI

- ≤ 2 Outside RI

Modified from Vet Clin Path 38:295, 2009
Transference pros and cons

- **Cons**
 - Relies on original correct RI determination
 - Validation procedure does not determine if RI too wide to be useful

- **Pros**
 - Relatively inexpensive & easy to do
 - Limited # reference individuals needed
Multicenter RI

• Centers should have
 – Similar patient populations
 – Uniform selection criteria & sample collection/handling protocols
 – Use same QC materials to ↑ standardization

• Requires excellent communication between centers
Multicenter RI

- Ideally use same analyzer and methods but can be different if:
 - Calibrated to produce similar results using international traceable standards or shared pooled specimen
 - Uniform criteria for precision and allowable bias
 - Rigorous QC monitoring to detect deviations
Multicenter RI pros & cons

- **Cons**
 - Requires good communication between centers to reach consensus
 - Assumes strict adherence to pre-analytic & analytic protocols

- **Pros**
 - Relatively inexpensive to obtain
 - Larger # reference individuals
 - Flexibility for patients to use multiple labs
Potential problems with population based RI

• High inter-individual variability
 – Leads to wide RI
 – May be difficult to detect changes in an individual

• Sources of variability
 – Preanalytic – issues with collection or handling
 – Analytic – imprecision of assay
 – Random variation within individual or between individuals
When are population based RI least useful?

• High inter-individual variability

• Low intra-individual variability
 – Little variation of repeated testing in any given individual
 – Average value from individual may be close to LRL, mean or URL
 – Placement in RI determines degree of shift needed to be detected as “abnormal”
 – Deviation from individual average may indicate disease yet never be outside RI
Intra-individual variation

Monthly CBC Results

Reference Interval 6-17 (x 1,000/uL)
Subject based RI

- Samples are analyzed from patient at regular time points in periods of health
 - Should have similar inclusion & exclusion criteria as used to define reference population in de novo RI studies
 - Samples should be analyzed using same methodology

- Results from these samples used during period of illness to detect and monitor changes
 - Reference change value = difference between 2 values in an individual that is considered significant
When are subject based RI better?

- Calculation of index of individuality
- Based upon CV_G, CV_I, & CV_A
 - $CV_G = \text{mean coefficient of variation of group} = CV$ of single test result of individuals within a group of healthy individuals
 - $CV_I = \text{mean coefficient of variation of individual} = CV$ of multiple results for a single test repeated over time in a healthy individual
 - $CV_A = \text{mean coefficient of variation of analysis}$
Differences in CV₁
If $CV_A < CV_I$ often use simplified $II = CV_I/CV_G$
Effects of Partitioning on CV

Table 2 Within-subject (CV_I) and between-subject (CV_G) biological variation of urine creatinine and indices of individuality (II).

<table>
<thead>
<tr>
<th>Group</th>
<th>CV_I, %</th>
<th>CV_G, %</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women, n=8</td>
<td>15.7</td>
<td>11.0</td>
<td>1.42</td>
</tr>
<tr>
<td>Men, n=7</td>
<td>11.0</td>
<td>6.0</td>
<td>1.83</td>
</tr>
<tr>
<td>Whole</td>
<td>13.0</td>
<td>28.2</td>
<td>0.46</td>
</tr>
</tbody>
</table>

References