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resolution are driven by alterations in large-scale phenom-
ena. Because CCSM3 generally overestimates temperature 
variability relative to reanalysis output, the reductions in var-
iability associated with increased resolution tend to improve 
model fidelity. However, the resolution-related variability 
differences are relatively uniform with frequency, whereas 
the sign of model bias changes at interannual frequencies. 
This discrepancy raises questions about the mechanisms 
underlying the improvement at subannual frequencies. The 
consistent response across frequencies also implies that the 
atmosphere plays a significant role in interannual variability.

Keywords  Climate variability · Variability · Model 
resolution · CCSM3 · Spectral analysis

1  Introduction

Human activities are influenced not only by mean climate, 
but also by variability around climatic means, which can 
affect food production, human health, water supply, and 
even mortality (Thornton et al. 2014; IPCC 2014, and refer-
ences therein). Understanding potential variability changes 
as the planet warms in response to elevated greenhouse 
gas concentrations is therefore a current research priority. 
Because the observational record under changing climatic 
conditions is short, general circulation models (GCMs) 
are a principal tool for this purpose (IPCC 2012, 2013). 
However, it is widely recognized that existing GCMs do 
not perfectly reproduce observed variability, and therefore 
may not perfectly simulate future variability (e.g. IPCC 
2013; Leeds et  al. 2015). Improving the representation of 
both current and future variability is therefore an impetus 
for continued model development (e.g. Reichler and Kim 
2008; Delworth et al. 2012).

Abstract  Understanding future changes in climate vari-
ability, which can impact human activities, is a current 
research priority. It is often assumed that a key part of this 
effort involves improving the spatial resolution of climate 
models; however, few previous studies comprehensively 
evaluate the effects of model resolution on variability. In 
this study, we systematically examine the sensitivity of tem-
perature variability to horizontal atmospheric resolution in 
a single model (CCSM3, the Community Climate System 
Model 3) at three different resolutions (T85, T42, and T31), 
using spectral analysis to describe the frequency dependence 
of differences. We find that in these runs, increased model 
resolution is associated with reduced temperature variability 
at all but the highest frequencies (2–5 day periods), though 
with strong regional differences. (In the tropics, where tem-
perature fluctuations are smallest, increased resolution is 
associated with increased variability.) At all resolutions, 
temperature fluctuations in CCSM3 are highly spatially cor-
related, implying that the changes in variability with model 
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Increasing model resolution is often assumed to be a 
key factor in improving the simulation of climate vari-
ability (e.g. Bacmeister et  al. 2013; Delworth et  al. 2012; 
Hansen et al. 2012; Yeager et al. 2006). If the model phys-
ics is reasonably realistic, altering model resolution could 
be expected to affect variability primarily through either of 
two mechanisms, which we term “spatial averaging effects” 
and “non-local effects”. In the first mechanism, increasing 
resolution allows the model to resolve topographic fea-
tures or other spatially heterogeneous processes, captur-
ing spatially uncorrelated variations that coarser models 
would artificially suppress. Spatial averaging effects under 
this definition can only increase variability as resolution 
increases. In the second mechanism, model resolution may 
alter the properties of variations that are broad-scale and 
spatially correlated. For example, improving the represen-
tation of topography may also alter large-scale meteorolog-
ical patterns and thereby affect variability across many grid 
cells. Variability may be affected through either or both 
mechanisms whenever increasing model resolution allows 
explicit treatment of processes that were formerly param-
eterized (e.g. clouds, ocean eddies, convection, sea ice for-
mation) (Delworth et al. 2012; DeWeaver and Bitz 2006).

Few studies have systematically examined the relation-
ship between model resolution and variability. Most studies 
of the impact of increasing model resolution have focused 
on climate means. Both global and regional studies have 
suggested that increased resolution improves seasonal 
mean temperature and precipitation in a variety of models, 
e.g. GFDL (Delworth et al. 2012), IPSL (Marti et al. 2010), 
ECHAM (Roeckner et  al. 2006) and CCSM3 (Gent et  al. 
2010), but Hack et  al. (2006) find little effect on global 
mean temperature (GMT) in CCSM3 and Kirtman et  al. 
(2012) find an increase in bias in global mean sea surface 
temperature in CCSM3.5 (changing ocean resolution only). 
The sign of the effect of resolution differs across models, 
with increases in global mean temperature with resolution 
in CCSM3.5 and GFDL (Kirtman et  al. 2012; Delworth 
et  al. 2012) but a statistically insignificant decrease in 
CCSM3 (Hack et al. 2006). If increased resolution appears 
to improve the representation of individual regions, those 
improvements may still not be uniform across all regions 
or seasons. For example, Iorio et al. (2004) find that in the 
atmosphere-only CCM3 model, higher resolution improves 
seasonal mean precipitation over the United States in local 
autumn and winter, but degrades it in spring and summer, 
when precipitation is predominantly convective.

In the subset of research that evaluates how model reso-
lution affects climate variability, most studies focus on the 
large-scale effects associated with an individual meteoro-
logical phenomenon: for example, monsoons, jet stream 
location, cyclones, the Madden-Julian Oscillation (MJO), 
and the El Nino-Southern Oscillation (ENSO). Results are 

somewhat inconsistent, but sources of variability at a vari-
ety of frequencies appear sensitive to horizontal resolution. 
Multiple studies find that increasing resolution yields more 
realistic simulations of both the North American and Asian 
monsoon systems (specifically in regard to the magnitude 
and distribution of precipitation) (Collier and Zhang 2007; 
Kobayashi and Sugi 2004; Gent et  al. 2010; Delworth 
et al. 2012). Several studies find that the location of the jet 
stream (Guemas and Codron 2011) and the number of sim-
ulated cyclones (Kobayashi and Sugi 2004) change mono-
tonically with increasing resolution, but neither change is 
classified as an improvement. The simulation of MJO is 
found either to not improve (Hack et al. 2006) or to actu-
ally degrade with resolution (Gualdi et  al. 1997). Climate 
models have long-standing difficulties capturing ENSO 
periodicity (Deser et al. 2006; Navarra et al. 2008); increas-
ing resolution appears to improve both the periodicity and 
amplitude of ENSO (e.g. Neale et al. 2008; Guilyardi et al. 
2004), as well as the “extratropical response” to the oscilla-
tion (Deser et al. 2006).

The statistics of climate variability is an active area of 
research at present because of concerns that future condi-
tions of higher CO2 may involve shifts in variability. Obser-
vational analyses have sought to detect shifts in tempera-
ture variability by estimating either changes in marginal 
distributions (e.g. Hansen et  al. 2012; Huntingford et  al. 
2013) or changes in the frequency of exceeding thresholds 
of extreme conditions (e.g. Alexander et  al. 2006; Morak 
et al. 2013) (a metric that can convolve changes in variabil-
ity and means). Analyses of model projections also com-
monly focus on threshold exceedance (e.g. Meehl et  al. 
2000; Wehner et  al. 2010), though some recent articles 
have evaluated changes in the variance of temperature time 
series (e.g. Holmes et al. 2015; Schneider et al. 2014). Both 
marginal distribution and threshold exceedance approaches 
often convolve multiple timescales of variability or study 
only narrow frequency ranges.

In this work we seek to systematically examine how 
resolution can influence the broad statistics of temperature 
variability: that is, how global variability can change with 
resolution at all timescales. We use model output from a 
single model, CCSM3, at different resolutions, and evalu-
ate their differences in global temperature variability at all 
frequencies, from days to decades, and in all regions, from 
single pixels to global averages. Some frequency-resolved 
variability studies do exist in the literature, most com-
monly in the context of interannual variability; often, stud-
ies use power spectra to compare model reconstructions to 
paleoclimate proxies or long-term observations (e.g. IPCC 
2013; Jones et  al. 2013; Laepple and Huybers 2014a, b). 
Recently, spectral methods have been used to compare 
variability in model simulations of current and future cli-
mates (Leeds et al. 2015). In this work, we apply a similar 
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approach to compare model output at different resolutions. 
Our goals are to (1) identify how model resolution may 
affect variability through either/both improved representa-
tion of small-scale heterogeneity and/or altered large-scale 
physics, and (2) determine which frequencies and regions 
may be most sensitive to resolution.

2 � Data and methods

2.1 � Model output and data

2.1.1 � CCSM3

This study takes advantage of publicly available output 
from the Community Climate System Model 3 (CCSM3), 
a fully-coupled Atmosphere-Ocean General Circulation 
Model (AOGCM) developed by researchers at the National 
Center for Atmospheric Research (NCAR) (Collins et  al. 
2006, and references therein). CCSM3 links four separate 
components: the Community Atmosphere Model version 
3 (CAM3), the Parallel Ocean Program (POP), the Com-
munity Land Surface Model version 3 (CLM3) and the 
Community Sea Ice Model version 5 (CSIM5). We use 
CCSM3 rather than a more recent model version because 

of the availability of daily temperature output from runs 
with identical forcing at multiple horizontal resolutions of 
the same model. (Note however that some parameters must 
be adjusted in a model version when grid size is altered.) 
These runs were specifically designed for use in compara-
tive studies of resolution sensitivity (Hack et  al. 2006; 
Yeager et al. 2006).

We use one 100-year segment from each of three ∼800 
year-long pre-industrial (PI) control simulations at T31, 
T42 and T85 atmospheric resolution: 3.75◦, 2.8◦, and 1.4◦ , 
respectively. The model grids are aligned: each T42 grid cell 
covers 2× 2 T85 cells, and 3× 3 T31 cells are 4× 4 T42 
or 8× 8 T85 cells. The T85 and T42 resolution atmospheric 
models are coupled to a one-degree ocean model; the T31 
atmosphere is coupled to a three-degree ocean. (For this rea-
son, we primarily compare T85 and T42.) The CLM3 reso-
lution follows that of the atmospheric component.

We analyze segments near the end of each run to ensure 
approximate stationarity, i.e. fully equilibrated conditions. 
(The fitted  trend in GMT is < ± 0.03 ◦K/century in all 
three run  segments used; the trends in mean ocean tem-
perature are 0.01, −0.04, and −0.05 ◦K/century for the 
T31, T42, and T85 atmospheric resolutions, respectively 
(Yeager et al. 2006).) As mentioned above, GMT does not 
change significantly across resolutions (Hack et  al. 2006; 

Fig. 1   Example of decomposition of variability into different fre-
quency bands, using a 10-year time series of deseasonalized CCSM3 
temperature output from a single grid cell (Northwest Territories, 
Canada) for T85 (purple) and T31 (blue) resolutions. Left Raw time 
series of daily mean reference temperature. Although the mean sea-
sonal cycle has been removed, seasonal variation in variability 
remains evident, with highest values in winter. Center the high-fre-
quency (period < than five days) component of the same time series. 
In this example, variability in this frequency band is larger at T85 res-
olution than at T31 (by ∼8 %). Right the low-frequency (inter-annual) 
component of the same time series. Variability in this frequency band 
is smaller at T85 resolution than at T31. (Over 100 years of data, the 
difference is 10 %)
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Fig. 2   Example of representation of variability in frequency space, 
using the daily mean temperature time series shown in Fig.  1 (only 
now using 100 years of model output). Upper raw (gray points) and 
smoothed (light blue) power spectra from the T31 time series, and 
for comparison, the smoothed power spectrum from the T85 time 
series (purple). Note the greater number of estimates at the high fre-
quencies. Because the raw estimate is noisy, smoothing is useful for 
comparing estimates of spectral density. Lower difference in variabil-
ity between resolutions shown as the ratio of spectral densities (the 
smoothed ratio of the T85/T31 power spectra). Variability increases 
with resolution only at the highest frequencies
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Otto-Bliesner et al. 2006). All temperature output reported 
is at reference (2-m) atmospheric height unless otherwise 
specified. For more information about the model runs, see 
Hack et al. (2006), supplemental online material or descrip-
tion online at http://www.cesm.ucar.edu/experiments/
ccsm3.0/. Because we consider the seasonal cycle to be 
a component of mean climate, we pre-process all runs by 
removing 12 seasonal harmonics.

2.1.2 � NCEP/DOE reanalysis

We compare model output to a gridded observational prod-
uct, the NCEP/DOE AMIP II Reanalysis (Kanamitsu et al. 
2002), which covers the time period 1979–2014 (limited 
by the availability of satellite data). In this dataset, model 
physics and algorithms were frozen at the time of publica-
tion (2002) and data up to the present day assimilated into 
the existing system (Saha et al. 2010). The product is grid-
ded at ∼1.8◦.

2.2 � Methods and definitions

2.2.1 � Defining variability

To analyze climate variability we decompose the time 
series of daily temperature at each model grid point into 
its frequency components (see Fig. 1). We apply a discrete 
Fourier transform to each deseasonalized time series to 
obtain an estimate of the raw power spectrum with units of 
◦K2 day−1 (variance per frequency interval). In this paper, 
we present variability either as a power spectrum or as 
“integrated variability” over a specific range of frequen-
cies. We generally report integrated variability in units of 
◦K, i.e. as the standard deviation of temperature associated 
with the given range of frequencies. We use units of ◦K2 
when discussing the contribution of different components 
to an overall observed effect, because the variances in units 
of ◦K2 sum to the total variance.

In computing an estimate of a power spectrum, we 
smooth the log of a raw power spectrum with a variable-
bandwidth kernel of the form described in Poppick et  al. 
(2016), supplemental material. (See Fig. 2, top, for compar-
ison of smoothed and unsmoothed spectra). We reduce the 
bandwidth of the kernel estimator at longer periods (where 
the Fourier frequencies, at integral multiples of 1/n day−1 , 
are more sparse) in order to reduce bias across interannual 
frequencies and to avoid contamination by the higher-fre-
quency parts of the spectrum. This reduced smoothing is 
justified because these spectra do typically show more vari-
ation at the lower frequencies. We do not apply a smooth-
ing function when computing integrated variability, which 
involves integrating the power spectrum over a broad range 
of frequencies. 

2.2.2 � Comparing variability

We compare variability between resolutions using ratios, 
either of corresponding power spectra or of corresponding 
estimates of integrated variability (Fig.  2, bottom). In the 
former case, we smooth the log ratio of spectra rather than 
the individual spectra, using the same variable-bandwidth 
kernel described above. In the latter case, we simply calcu-
late integrated variability for each frequency bin and take a 
ratio. Although most figures in this work present variability 
ratios in units of standard deviations (◦K/◦K), all are origi-
nally calculated in units of variances (◦K2/◦K2).

It is important to note that our estimated differences in 
variability between model resolutions will be dominated 
by wintertime effects, because outside of the tropics, tem-
perature variability is generally stronger in winter than 
in summer. (See Fig.  1.) Overall differences in variabil-
ity between resolutions are therefore implicitly weighted 
towards wintertime differences. It would be possible, with 
minor extensions of the procedure, to remove this implicit 
weighting by not only removing the mean seasonal cycle 
but to also demodulating the seasonal changes in variabil-
ity. In this case the final estimate of variability difference 
would reflect the mean fractional difference normalized for 
seasonal variability changes (see Leeds et al. 2015).

2.2.3 � Comparing resolutions

Comparing model output across multiple resolutions 
requires that we choose appropriate pixel comparison strat-
egies, given that, by definition, pixels do not match. This 
paper utilizes two different pixel comparison strategies, 
each of which provides unique information about differ-
ences in variability but incurs some tradeoffs.

When “pixel matching”, each model pixel is compared 
to a single nearby pixel at a different resolution, regardless 
of the difference in pixel size. This approach may be most 
appropriate for impacts assessments, as it utilizes the raw 
model output and will include variability attributable both 
to spatial averaging and to non-local effects. However, if 
each high-resolution pixel is compared to one at a lower 
resolution, then the resulting analysis requires repeating 
information. (For example, four different T85 pixels would 
all be compared to the same T42 pixel.) Conversely, if each 
low-resolution pixel is to be compared to higher-resolution 
output, one could either choose a single high-resolution 
pixel for comparison and discard all unmatched pixels, or 
compare to the mean variability of all potential matching 
pixels. Unless otherwise noted, figures presented in this 
work are obtained via pixel matching to a single low reso-
lution pixel, so as to preserve all of the possible effects of 
variability on resolution. (That is, we do not average over 
any pixel-length spatial heterogeneity.)

http://www.cesm.ucar.edu/experiments/ccsm3.0/
http://www.cesm.ucar.edu/experiments/ccsm3.0/
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The alternative approach of “pixel averaging” isolates 
non-local effects by eliminating, or averaging over, spatial 
heterogeneities across the length scale of model pixel. In 
this strategy, each low-resolution pixel is compared to the 
analogous output the high-resolution model would produce 
over the same area, i.e. to the mean temperature timeseries 
over the equivalent area. We indirectly use this approach 
when considering the spatial characteristics of contribu-
tions to variability.

Our conclusions are generally robust to the choice of 
pixel comparison strategies. See Figs. S5–S6, which repeat 
Fig.  4 for all comparison strategies, and Table S2, which 
quantifies variability for each comparison strategy.

3 � Results

3.1 � Absolute variability

Integrated variability follows expected patterns in all three 
resolutions of CCSM3 and broadly resembles observations 
(Fig. 3). Variability is generally larger over land than ocean 
and larger at high  latitudes (> 66◦) than  at low latitudes 
(< 23◦). These patterns are seen in both observations and 
models (Leeds et  al. 2015; Holmes et  al. 2015). Figure 3 
shows variability in T85 output in the four frequency 

bands: 2–5, 5–30, 30–365, and > 365  days. Patterns are 
largely similar in all frequency bands, though at interan-
nual frequencies land/ocean contrast is reduced and ENSO 
variability appears. We selected these particular frequency 
bands to highlight differences between resolutions. The 
bands do not divide variability equally, but comprise 14, 
50, 30, and 6  % of total variance, respectively (◦K2). We 
display results in these bands throughout this paper.

3.2 � Relative variability

Despite their broad similarities, model runs at different res-
olutions do show differences in variability, and those dif-
ferences are frequency-dependent (Table 1). While spatial 
averaging effects would cause variability to increase with 
resolution, overall variability in CCSM3 decreases with 
resolution. In the global average, variability increases with 
resolution only at the highest frequencies (2–5 days), with 
all other frequencies showing decreases. Changes in global 
average variability are generally monotonic but not linear 
with resolution. At high frequencies, changes in variance 
(◦K2) are stronger from T31 to T42 (14 %) than from T42 
to T85 (2  %); in other frequency bands, changes in vari-
ance are stronger from T42 to T85. Those differences may 
be informative of the mechanisms driving changes.

Differences in variability with resolution also exhibit 
distinct regional patterns, generally with strong latitudinal 
dependence (Fig.  4). At all frequencies, variability gener-
ally increases with resolution in the tropics and decreases 
with resolution at mid-latitudes. (There are some local devi-
ations: we reproduce the decrease in variability in the Niño 
3.4 region, a proxy for ENSO amplitude, found by Deser 
et al. (2006) in this same dataset, but note that because the 
timeseries is only 100 years long, signal-to-noise at inter-
annual frequencies is relatively low.) Frequency depend-
ence is most apparent at high latitudes, where variability 
increases with resolution at the highest frequencies (2–5 

Fig. 3   Maps of integrated variability (◦K) in four frequency bands 
for CCSM3 at T85 resolution. In general, variability is higher over 
land than ocean and over high than low latitudes (as seen in both 
observations and models). Frequency bins account for different pro-
portions of global variance (◦K2): 2–5 day: 14 %, 5–30 day: 49 %, 
30–365 day: 30 % and 365+ days: 6 %. The value reported at each 
pixel is the square root of the integrated power spectrum for the given 
range of frequencies

Table 1   Global average integrated variability (◦K) in the four fre-
quency bins from CCSM3 at three resolutions (T31, T42 and T85) 
and NCEP–DOE reanalysis ("Obs.")

As in the example of Figs. 1 and 2, variability increases with model 
resolution only at the highest frequencies (2–5 days). Note that the 
sum of the decomposed integrated variabilities (◦K) does not equal 
the rightmost column; their squares sum to the total global variance 
(◦K2). (For this information disaggregated by region, see Table S1)

Res. Decomposed variability (◦K)

2–5 days 5–30 days 30–365 days 365+ days Total

T31 1.03 2.24 1.78 0.78 3.14

T42 1.11 2.24 1.75 0.81 3.15

T85 1.12 2.07 1.63 0.75 2.96

Obs. 1.07 1.97 1.57 0.85 2.86
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day period), especially over land, but decreases at all lower 
frequencies. Because the high latitudes have the larg-
est absolute variability, behavior in this region drives the 
global results of Table 1. Although relative changes in trop-
ical variability are large, absolute variability is small there, 
limiting the tropical contribution to the global average.

We highlight the latitudinal differences in variabil-
ity between model resolutions in Fig. 5, which shows the 
ratio of power spectra from three representative land pixels 
at low, medium, and high latitudes. (For maximum clar-
ity, we compare T85:T31 in this figure.) To approximate 
the uncertainty in these values, we include bands for ± 
two standard errors, constructed based on the width of the 
smoothing kernel. The high- and low-latitude pixels show 
differences between T31 and T85 resolutions significant to 
two standard errors at all frequencies, with high latitudes 
pixels exhibiting the strongest frequency dependence: 
strong increases with resolution at periods of days, transi-
tioning to decreases at periods of weeks or longer.

Applying this significance test to the T85:T42 compari-
son, the latitudinal banding of Fig. 4 is significant to two 
standard errors; across all pixels, at periods of two weeks, 

83 % of high-latitude grid points and 68 % of mid-latitude 
grid points show significant variability decreases from T42 
to T85, and 58 % of low-latitude grid points show signifi-
cant variability increases. (See Tables S3–S5 for global and 
regional significance testing at additional frequencies.)

3.3 � Spatial contributions to variability

Given the significant differences in variability between 
model resolutions, it is useful to consider what processes 
drive these changes. As mentioned above, resolving small-
scale spatial heterogeneity can produce only increases in 
variability with resolution, but overall global mean variabil-
ity in T85 is lower, not higher, than at coarser resolutions 
(∼3% lower standard deviation or ∼5% lower variance 
than in T42). (For this and the following section, we report 
values as variances with units of ◦K2, the more natural units 
when considering components of a total.) This significant 
decrease cannot be explained solely through spatial aver-
aging effects. Furthermore, although some regions show 
strong local increases in variability with resolution (Fig. 4), 
those changes could result from spatial averaging effects or 
from some other mechanism.

To help characterize the drivers of variability changes, 
we estimate the potential contribution of spatial averag-
ing effects based on the spatial correlation of temperatures 

Fig. 4   Differences in integrated temperature variability at different 
CCSM3 resolutions, shown as the ratio (◦K/◦K) of T85:T42, for four 
frequency bins. Output at the two resolutions are compared by pixel 
matching to the lower resolution, yielding a T42 figure. (See Sup-
plementary Figs. S1–S2 for equivalent comparisons made with other 
resolution combinations; all yield qualitatively similar results.) High 
latitude land, where variability is strongest, dominates the global 
average of Table  1: variability here generally increases with resolu-
tion (red) at the highest frequencies and decreases (blue) at lower fre-
quencies. In the Arctic, isolated patches of strong variability differ-
ences across all frequencies are due to discrepancies in sea ice extent 
between T85 and T42 resolutions
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Fig. 5   The smoothed ratio (T85:T31) of power spectra for three 
example CCSM3 grid points (green Tropical Pacific, light blue: U.S. 
Midwest and blue Northwest Territories, Canada). Dashed lines of 
the same color represent two standard errors around the estimate of 
the ratio. At low freqeuncies, decreases in variability with resolu-
tion in the Northwest Territories and increases in the tropics are sig-
nificant to two standard errors. At high frequencies, all three regions 
show significant increases. (These examples were chosen for the large 
effect they exhibit; see the Supplemental Material for significance 
testing across all regions and Figs. S3–S4 for iterations of this plot at 
other resolutions.)
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in a single model run. That is, we quantify the amount of 
variability that would be expected to be averaged away in 
a lower resolution model due purely to spatial averaging 
effects. For this test we degrade a T85 resolution run (pixel 
size ∼100−150 km in tropics/midlatitudes) to T42 resolu-
tion (∼200−300 km) by averaging temperatures in 2× 2 
adjacent pixels, and then compare the artificial low-resolu-
tion output to the original output. To avoid artifacts from 
topographic features, here we compare not to the variance 
of a single high-resolution pixel but to the average variance 
of the four original T85 pixels.

We find that averaging produces only small reductions 
in variance, implying that temperature fluctuations are 
strongly correlated in adjacent T85 grid cells (Fig.  6; see 
also Fig S7 to directly compare to Fig.  4). In the global 
average, variance is reduced by only about 7 %. Strong spa-
tial correlation appears to hold even at larger length scales: 
T42 model output also shows only weak effects of spatial 
averaging, with a reduction in variance of 12 % (Fig. 8, left 
column 3rd panel). If each temperature timeseries could be 
decomposed into two components, one perfectly correlated 
across 2× 2 grid cells and another perfectly uncorrelated, 

these results would imply that ∼ 91% of total variance in 
T85 derives from fluctuations spatially correlated at length 
scales of >200−300 km, and 85  % of variance in T42 
derives from fluctuations spatially correlated over scales 
>400−600 km.

The spatial properties of temperature fluctuations are not 
however globally uniform. The fractional effect of spatial 
averaging is small and relatively constant for over much 
of the globe, but becomes larger in the tropics, where total 
variance is lowest (Fig.  6). Spatial averaging of T85 out-
put reduces variance by ∼5% in the extratropics (>15◦ 
latitude) but 12  % in the tropics. The larger spatial aver-
aging effect in the tropics would be consistent, for exam-
ple, with an additional globally uniform component of spa-
tially uncorrelated noise of ∼0.1 ◦K2 variance that would 
be significant in the tropics (with mean variance 0.85 ◦K2)  
but negligible in the extratropics (with mean variance 
11.5 ◦K2 ) (See Fig. 7).

The strong spatial correlation of temperature fluctuations 
in all versions of CCSM3 means that increased resolution 
of spatial heterogeneity could not explain the differences 
in variability between CCSM3 model resolutions. In those 
regions where the model variability increases with resolu-
tion (i.e. is higher at T85 than at T42), the small implied 

Fig. 6   Spatial averaging test, variance ratio: average temperature 
variance in four adjacent T85 grid cells divided by the variance of 
the average temperature in that 2× 2 block. If all temperature fluc-
tuations were spatially uncorrelated at this scale, the resulting ratio 
would be n pixels or 4; if fluctuations were strongly spatially corre-
lated, the ratio would be close to 1. Actual variance ratios are ∼1.05 
for non-tropical regions and ∼1.14 for the tropics (±15 degrees lati-
tude); note that the tropics contribute negligibly to the global aver-
age ratio (∼1.07). These results suggest that temperature fluctuations 
in CCSM3 T85 exhibit strong spatial correlation at T42 spatial scale 
(∼300−200 km in tropics/midlatitudes)

Fig. 7   Spatial averaging test, variance difference: Average vari-
ance in four adjacent T85 grid cells minus the variance of the aver-
age temperature in that 2× 2 block. The resulting pattern is similar to 
that of absolute variability, with strong land/ocean contrast (compare 
to Fig.  3), suggesting that the contribution of spatially uncorrelated 
variability largely scales with a spatially correlated component. The 
larger tropical contribution of spatially uncorrelated variability seen 
in Fig.  6 could be explained by a small, global, additional additive 
“noise” contribution of ∼ 0.1

◦
K
2 variance
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contribution of spatial averaging could not explain the large 
changes in variability with resolution. And in regions where 
model variability is actually lower at T85 than at T42 reso-
lution, some other phenomenon must be outweighing the 
small spatial averaging effects. These results suggest that 
the effects of model resolution on variability occur predom-
inantly though altered large-scale phenomena (correlated 
over many grid cells), not directly through improved reso-
lution of small-scale phenomena.

3.4 � Spatial effects as function of altitude

We would expect that the spatial correlation of tempera-
ture fluctuations should increase with altitude: the less the 
interaction with the surface, the more spatially homogene-
ous the atmosphere should become. In an examination of 
T42 output we find that this does in fact hold. (We use T42 
output to investigate altitude dependence since the T85 
output used here has temperature data only up to refer-
ence height.) As in the previous example, we estimate the 
spatially uncorrelated component of variability by averag-
ing 2× 2 pixels to artificially degrade resolution and then 
comparing to the original-resolution model (Fig.  8, right 
column, which shows variance across all frequencies). As 
expected, averaging effects decline monotonically with 
altitude: averaging reduces variance by 17 % at the surface, 
12 % at reference height (as mentioned earlier), and 5 % at 
300 mb. This gradual decline in the relative contribution of 
spatially uncorrelated fluctuations contrasts with the trend 
in variability itself. (Temperature variability is roughly con-
stant from surface through 850 mb and then drops abruptly 
above the boundary layer; see Tables S7–S9).

At all altitudes, spatial averaging effects do not appear to 
explain the differences in variance between model resolu-
tions. Figure  8, left panel, compares variance at T42 and 
T31 resolutions from surface to 300 mb. At near-surface 
altitudes, T42 and T31 models show similar global aver-
age variance (to <1  %), but with strong regional differ-
ences. These patterns diminish with altitude; by 300 mb, 
T42 variance is uniformly 13 % greater than that in T31. 
This difference is larger than can be simply explained as 
a spatial averaging effect, given the small apparent contri-
bution of spatially uncorrelated fluctuations. The averaging 
test of Fig. 8, right panel, implies that resolving spatial het-
erogeneities when increasing resolution from T31 to T42 
would produce only a 4 % increase in variance. (To con-
vert values in right column to the corresponding expected 
change between T42 and T31, multiply by 2/3). We show 
in Fig. 8 only total integrated variance, but these discrep-
ancies hold at all frequencies when disaggregated. At all 
altitudes, the changes in temperature variability associated 
with model resolution appear to involve changes in large-
scale phenomena.

3.5 � Model fidelity

One of the rationales for running climate models at finer 
spatial resolution, despite the increased computational 
demand, is the expectation that improved resolution will 
produce improved model fidelity. We examine that assump-
tion for CCSM3 by comparing temperature variability in 
model output with that in the NCEP–DOE reanalysis prod-
uct, which we take as ground truth. CCSM3 generally over-
estimates total global temperature variability relative to the 
NCEP–DOE reanalysis (Table 1). Because increasing reso-
lution in this model reduces global variability, it therefore 
also improves average model fidelity. Furthermore, at a 
regional level, increasing resolution tends to reduce biases 
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Fig. 8   Left: Comparison of overall variance with resolution at four 
altitudes, shown as the ratio (◦K2/◦K2) of T42:T31. Output at the two 
resolutions are compared by pixel matching to the lower resolution, 
yielding a T31 figure. Regional patterns of variability increases and 
decreases are strongest at the surface and diminish with altitude. By 
300 mb, the higher-resolution model shows relatively uniform 13 % 
increase in variance. Right Ratio of average variance in T42 to that in 
the same dataset degraded to 4× coarser resolution (below T31). As 
expected, the effects of spatial averaging decrease with altitude. The 
ratio of variance in raw to averaged model output is 1.21, 1.15, 1.08, 
and 1.05 from surface to 300 mb. (Note that the degraded-from-T42 
resolution is lower than that of T31; multiply by 2/3 for comparison 
with left panel.) In no case can spatial averaging effects explain vari-
ance differences with resolution
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in total variability regardless of the sign of those biases. 
That is, the pattern of changes produced by increasing 
resolution—lower variability at high latitudes and higher 
variability in the tropics—roughly matches the pattern of 
observation-model discrepancies (Fig.  9, bottom row; see 
also Fig S8). The result is that at most locations, increas-
ing CCSM3 spatial resolution appears to improve fidelity 
in total integrated temperature variability.

However, the improvements in fidelity with model reso-
lution do not hold for all frequencies. As shown in Fig. 4, 
increasing model resolution produces similar effects over 
most of the frequency range sampled (from 5 days to inter-
annual). But observation-model discrepancies are very 
different for subannual and interannual frequencies (com-
pare Figs. 9, 10 and S9). While CCSM3 overestimates sub-
annual variability, it underestimates interannual variability. 
(Underestimation of long-period variability is common 
in climate models. Laepple and Huybers (2014a) com-
pare historical CMIP5 model runs to gridded instrumental 
observations, and find a large spread in model behavior, 
but with the multi-model mean biased low for interannual 
variability.) In CCSM3, increasing model resolution exac-
erbates this systematic bias. These results are significant 
to two standard errors despite the relatively short datasets 
(100 years for model output and 35 years for observations). 
(See Table S6.) Given that different physical processes may 
govern variability occurring at short and long timescales, 
it remains unclear why altering model resolution produces 
such consistent effects across most frequencies.

4 � Discussion

In this study of a single climate model, we find that altering 
the spatial resolution of the atmospheric component affects 
temperature variability in all regions and at all frequen-
cies, even while means are relatively unaffected. Globally 
averaged near-surface temperature variability decreases 
with increasing resolution, at all but the highest frequen-
cies (periods of 2–5 days). The global average is domi-
nated by near-universal decreases in variability at mid and 
high latitudes; the tropics show a consistent band of vari-
ability increase with resolution. This complex spatial pat-
tern of variability differences associated with resolution is 
evidently related to surface interactions, since its strength 
decreases with altitude. However, while surface topography 
representation seems to be important in the boundary layer, 
it is likely not the only meaningful driver, since resolution-
driven changes in variability are evident even at 300  mb. 
At this altitude, increasing resolution from T31 to T42 pro-
duces a fairly uniform 13 % increase in variability (larger 
than is consistent with simple averaging effects).

The changes in variability induced by changes in model 
resolution (at all regions, altitudes, and frequencies) appear 
to be driven by alterations in large-scale circulations rather 
than by simple spatial averaging effects. Spatial averag-
ing effects are negligible since the overwhelming bulk of 
temperature variability is spatially correlated over large 
distances, at all model resolutions and at all periods from 
days to decades. Changes in variability between model res-
olutions must therefore result from changes in large-scale 
phenomena.

Fig. 9   Top Total variability (◦K) in the T85 model compared to rea-
nalysis. Bottom Same comparison for T42:T85 resolution, for refer-
ence. Unlike previous figures we show the ratio of low- to high-res-
olution versions, so that for each column, the places where colors 
match indicate that increasing resolution improves model represen-
tation of variability. All plots are made by “pixel matching” to the 
lower resolution. Note that, in this figure we return to plotting vari-
ability, rather than variance, to allow a more intuitive understanding 
of model/observation discrepancies

Fig. 10   Top Interannual variability (periods: 1–10  years; ◦K) in the 
T85 model compared to reanalysis. Bottom Same comparison for 
T42:T85 resolution, for reference (Compare also to Fig. 9). CCSM3 
consistently underestimates interannual variability, and increasing 
resolution exacerbates this bias
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The finding that differences in variability with resolu-
tion are nonlinear (Table 1) is also consistent with a lim-
ited impact of spatial averaging effects. If variability 
(standard deviation) were perfectly uncorrelated in space, 
then it would scale inversely with grid cell length. If vari-
ability is dominated by large-scale phenomena, the effects 
of altering model spatial resolution will be difficult to 
predict in advance (see also Jung et  al. 2012). Nonlinear 
responses to changes in resolution have been seen in prior 
studies, though these involve smaller grid cell sizes than 
tested here. These studies also suggest that there may be 
some resolution threshold at which model performance 
no longer alters with resolution (Jung et  al. 2012; Kinter 
et al. 2013, and references therein). Results here showing 
nonlinear differences at coarser resolutions would also be 
consistent with a range of resolution effects impacting dif-
ferent phenomena.

Improvements in model fidelity are often cited as a moti-
vation for increasing resolution. In CCSM3, the changes 
in temperature variability produced by increasing resolu-
tion do improve model fidelity in most regions and at most 
frequencies. At subannual frequencies, increasing resolu-
tion reduces both low biases in the tropics and high biases 
at high latitudes. However, at interannual frequencies, 
increasing resolution degrades fidelity, exacerbating a low 
bias in CCSM3. The discrepancy raises some questions 
about the mechanisms driving variability changes between 
model versions.

It is generally assumed that the physical drivers of vari-
ability differ at sub-annual and interannual frequencies. 
(Differences in model biases are also consistent with this 
assumption.) Sub-annual temperature variability is likely 
driven in large part by eddy transport. Interannual tempera-
ture variability will include some contribution from high-
frequency processes (which can produce statistical effects 
at long timescales) but should be dominated by intrinsi-
cally low-frequency variability in ocean temperatures. It 
is therefore surprising that increasing spatial resolution in 
the atmosphere/land component of a climate model alone 
produces effects in interannual variability similar to those 
at higher frequencies, both in spatial patterns and in mag-
nitude. Some recent studies do suggest that alterations in 
atmospheric model resolution should influence variability 
over a wide range of frequencies (see Clement et al. 2015; 
Zhang et  al. 2014). At least in the model we study here, 
atmospheric (and possibly also land and subsurface) pro-
cesses may play an even stronger role in modulating inter-
annual variability than would be typically expected.

The results of this paper are largely descriptive, but offer 
suggestions for future research directions. First, system-
atic study across model resolution can offer insight into 
the mechanisms governing temperature variability. Our 
results suggest that those mechanisms are synoptic- and 

larger-scale atmospheric phenomena, that may respond to 
smaller-scale changes in model resolution. Multi-model 
comparisons would be needed to determine both whether 
this conclusion is robust across models and whether reso-
lution robustly improves model fidelity with observations. 
Comparisons across different parametrizatons could help 
diagnose whether changes are due directly to resolution or 
indirectly via associated parameter changes. The nonlin-
ear effects of resolution at different frequencies in CCSM3 
(Table  1) also suggest that study over a far greater range 
of resolutions would be helpful to determine if trends are 
maintained as models move to still higher spatial reso-
lutions and to clarify whether the large computational 
demands of increased resolution are warranted. Finally, the 
results here suggest that identifying differences in marginal 
distributions are not sufficient for identifying mechanisms. 
Frequency-resolved studies appear to be necessary tools for 
identifying and characterizing model responses to changes 
in spatial resolution.
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