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A central aim of cognitive neuroscience is to identify how dif-
ferent mental processes are represented in brain activity. The 
medial frontal cortex (MFC), which includes multiple func-

tionally distinct cortical areas in the superior frontal and cingulate 
gyri1, is one brain region that has been linked to diverse psycho-
logical domains, i.e., sets of related psychological states with differ-
ent adaptive functions2. Clearly, different areas within MFC encode 
different functions, but there is a striking convergence of overlap-
ping functions across domains in several ‘hub’ areas, particularly 
the anterior midcingulate cortex (aMCC3). Research across spe-
cies has linked activity in aMCC with multiple functions, including 
cognitive control4,5, reward-based learning and decision making6–9, 
somatic pain10,11, and processing of emotional12,13 and social infor-
mation14,15. In fact, this area responds to such a variety of tasks, 
and so many underlying functions have been proposed to explain 
its responses, that it has been described as a “Rorschach test” and 
understanding it a “holy grail for many cognitive neuroscientists.”16

Theories of aMCC function often explain the numerous signals 
in this area as components of an underlying process that operates 
across domains. Candidate processes have included conflict moni-
toring4, adaptive control (i.e., control processes broadly engaged by 
negative affect and nociception17), cognitive effort18, valuation of 
actions19 and control20, and detecting threats to survival21, among 
others. These models have value because they offer integrative  

explanations for aMCC engagement across multiple domains. 
However, measuring brain activity across domains with functional 
MRI (fMRI) glosses over a potential multiplicity of different local 
neural circuits with distinct functions22,23. Electrophysiological and 
optogenetic studies of likely homologs of human aMCC provide 
evidence for distinct subpopulations of neurons with different func-
tional properties6,8,24. Recent evidence suggests that multivariate 
patterns of fMRI activity can, in some cases, identify representa-
tions distributed across subpopulations of cells, including identify-
ing functionally dissociable patterns within aMCC associated with 
different tasks25,26.

Thus, unified accounts of aMCC function make predictions 
about the similarity of multivariate brain representations across 
domains that have not been adequately tested. If a set of domains 
activate representations of a single underlying process, then engag-
ing these representations by tasks from these domain sets should 
produce similar patterns of brain activity in aMCC and other MFC 
areas. Conversely, if different domains engage an underlying pattern 
that is specific to each domain and not shared by other domains, 
this would provide evidence against a common underlying process.

Here we test these predictions using a construct-validation 
approach grounded in psychometric theory. We investigated three 
constructs that engage MFC: pain, cognitive control, and negative 
emotion (see Methods). We sampled human fMRI data from 18 

Generalizable representations of pain, cognitive 
control, and negative emotion in medial frontal 
cortex
Philip A. Kragel   1*, Michiko Kano2,3, Lukas Van Oudenhove4, Huynh Giao Ly4, Patrick Dupont   5,  
Amandine Rubio6,7,8, Chantal Delon-Martin6,7, Bruno L. Bonaz6,7,8, Stephen B. Manuck9,  
Peter J. Gianaros9, Marta Ceko   1, Elizabeth A. Reynolds Losin10, Choong-Wan Woo   11,12,  
Thomas E. Nichols   13 and Tor D. Wager   1*

The medial frontal cortex, including anterior midcingulate cortex, has been linked to multiple psychological domains, including 
cognitive control, pain, and emotion. However, it is unclear whether this region encodes representations of these domains that 
are generalizable across studies and subdomains. Additionally, if there are generalizable representations, do they reflect a sin-
gle underlying process shared across domains or multiple domain-specific processes? We decomposed multivariate patterns 
of functional MRI activity from 270 participants across 18 studies into study-specific, subdomain-specific, and domain-specific 
components and identified latent multivariate representations that generalized across subdomains but were specific to each 
domain. Pain representations were localized to anterior midcingulate cortex, negative emotion representations to ventromedial 
prefrontal cortex, and cognitive control representations to portions of the dorsal midcingulate. These findings provide evidence 
for medial frontal cortex representations that generalize across studies and subdomains but are specific to distinct psychologi-
cal domains rather than reducible to a single underlying process.

Nature Neuroscience | www.nature.com/natureneuroscience

© 2017 Nature America Inc., part of Springer Nature. All rights reserved.

https://doi.org/10.1038/s41593-017-0051-7
mailto:philip.kragel@colorado.edu
mailto:tor.wager@colorado.edu
http://orcid.org/0000-0001-9463-6381
http://orcid.org/0000-0003-1980-2540
http://orcid.org/0000-0001-8679-8145
http://orcid.org/0000-0002-7423-5422
http://orcid.org/0000-0002-4516-5103
http://orcid.org/0000-0002-1936-5574
http://www.nature.com/natureneuroscience


Articles NATuRe NeuRoscIence

studies (15 subjects per study, total n =​ 270) in a balanced, hierar-
chical structure, with three different experimental manipulations in 
each domain (for example, evoked cutaneous pain, visceral noci-
ceptive pain, and acute mechanical stimulation pain) and two inde-
pendent studies for each of these experimental manipulations (i.e., 
subdomain; Fig.  1a). Although it is commonplace in neuroimag-
ing studies to equate a pattern of activity from a single study with 
a ‘representation’, measurement theory and first principles dictate 
that representations of latent constructs must be generalizable. For 
instance, a representation of ‘pain’ must generalize across different 
types of painful stimuli. Our approach allowed us to develop mul-
tivariate models that localize brain representations that correspond 
to a single domain, rather than being driven by the particulars of 
a subdomain or idiosyncrasies of an individual study (Fig. 1b). In 
this way, these models assess the generalizability of brain represen-
tations and test the validity of the theoretical constructs of pain, 
cognitive control, and negative emotion.

Results
Anatomical delineation of psychological domains. Given evi-
dence for regional specialization of cingulate function on the basis 
of cytoarchitecture27, we first applied representational similarity 
analysis28 within six anatomically defined cortical regions of inter-
est: posterior midcingulate (pMCC), aMCC, perigenual anterior 
cingulate, subgenual anterior cingulate, ventromedial prefrontal 
(vmPFC), and dorsal MFC (dMFC; Fig. 2). By assessing how similar  

patterns of brain activity are across studies, subdomains, and 
domains in a single model, representational similarity analysis can 
provide evidence for generalizable brain representations.

This analysis revealed generalizable representations of pain-
ful stimulation in aMCC, pMCC, and dMFC that were not shared 
by other domains. Parameter estimates for the effect of the pain 
domain—across heat, mechanical, and visceral pain subdomains 
and controlling for study-level and subdomain-level effects—
were positive within aMCC (β =​ 0.990 ±​ 0.266 (s.e.m.), z =​ 3.72, 
P =​ 0.0002), pMCC (β =​ 0.470 ±​ 0.186 (s.e.m.), z =​ 2.55, P =​ 0.0107), 
and dMFC (β =​ 0.294 ±​ 0.116 (s.e.m.), z =​ 2.59, P =​ 0.0097). See 
Supplementary Table 1 for more information. These results indicate 
that patterns of pain-evoked activity in these areas are qualitatively 
distinct from activity patterns elicited during manipulations of cog-
nitive control or negative emotion, independent of subdomain and 
study. Accordingly, in terms of aMCC activity patterns, participants 
in pain studies across different subdomains were more similar to 
each other (r =​ 0.1289 ±​ 0.0039 (s.e.m.)) than to those in studies 
of cognitive control (r =​ 0.0083 ±​ 0.0026 (s.e.m.); 95% confidence 
interval (CI) of difference =​ [0.1089, 0.1325]) or negative emotion 
(r =​ 0.0111 ±​ 0.0032 (s.e.m.), 95% CI of difference =​ [0.1051, 0.1297]; 
Fig. 2). Because these correlations are computed across subdomains, 
they are unlikely to be driven by similarity in any particular subdo-
main or study. Qualitatively similar results held for patterns of activ-
ity in pMCC and dMFC, although they were smaller in magnitude 
(Supplementary Tables 1 and 2). These findings are concordant with 
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Fig. 1 | Study selection and multivariate modeling. a, Hierarchical structure of studies and tasks. Dendrograms convey theoretical groupings of fMRI 
activity at levels of study (level 1: studies S1–S18), subdomain (level 2: thermal, visceral, mechanical, working memory (WM), response selection (RS), 
response conflict (RC), visual, social, and auditory), and domain (level 3: pain, cognitive control, and negative emotion). Colored regions illustrate model-
based partitioning of neural similarity into components that generalize across subjects (unique to a study, top 18 squares), studies (unique to a subdomain, 
middle nine squares), and subdomains (unique to a domain, bottom three regions). b, Decomposing multivariate pattern similarity into study-, subdomain-, 
and domain-specific components. The matrix in the left panel shows the dissimilarity of fMRI patterns across all subjects (n =​ 270) in the entire medial 
frontal cortex. Each row represents one individual participant, and each element the dissimilarity (1–Pearson′​s correlation coefficient) in brain activity 
patterns for two individuals. Colored bars to the left indicate corresponding levels in the functional hierarchy. The right panel shows how the observed 
neural dissimilarity across pairs of images from the 18 studies is modeled as a weighted summation of theoretical dissimilarity matrices constructed 
according to study (18 parameters), subdomain (9 parameters), and domain (3 parameters) membership, in addition to a constant term (not shown).
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theoretical models that implicate the aMCC in pain29,30 and with 
studies identifying nociceptive circuits in dorsal anterior cingulate 
cortex31. Observations of aMCC activity during noxious stimula-
tion have often been attributed to more general mechanisms, such 
as directing attention, response selection, or responding to salient 
events. However, we identified representations of evoked pain dis-
tinct from those related to cognitive and emotional domains, which 
are also attention-demanding, salient, and involve motor prepara-
tion, ruling out such general explanations as the primary drivers of 
aMCC responses during painful stimulation.

The regional analysis also revealed generalizable representations 
of negative emotion—across social emotion, emotional pictures, 
and emotional sounds— in vmPFC (β =​ 0.514 ±​ 0.140 (s.e.m.), 
z =​ 3.65, P =​ 0.0003) and dMFC (β =​ 0.404 ±​ 0.133 (s.e.m.), z =​ 3.03, 
P =​ 0.0024; Supplementary Table  2). Within vmPFC, patterns of 
activation from different subdomains of negative emotion were 
more similar to each other (r =​ 0.0474 ±​ 0.0027 (s.e.m.)) than they 
were to evoked pain (r =​ 0.0117 ±​ 0.0023 (s.e.m.), 95% CI of differ-
ence =​ [0.0270, 0.0440]) or cognitive control (r =​ 0.0072 ±​ 0.0020 
(s.e.m.), 95% CI of difference =​ [0.0316, 0.0484]) studies 
(Supplementary Table  4). These observations agree with those of 
recent neuroimaging studies identifying representations of cross-
modal subjective value32 and perceived emotion33 in vmPFC. By 
revealing representations of negative emotion that generalize across 
stimulus modality and social contexts, these results further sub-
stantiate the notion that vmPFC integrates emotional value across 
diverse stimuli34,35. Further, these data suggest that, although pain-

ful and unpleasant emotional events can engage a shared negative 
affective component, vmPFC representations evoked by these two 
types of stimuli are qualitatively distinct. Recent meta-analytic work 
has suggested that this difference may be related to the generation 
of affective meaning36, in which information about environmental 
cues, memories of past events, and evaluations of potential outcomes 
are combined into an integrated representation of an organism’s 
well-being in the current environment. This integrative process-
ing would stand in contrast to affective representations that are not 
conceptually driven, such as pain. We note that these data do not 
directly assess the generalizability of vmPFC representations to posi-
tive emotion or to internally generated states elicited through mem-
ory retrieval, as we focused on inductions using negative stimuli.

No cingulate or other areas within MFC exhibited a generaliz-
able representation specific to cognitive control across working 
memory (N-back  tasks), response selection (stop-signal  tasks), 
or response conflict (Flanker and  Simon  tasks) subdomains (see 
“Study and contrast selection” in Methods for citations to included 
studies). However, we did identify a generalizable representation of 
response selection, a subdomain of cognitive control particularly 
involved in motor inhibition, in vmPFC (Supplementary Table 1). 
As we observed deactivation in this area during task performance 
(Fig.  3; like others37), this representation may reflect a pattern 
of deactivation not shared by other domains or other cognitive 
control subdomains. Patterns of vmPFC activation from differ-
ent response selection studies were more similar to one another 
(r =​ 0.0828 ±​ 0.0033 (s.e.m.)) than to those during manipulations  
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of negative emotion (r =​ 0.0052 ±​ 0.0023 (s.e.m.), 95% CI of dif-
ference =​ [0.0674, 0.0876]), evoked pain (r =​ 0.0286 ±​ 0.0024 
(s.e.m.), 95% CI of difference =​ [0.0443, 0.0647]), working mem-
ory (r =​ 0.0514 ±​ 0.0045 (s.e.m.), 95% CI of difference =​ [0.0185, 
0.0442]), or response conflict (r =​ 0.0254 ±​ 0.0043 (s.e.m.), 95% 
CI of difference =​ [0.447, 0.0701]; Supplementary Table  4). Thus, 
though generalizable representations of both negative emotion and 
response selection were observed within vmPFC, these representa-
tions appear to be distinct. It is also possible that control-related 
representations are highly dependent on individual study param-
eters, as we found strong study-specific effects in multiple regions, 
including aMCC (Supplementary Table 2).

Analysis of activation spanning the full extent of MFC (com-
bining the six regions of interest) produced similar results, with 
effects of painful stimulation and negative emotion that gener-
alize within but not across domains (Supplementary Fig.  1 and 
Supplementary Table 2). Confirmatory analyses that directly con-
trasted the spatial similarity of brain activity within domains against 
spatial correlations across domains further supported these results 
(Supplementary Fig. 2 and Supplementary Tables 3–5). Additional 

confirmatory analyses using different model parameterizations pro-
duced qualitatively similar results (Supplementary Fig. 3).

To quantify the weight of evidence favoring generalizable rep-
resentations specific to each of the three domains, we additionally 
conducted model comparisons using the Bayesian information cri-
terion in each region of interest (see Methods for details). Results of 
this analysis corroborate inferences drawn on individual parameter 
estimates (Table 1). aMCC representations were best explained by a 
model including the domain of pain (in addition to terms for study 
and subdomain), but not cognitive control or negative emotion. 
vmPFC representations, on the other hand, were best explained by 
modeling the domain of negative emotion but not pain or cognitive 
control. The best fitting models of dMFC and full MFC represen-
tations included all three domains, indicative of diverse coding in 
these regions. Additional model comparisons using the Brainnetome 
atlas, a parcellation based on functional and anatomical connectiv-
ity38, provide evidence for generalizable representations in other 
brain regions outside the MFC as well (Supplementary Table 6 and 
Supplementary Fig. 4).

Searchlight mapping of psychological domains. As there is 
well-established variability in the anatomy of the cingulate sul-
cus39, we additionally conducted searchlight mapping40 to localize 
domain-specific representations without strongly relying on the 
boundaries between regions and to lessen the impact of anatomical 
variability. In this approach, we modeled the similarity structure of 
spherical volumes (radius =​ 8 mm) centered at each voxel in MFC, 
identifying areas wherein local patterns of brain activity contain 
generalized representations of pain, cognitive control, and negative 
emotion. By examining patterns of activation in small spherical 
volumes, these searchlights provide a smooth estimate of pattern 
information40 that is not constrained by fixed boundaries that may 
not match the anatomy of every subject (of importance here, as 
~40% of the population has a paracingulate gryus39, which extends 
the spatial extent of MCC).

The results of the searchlight analysis were largely concordant 
with those based on anatomical parcellation (Fig. 4a,d). Generalizable 
representations of painful stimulation were found in aMCC within 
the cingulate sulcus (zpeak =​ 4.88, Montreal Neurological Institute 
coordinates (MNIxyz) =​ [2, 14, 24], P =​ 1.06 ×​ 10–6, q <​ 0.05 false dis-
covery rate (FDR)-corrected) and extending into dMFC (zpeak =​ 5.58, 
MNIxyz =​ [2, 8, 46], P =​ 2.41 ×​ 10–8, q <​ 0.05 FDR-corrected). Also con-
sistent with the regional analysis, representations of negative emotion 
were found in dMFC, above the dorsal bank of the cingulate sulcus 
in pre-supplementary motor area (SMA; zpeak =​ 3.00, MNIxyz =​ [–10, 
10, 52], P =​ 0.0027) and vmPFC (zpeak =​ 3.78, MNIxyz =​ [0, 48, –10], 
P =​ 1.57 ×​ 10–4), albeit at lower (uncorrected) thresholds.

Unlike the regional analyses, the searchlight analysis revealed 
domain-specific representations of cognitive control along the  
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Fig. 3 | Identifying latent brain representations that predict the 
occurrence of distinct functional domains in each region of interest.  
a, Latent patterns of activity that generalize across studies and subdomains 
but are specific for the domains of pain, cognitive control, and negative 
emotion, extracted using partial-least-squares separately for each region 
and thresholded at P <​ 0.05, uncorrected, for display (n =​ 270 participants). 
b, Expanded view of latent patterns in aMCC in the left hemisphere. Images 
are displayed using radiological convention.

Table 1 | Bayesian information criterion (BIC) weights and adjusted R2 for selected models

Region Study and subdomain 
(28)

Pain (29) Cognitive control 
(29)

Negative emotion 
(29)

Full model (31) Adjusted R2 (optimal 
model)

pMCC <​ 0.0001 0.0673 <​ 0.0001 <​ 0.0001 0.9327 0.0220

aMCC <​ 0.0001 0.9901 <​ 0.0001 <​ 0.0001 0.0099 0.0342

pACC 0.4686 0.0342 0.1411 0.3484 0.0077 0.0134

sgACC 0.7986 0.0704 0.0770 0.0536 0.0004 0.0006

vmPFC <​ 0.0001 <​ 0.0001 <​ 0.0001 0.9669 0.0331 0.0567

dMFC <​ 0.0001 <​ 0.0001 <​ 0.0001 <​ 0.0001 1.0000 0.0831

MFC <​ 0.0001 <​ 0.0001 <​ 0.0001 <​ 0.0001 1.0000 0.0934

Bold font indicates models with highest BIC weights, and adjusted R2 values for these optimal models in each region are listed based on the total variation in the data. BIC weights sum to 1 for each region. 
The number of free parameters in each model is listed in parentheses.
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cingulate sulcus, extending into SMA and motor cortex (zpeak =​ 2.81, 
MNIxyz =​ [–2, 2, 46], P =​ 0.005). This localization, which falls along 
the boundary between aMCC and dMFC, agrees with meta-anal-
yses showing the epicenter of control-related activity in this area 
across working memory, inhibition, and attention-shifting tasks41, 
and with the posterior rostral cingulate zone42, a region classically 
thought to be involved in response selection. Due to its proximity to 
and connectivity with functionally related brain regions17, this area 
is a prime candidate for integrating different types of control signals 
from multiple sources, such as the expected value of control20 and 
value-guided behavioral adaptations19.

Integrative views of cingulate function are in part supported 
by observations that overlapping activation is observed in aMCC 
and adjacent MFC during manipulations of pain, cognitive con-
trol, and social and evaluative processing17. To assess whether the 
domain-specific representations identified in the present study 
similarly overlap within the broader territory of the MFC, we per-
formed a conjunction analysis of the searchlight maps (Fig. 4b). 
Results revealed that these representations were predominately 
dissociable; the three domains did not commonly overlap in any 
voxel. Minimal overlap was found in dMFC, with small clusters 
of activity coding for both pain and cognitive control (60 voxels, 

0.57%), and for pain and negative emotion (93 voxels, 0.88%). 
A small degree of overlap was also observed for pain and nega-
tive emotion in vmPFC (17 voxels, 0.53%). The only overlapping 
effects in cingulate cortex were for pain and cognitive control, 
spanning the border between pMCC (6 voxels, 1.16%) and aMCC 
(2 voxels, 1.29%).

To evaluate evidence against overlap, we computed Bayes fac-
tors using the minimum z-score from the three-domain conjunc-
tion analysis43,44. In this analysis, if the minimum statistic from all 
three domains is less than or near zero, then there is little support for 
overlap. Conversely, if the minimum statistic is large and positive, 
it is more likely that there is overlap across the domains. Values <​ 1 
reflect evidence in favor of the null hypothesis of no representation in 
all three domains, and values >​ 1 reflect evidence in favor of overlap. 
A Bayes factor <​ 0.1 is generally considered strong evidence against 
overlap, and a factor >​ 10 is generally considered strong evidence for 
overlap. This analysis revealed substantial evidence against overlap 
in the MFC (Fig. 4c), with a maximum Bayes factor =​ 0.0898.

Discussion
Our results reveal generalizable representations of pain, cogni-
tive control, and negative emotion in separable patterns of MFC 
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against overlap among the three domains at each voxel. Smaller values indicate evidence against overlap; values less than 0.1 are considered strong 
evidence (n =​ 270 participants). d, River plots depict the similarity between searchlight maps and anatomical parcellation of MFC (left) and functional 
parcellation of cortical regions from resting-state data48 (right). Line thickness indicates the degree of correspondence between sets. vAttention, ventral 
attention; dAttention, dorsal attention. Images are displayed using radiological convention.
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activity. The limited overlap of generalizable representations 
across domains contrasts with conventional, univariate assess-
ments of cingulate function, which show substantial overlap 
across domains17,45,46. Thus, our findings here highlight func-
tional diversity within MFC, and they suggest that domain-spe-
cific representations exist in most parts of MFC, including aMCC 
and adjacent regions. Though domain-specific representations 
are limited to one domain (pain, negative emotion, and cogni-
tive control), our design allows us to infer that they do general-
ize across multiple subdomains (for example, somatic thermal, 
somatic mechanical, and visceral pain). The generalizable rep-
resentations we identify provide empirical constraints on what 
integrative theories of aMCC function must explain. In most 
of the MFC, it may not be necessary to explain pain- or affect-
related and cognitive error–related signals with a single mecha-
nism. Along these lines, it has recently been suggested that the 
aMCC functions to monitor for conflicts related to ever-present, 
survival-relevant goals30. Consistent with this proposal, we iden-
tified generalizable representations of pain in aMCC. However, 
these representations were qualitatively distinct from those 
evoked by negative emotional stimuli, including social rejection, 
that were not generalizable. This distinction makes it unlikely 
that the aMCC is engaged in the same way to achieve different 
survival-relevant goals. It is also consistent with other recent 
work identifying dissociations in MFC activity across tasks taken 
from different domains47.

On the other hand, our findings leave room for integrative 
theories that explain computational mechanisms in terms of a con-
vergence of different neural populations that interact to achieve 
computational goals. That is, it is possible that the same compu-
tational function may be implemented in diverse neural circuits, 
depending on their inputs and outputs. Our data therefore do not 
argue against unified computational accounts of aMCC, but rather 
against a unitary neural implementation of those computations.

The proximity of pain, negative emotion, and cognitive represen-
tations we identified provides a neural substrate for their compari-
son and integration17. It is possible that integration across domains 
could be identified in carefully controlled studies implementing 
within-subject designs across domains and subdomains. Further, 
although we included many studies and subdomains, our sampling 
was far from exhaustive, and testing specificity is an open-ended 
process. Future work combining a more diverse set of subdomains 
(for example, incorporating studies of chronic pain, positive and 
negative reward prediction error, and behavioral withdrawal) with 
model-based approaches will help further test the claims of integra-
tive theories of control.

In conclusion, we identified domain-specific representations 
for pain and negative emotion in the aMCC and vmPFC. These 
representations generalized across participants and diverse sub-
domains (three per domain). These representations could only be 
identified by extracting generalizable brain patterns across stud-
ies and subdomains. Currently, conventional research investigat-
ing population-level neural representation has been conducted at 
the level of individual studies. Even when very large, studies that 
sample limited numbers of tasks (i.e., a single exemplar task for 
a psychological domain) are not capable of identifying generaliz-
able brain representations in this way. Although cross-validation 
procedures, reliability analysis, and independent replication 
samples are becoming increasingly common to ensure the gener-
alizability of results, it is evident that findings are often idiosyn-
cratic to a particular study or experimental context, rather than 
truly reflecting the mental operations under study. Our results 
demonstrate how modeling the similarity structure of fMRI data 
drawn from multiple studies and subdomains can overcome 
this challenge and disambiguate latent brain representations of  
theoretical constructs.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41593-017-0051-7.
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Methods
Experimental design. We adopted a construct-validation approach to examine 
generalizable representations of three constructs that engage the MFC: pain, 
cognitive control, and negative emotion. By (i) identifying latent multivariate 
representations that are indicative of an underlying psychological domain 
rather than idiosyncrasies of one particular study or subdomain (i.e., task) and 
(ii) examining the similarity of those latent representations across multiple 
psychological domains, this framework provides a more definitive test of shared 
representation in the aMCC and areas within the MFC compared to conventional 
single-study or single-method investigations.

This approach has been taken for decades in psychometric research to assess 
construct validity49. The idea is to define a latent construct—intelligence and 
anxiety are classic examples—and measure it with multiple distinct indicators. 
Using multiple indicators permits the extraction of common factors that underlie 
the construct. Intercorrelations among indicators of the same construct provide 
evidence for convergent validity, suggesting that the indicators measure the same 
construct. If different indicators uniquely load on different constructs, they 
provide evidence for discriminant validity. Together, establishing convergence and 
discrimination provides strong evidence for construct validity50.

Applied to fMRI, indicators are patterns of brain activity evoked by different 
tasks, and the constructs are the functional psychological domains (for example, 
pain or working memory) that the tasks putatively measure. The vast majority 
of studies, even large-scale studies like the Human Connectome Project and UK 
Biobank51,52, use only one specific task variant as a single indicator for a domain. 
This poses a problem in inferring the similarity of psychological domains from 
the similarity in patterns of brain activity. For example, if a pain task differs from 
a negative emotion task in aMCC25,26, is it because pain is represented differently 
from negative emotion, or because the particular variant of pain studied differs 
from the particular variant of negative emotion? A study with multiple varieties of 
pain and multiple varieties of negative emotion could address this question, if it 
showed that a brain representation common to multiple varieties of pain is distinct 
from a representation common to multiple varieties of negative emotion. This is 
the method we used in the present study, as detailed below.

Study and contrast selection. fMRI data were sampled from studies of acute 
thermal somatic stimulation53,54, acute visceral stimulation55,56, acute mechanical 
somatic stimulation, working memory57,58, response selection59,60, response 
conflict61, induction of negative emotion using images of visual scenes62,63, social 
rejection64, the perception of others in pain25, and emotionally aversive vignettes 
from the International Affective Digital Sounds system65. Together these data 
formed a balanced hierarchical sample, with six pain studies (two thermal, two 
visceral, and two mechanical), six cognitive control studies (two working memory, 
two response selection, and two response conflict), and six negative emotion 
studies (two visual, two social, and two auditory). Although negative emotion can 
be evoked through diverse methods, including the recollection of emotional events, 
the brain activity we analyze here is focused on exteroceptive processing, which has 
reliably been linked to overlapping MFC activity17.

Due to variability in sample size across studies (range =​ 15–183), data were 
randomly subsampled by selecting 15 participants from each study (total n =​ 270). 
Although no statistical methods were used to predetermine this sample size, it 
is similar to those reported in previous publications7,9,11 (see also Supplementary 
Table 7 for maximal univariate effects in the present sample). Because our focus 
was to generalize across studies, no attempts to replicate individual experiments 
were made. No participants were excluded from the analysis. A subset of these 
data was previously used to validate the use of automated meta-analysis to decode 
cognitive states of pain, emotion, and working memory63.

This was not a randomized study; it was a meta-analysis of multiple studies. 
Participants were recruited independently for each of the 18 studies being analyzed. 
Data collection was conducted blind to the goals of the present study. A posteriori 
group assignment was based on the goals of each study and the experimental 
manipulation being used (for example, studies involving thermal stimulation of 
the forearm were considered members of the pain domain). Data analysis was not 
performed blind to the conditions of the experiments.

Informed consent was provided by all subjects in accordance with  
local ethics and institutional review boards. Participants sampled from studies 5 
(n =​ 15, 4 female; Mage =​ 26.9), 6 (n =​ 15, 8 female; Mage =​ 24.2), 17 (n =​ 15,  
7 female; Mage =​ 31.1), and 18 (n =​ 15, 9 female; Mage =​ 24.4) provided informed 
consent as approved by the University of Colorado Boulder institutional review 
board. Participants in study 11 (n =​ 21, 9 female; Mage =​ 30.5) provided informed 
consent in accordance with the New York University institutional review board. 
Descriptions of ethics approvals, image acquisition and analysis, and demographics 
are described briefly in Supplementary Table 7 and in full detail in the 
corresponding references (see also the Life Sciences Reporting Summary).

Contrasts from thermal painful stimulation were between high and low levels 
of pain54 or between high levels of painful stimulation and baseline53. Contrasts for 
visceral stimulation studies were between rectal distension trials and baseline. For 
mechanical stimulation studies, contrasts were made between pressure application 
to the thumb and baseline. Contrasts for both working memory studies were 
between N-back blocks and a fixation baseline. For response-selection studies, 

contrasts were between trials in a go/no-go task engaging response selection  
(as defined in the Cognitive Atlas66) against baseline. Response-conflict contrasts 
were made between congruent and incongruent trials in studies using the Eriksen 
Flanker and Simon tasks. Studies of visual negative emotion compared negative 
to neutral IAPS pictures63 or negative pictures against baseline62. Social negative 
emotion studies compared viewing pictures of ex-partners versus friends64 and 
viewing images of others in pain25 versus baseline. Auditory negative emotion 
studies compared listening to unpleasant affective sounds to baseline.

fMRI analysis. We employed three converging methods to isolate generalizable 
brain representations: (i) we modeled how dissimilar patterns of brain activity were 
from another, called representational similarity analysis (RSA28,67); (ii) we directly 
compared the similarity of brain activity in studies coming from the same domain 
(but different studies and subdomains) to the similarity of brain activity in studies 
from different domains; and (iii) we used partial-least-squares regression68 to 
characterize the spatial profile of generalizable brain representations in MFC.

Feature selection. Input data were defined a priori as voxels located within the 
anterior midline, defined as voxels within cingulate cortex and superior frontal 
gyrus (in the LONI Probabilistic Brain Atlas69), anterior to the plane y =​ –22 mm 
in MNI space. The primary analyses were conducted within four cingulate 
subregions27, as well as ventral and dorsal aspects of medial frontal cortex. These 
anatomically defined regions of interest include posterior midcingulate cortex 
(pMCC; y =​ –22 mm to y =​ 4.5 mm, z >​ 5 mm, 822 voxels), anterior midcingulate 
cortex (aMCC; y =​ 4.5 mm to y =​ 30 mm, z >​ 5 mm, 815 voxels), perigenual anterior 
cingulate cortex (pACC; y >​ 30 mm, z <​ 5 mm, 794 voxels), and subgenual anterior 
cingulate cortex (sgACC; y =​ 4.5 mm to y =​ 30 mm, z <​ 5 mm, 302 voxels), as well 
as within superior frontal gyrus and ventromedial prefrontal cortex (split by the 
plane z =​ 5 mm, dMFC and vmPFC, 4,311 and 10,619 voxels respectively). As these 
divisions were originally defined in Talairach space, they were converted to MNI-
152 space using the Lancaster transform70. A secondary analysis was performed 
using searchlight mapping40, in which multiple analyses were conducted, each 
using patterns of fMRI activation within spherical regions (radius =​ 8 mm) 
centered at every voxel in the MFC as input. An additional exploratory analysis 
using RSA-based model comparison, described in full detail below, was conducted 
using a whole-brain parcellation based on structural and functional connectivity38.

RSA: model specification. We estimated representational dissimilarity matrices 
(RDMs) by computing the correlation distance (1–Pearson’s r, excluding on-
diagonal elements, which have a dissimilarity value of 0) of multivoxel patterns 
of brain activity. Each pattern was acquired from one of 270 subjects drawn from 
the full sample of 18 studies (n =​ 15 per study). Next, we constructed model-based 
RDMs to characterize different components of a psychological hierarchy (Fig. 1). 
At the lowest level, the 18 studies were individually modeled to account for study-
specific idiosyncrasies. Next, the nine subdomains (visceral stimulation, thermal 
stimulation, mechanical stimulation, response conflict, stop/go response selection, 
working memory, visual negative emotion, social negative emotion, and auditory 
negative emotion) were modeled to account for response patterns that generalize 
across studies. Finally, the three psychological domains (pain, cognitive control, 
and negative emotion) were modeled as independent predictors to account for 
response patterns that generalize not only across studies, but across subdomains 
as well, hence being generalizable within but not across the three domains. 
Individual RDMs were computed from binary vectors indicating membership 
based on study (18 RDMs), subdomain (9 RDMs), or psychological domain (3 
RDMs). The unique off-diagonal elements (intersubject dissimilarities) of these 
30 RDMs, in addition to a constant RDM, were vectorized to form regressors in a 
model. Linear regression was used with this model to fit the observed intersubject 
brain dissimilarity matrix. On-diagonal elements were excluded for all similarity-
based analyses, as they have perfect correlations and zero dissimilarity. The 
general linear model assumes independence while dissimilarity matrices exhibit 
complex dependence; as a result we use bootstrap inference to obtain P values (see 
“Inferences on RSA model parameters” section below).

RSA: model properties and diagnostics. To assess the suitability of our models, 
we conducted simulated experiments using resting-state fMRI (rsfMRI) data 
(n =​ 270) from the 1,000 Functional Connectomes project71. This allowed us to 
test the RSA models’ false positive rates, as well as the biases and variances of 
parameter estimates, using data with no true effects but real fMRI noise. This is the 
approach recently taken by Eklund et al.72 to assess false positive rates in standard 
GLM analyses.

We used a Monte Carlo procedure to conduct 1,000 RSA-based analyses of 
rsfMRI data, each with randomly generated event-related fMRI models for the 270 
participants, allowing us to estimate the distribution of RSA parameter estimates 
under the null hypothesis. To mirror the dependence structure (including study/
site effects) in our present sample, we selected rsfMRI participants from 18 
different sites, sampling 15 participants from each site (total n =​ 270). All data were 
subjected to standard preprocessing, including realignment to correct for motion, 
nonlinear warping to standard MNI space, spatial smoothing (4-mm FWHM), 
and high-pass filtering (128-s cutoff). Then, for each Monte Carlo iteration, for 
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each participant, we generated a series of 10 events with random onsets, modeled 
them with Dirac delta (impulse response) functions and convolved them with 
SPM′​s standard hemodynamic response function to generate a single regressor of 
interest for each subject (a constant term was also included). Then, we estimated 
these models, generating a series of 270 event-related activation maps. These were 
subjected to RSA-based modeling, as described in the model specification section 
above. To estimate the false positive rates for RSA model parameter estimates in 
bootstrap-based inference, we conducted bootstrap resampling (b =​ 200 bootstrap 
samples) and obtained P values for each RSA model parameter. We repeated this 
entire procedure 1,000 times, with randomly specified models on every iteration, 
i.e., estimating a total of 270,000 unique fMRI activation maps and 1,000 RSA 
model fits and bootstrap tests.

Under the assumption that the rsfMRI data contain no consistent relationship 
with the randomly specified models, an unbiased model should have parameter 
estimates centered on zero across the 1,000 Monte Carlo iterations, indicating no 
systematic bias. Thus, to estimate bias, we calculated the mean deviation of each 
parameter estimate from zero. We also estimated the variance of parameter estimates 
across the 1,000 iterations; lower variance indicates greater precision and power. To 
estimate variance, we calculated the s.d. in each RSA parameter estimate across the 
1,000 iterations. The proportion of false positives was assessed using a P <​ 0.05 cutoff 
(two-tailed). False positives were defined as parameter estimates below the 2.5th or 
above the 97.5th percentile on the bootstrap distribution, and the false positive rate 
for each RSA model parameter estimate was defined as the proportion of the 1,000 
RSA models for which that parameter estimate was significant.

The results of these analyses indicated that the modeling procedure is unbiased, 
i.e., average null-hypothesis values were nearly exactly zero. Of 180 parameters 
evaluated (6 ROIs ×​ 30 parameters) the largest effect was not significantly different 
from zero (z =​ 0.904, P =​ 0.366). In addition, false-positive rates for all RSA model 
parameters were at or below the nominal value of 0.05 (Supplementary Fig. 5).

We also repeated the entire RSA model simulation (500 iterations) 
using synthetic null-hypothesis data generated from a Wishart distribution 
(Supplementary Fig. 6) and with a homogeneous set of task data (using 180 
subjects from study 13) and found qualitatively identical results (not shown). This 
simulated a case in which there are no study-level effects. Overall, the RSA model 
procedures provide unbiased estimates under the null hypothesis, and false positive 
rates are appropriately controlled.

RSA: model identifiability. Here we model intersubject RDMs, so the data to 
be modeled comprise an n ×​ n dissimilarity matrix, where n is the number of 
participants; this matrix has rank min(n, r) where r is the number of voxels used to 
compute the correlation. The lower triangle of the dissimilarity matrix is vectorized 
and fit with a linear model, with design matrices based on equivalently vectorized 
dissimilarity (as illustrated in Fig. 1). Thus, the outcome data is a vector of length 
u =​ n ×​ (n–1)/2. The model dimension depends on the exact parameterization used, 
but a saturated model for the effect of study would have dimension k +​ k ×​ (k–1)/2, 
where k is the number of studies; this is k parameters for the average intrastudy 
relationship (for pairs of subjects) within each study, and k ×​ (k–1)/2 parameters 
for each possible relationship between each pair of studies. In practice, we use a 
much simpler model, but confirm identifiability by checking the rank of the design 
matrix and variance inflation factors.

In the present work, we included k =​ 18 studies with n =​ 270 participants 
divided equally among them (15 per study). We used the constant term in the 
model to characterize the average similarity of data within studies, leaving 
a subspace of interstudy relationships spanned by k +​ k ×​ (k–1)/2–1 =​ 170 
dimensions. In principle, the upper bound on the number of regressors for 
interstudy differences in an identifiable model is 170. However, we were primarily 
interested in specific interstudy relationships, particularly those common to 
subdomains (9 parameters for pairs of studies with the same subdomain) and those 
common to domains (three parameters for three sets of 9 studies that load on the 
same domain construct across three subtypes). Our full model thus contained 31 
regressors: 18 for specific studies, 9 for subdomains, three for domains, and one 
intercept term. As the number of voxels per ROI was at least 302 >​ 31, there was no 
risk of degenerate (zero-residual) models.

RSA: model rank and variance inflation factors. To confirm the identifiability 
and efficiency of our models, we computed the rank of our design matrix and 
variance inflation factors (VIFs) for each regressor. The VIFs show the degree to 
which variance in each parameter estimate is increased due to partial colinearity 
with linear combinations of other regressors. The rank of our design matrix is 31, 
indicating that the model is full-rank, identifiable, and not overparameterized. 
VIFs were finite for all regressors, consistent with the fact that model was 
identifiable (Supplementary Fig. 2). VIFs varied across regressors based on 
the partially shared variance across study, domain, and subdomain, which was 
unavoidable because part of the covariance common to participants in each 
domain is shared with the subdomains and studies that fall within it. However, the 
VIFs were clearly in a range that indicated reasonable ability to make inferences 
on the unique variance explained by each parameter, given the sample size. The 
regressors that were of primary interest (i.e., the three domain level terms) had 
VIFs =​ 1.66.

Statistics: inferences on RSA model parameters. Parameter estimates (β) 
from the model provide estimates of generalizability, with the interpretation of a 
significant (nonzero) parameter estimate depending on the nature of the regressor. 
Study-specific regressors test generalizability across individual participants within 
a study, in the sense that they capture intersubject correlations in the spatial 
patterns of activity. Positive values indicate similar patterns across participants 
for the study modeled. Subdomain-level regressors test generalizability across two 
studies of the same subdomain, controlling for other model parameters. Positive 
values indicate shared spatial patterns across studies of the modeled subdomain 
and, thus, evidence for a coherent subdomain. Domain-level regressors, which 
were of primary interest here, test generalizability across three distinct subdomains 
(six studies), controlling for shared patterns specific to the study and subdomain. 
Positive values indicate shared spatial patterns across subdomains and, thus, 
evidence for a coherent domain-related pattern. Thus, we refer to these parameter 
estimates as generalization indices (for example, Fig. 2), as they reflect the extent 
to which patterns of brain activation generalize across subdomains, studies, or 
subjects. Because the regressors were tested jointly in multiple regression modeling, 
significant domain-level parameter estimates imply that the pattern of brain 
activity shared across the domain was not reducible to a subdomain-specific or 
study-specific pattern.

Inference on parameter estimates (β) was made using bootstrap resampling 
of subjects. This procedure involved repeatedly resampling subjects, with 
replacement, for each study over 5,000 iterations for the regional analysis and 
over 1,000 iterations for the searchlight analysis (see below). In each resampling, 
a new RDM was constructed using fMRI activation for the resampled subjects 
and GLMs were estimated. Because samples from the same subject can be drawn 
multiple times in this approach, pairwise dissimilarity values from the same 
subject (with a dissimilarity value of 0) were excluded from the analysis. Bootstrap 
distributions for individual model parameters were compared against 0 using 
normal approximation for inference. These distributions were visually inspected 
and assumed to be normal, although this was not statistically tested. Unless 
noted otherwise, the main results reported in the manuscript (both regional and 
searchlight analyses) were thresholded after correcting for multiple comparisons 
based on the false discovery rate (FDR corrected, q <​ 0.05). All tests are two-tailed 
unless otherwise specified.

Statistics: RSA model comparison. To formally compare the amount of evidence 
for domain-generalizable representations, model comparisons were made using 
the Bayesian information criterion (BIC). The reference model included terms 
for each study (18 parameters) and each subdomain (9 parameters), as well as a 
constant (28 parameters in total). Next, we fit three models that each included 
a single additional term for one of the psychological domains (29 parameters in 
total). Finally, a more fully specified model that contained all three psychological 
domains (31 parameters in total) was fit. These five models were fit for each 
region of interest and the full extent of MFC. BIC values were computed using 
the log-likelihood of fitted models and penalizing based on the number of 
free parameters73. The number of samples was set the number of participants 
included in the analyses (270) as opposed to the number of unique elements 
in the dissimilarity matrix, because of dependence between elements of the 
dissimilarity matrix. BIC values were converted to weights using the formulation 
in Wagenmakers and Farrell74. These weights characterize which model is most 
likely to have produced the observed similarity structure in each region, given the 
a priori set of models. Finally, the adjusted R2 was computed for the model favored 
by the BIC analysis in each region of interest.

This analysis was additionally conducted for regions spanning the whole brain 
(as delineated in the Brainnetome Atlas38). Because this parcellation contains 
regions with fewer voxels than participants included in the analysis, the number of 
samples was set to the minimum of 270 and the number of voxels in each parcel.

Statistics: model-free analysis comparing spatial correlations within and 
between domains. To provide evidence for generalizable brain representations 
without using an explicit model of expected similarity relations, we tested for 
nonzero correlations within domains and between different subdomains, within 
domains and between studies, and within domains generally. Tests of nonzero 
correlations were performed by constructing confidence intervals (α​ =​ 0.05) using 
bootstrap analyses with the bias corrected and accelerated percentile method. 
We also conducted a series of hierarchical tests comparing: (i) intersubject 
correlations from the same domain but different subdomains vs. correlations from 
different domains; (ii) correlations from the same domain but different studies vs. 
correlations from the same domain but different subdomains; and (iii) correlations 
from the same domain vs. correlations from the same domain versus different 
studies. These tests were constructed to sequentially identify the average effect 
of domain, subdomain, and study for each of the three domains. Inferences were 
drawn by calculating bootstrap confidence intervals based on the mean difference 
in correlation coefficients (for a graphical depiction, see Supplementary Fig. 7).

Statistics: PLS estimation of latent patterns for each domain. To estimate 
patterns of activity associated with each domain (Fig. 2), partial-least-squares 
regressions70 were run separately in each region of interest, with contrasts from 
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all 270 subjects forming the data matrix and dummy coded variables forming 
the output matrix (270 subjects by 30 parameters: 18 studies, 9 subdomains, and 
3 domains, with values of +​1/–1 based on inclusion/exclusion for each term). 
Parameter estimates were bootstrapped over 5,000 iterations, and z-scores were 
estimated based on the mean and standard error of the bootstrap distributions. 
We note that this approach is not designed to ensure that representations are 
uniquely specific to each domain; if some studies or subdomains have especially 
high covariance with a domain, they could have a large influence on domain-level 
patterns. For this reason, PLS-based estimation of patterns is used in conjunction 
with RSA and direct comparisons of intersubject correlations.

Statistics: searchlight thresholds and assessment of overlap. For the conjunction 
analysis and visualization of searchlight maps, an uncorrected threshold (P <​ 0.05) 
was used to ensure that an overly conservative threshold did not obscure 
overlapping regions. To estimate the relative evidence for and against overlap of the 
domains, Bayes factors were computed44 using the minimum statistic compared 
to the conjunction null75 and a uniform distribution ranging from 0 to 10 as a 
prior distribution (theoretically plausible values of parameters estimates). This 
test evaluates whether there is more evidence in favor of overlap (i.e., that the 
minimum statistic of the three maps is substantially greater than zero) or against 
overlap (the minimum statistic of the three maps is relatively close to or less than 
zero). Bayes factors >​3 provide evidence of overlapping representations, whereas 
values less than 0.33 provide evidence against overlap.

Correspondence of searchlight maps with existing parcellations. River plots were 
created to depict the correspondence (quantified as the cosine similarity) between 
the searchlight maps and existing anatomical27 and functional48 parcellations.

Life Sciences Reporting Summary. Further information on experimental design is 
available in the Life Sciences Reporting Summary.

Data availability. The fMRI data for studies 9–12 are available from OpenfMRI: 
https://openfmri.org/dataset/ds000008/, https://openfmri.org/dataset/ds000007/, 
https://openfmri.org/dataset/ds000101/, and https://openfmri.org/dataset/
ds000102/. fMRI data for study 13 is available at NeuroVault, http://neurovault.org/
collections/503. The fMRI data that support the findings of this study are available 
for download at https://canlabweb.colorado.edu/files/MFC_Generalizability.tar.gz.

Code availability. Matlab code for implementing all analyses is available at https://
github.com/canlab/ and in the Supplementary Software.
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    Experimental design
1.   Sample size

Describe how sample size was determined. Because data from multiple datasets were combined in a multi-study framework, 
balanced subsampling was performed (n = 15 per study) to help equate statistical 
power for comparisons between studies.

2.   Data exclusions

Describe any data exclusions. No data were excluded from the analysis.

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

Although replication was not attempted, the main findings reflect effects that are 
reliable across 6 different studies.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

This was not a randomized study, it was a mega-analysis of multiple studies. 
Contrasts were constructed within subjects and the goal was to compare effects 
across studies. Participants were recruited independently for each of the 18 
studies being analyzed. A posteriori group assignment was based on the goals of 
each study and experimental manipulation being used (e.g., studies involving 
thermal stimulation of the forearm were considered members of the 'pain' 
domain).

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Investigators were not aware of group comparisons during data collection. No 
blinding was performed for data analysis.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

Analysis was conducted using CANLab and SPM software implemented in MATLAB. 
Code for implementing all analyses is available at https://github.com/canlab/ and 
www.fil.ion.ucl.ac.uk/spm/software/.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

No unique materials were used.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used.

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No eukaryotic cell lines were used.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No commonly misidentified cell lines were used.

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

Non-human animals were not used.
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Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

270 healthy human participants were involved in the research. The age and gender 
of participants in each of the 18 studies are detailed in Supplementary Table 7.
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