Update on Clinical Care of the Older Fontan Patient

Fred Wu, M.D.
Boston Adult Congenital Heart Program
Boston Children’s Hospital
Brigham and Women’s Hospital
New England Congenital Cardiology Association CME Series
Presenter Disclosure Information

Fred Wu, MD, Speaker

“Update on Clinical Care of the Older Fontan Patient”

December 3, 2012

Course Director: David W. Brown, MD

The following relationships exist related to this presentation:

No relevant relationships to disclose
Objectives

• Present the current data on long-term outcomes in the Fontan population

• Discuss current guidelines for management of the adult Fontan patient

• Explore strategies for improving outcomes by partnering with regional congenital cardiac centers and with specialists in other disciplines
Epidemiology

Survival to 18 yrs of Age with Complex CHD

- 1980: 80%
- 1970: 50%
- 1960: 15%
- 1940: 5%

Age at Death for Adults with CHD

Mean Age (yrs)

Tricuspid Atresia 27 ± 5
Univentricular Connection 31 ± 10

n = 2609 patients
199 deaths
Mean age for all dx
37 ± 15 years

Highest mortality
ccTGA 26%
Tri atresia 25%
Univentricular connection 23%

Modes of death
Sudden death 26%
CHF 21%
Perioperative 18%

Fontan Mortality

[Graph showing freedom from death or transplant (%)]

RA-RV connection
Total cavopulmonary connection
RA-PA connection

Logrank p = 0.0230

Fontan Mortality

Freedom from death or transplant (%)

Logrank p = 0.4840

RA-RV connection
Total cavopulmonary connection
RA-PA connection

Time from initial Fontan surgery (years)

Fontan Mortality

- 261 Fontan patients living in New England followed over 12 yrs (median)
- Of 209 perioperative survivors:
 - 11.5% death
 - 2.4% transplant
 - 12.4% conversion or revision

A Multi-organ Disease
A Multi-organ Disease

- **Cardiac**
 - Heart failure
 - Arrhythmia
 - Chronotropic incompetence
 - Valvular disease
- **Hematologic**
 - Thromboembolic risk
- **Vascular**
 - Venous varicosities
 - Endothelial dysfunction
- **Gastrointestinal**
 - Protein-losing enteropathy
 - Congestive hepatopathy
 - Esophageal varices
 - Hepatocellular carcinoma
- **Pulmonary**
 - Plastic bronchitis
- **Renal**
 - Microalbuminuria
 - Hepatorenal syndrome
Congestive Heart Failure

- Systolic dysfunction
 - Pre-Fontan volume loading
 - Limited preload
 - Increased afterload
 - Myocardial fibrosis
 - Systemic right ventricle
 - Valvular regurgitation
 - Ventricular pacing

- Diastolic dysfunction
 - Abnormal relaxation
 - Chronically increased afterload
Congestive Heart Failure

- Few data on use of “adult” heart failure therapies
- **ACE inhibitors (Class Ila recommendation)**
 - Enalapril was not shown to improve exercise parameters or cardiac index in Fontan patients
 - Percent increase in cardiac index from rest to maximum exercise got worse (102% vs. 125%, p<0.02)
- **Beta blockers**
 - Carvedilol failed to show clinical benefit in mixed cohort of young patients with heart failure
 - Trend toward benefit in CHD patients with systemic left ventricle; trend toward harm in CHD patients with systemic right ventricle

Arrhythmia

- IART particularly common in atrio pulmonary Fontan due to atrial scarring and dilation
- >50% likelihood in AP Fontan within 15 years, less in LT/ECC patients
- May be tolerated for short periods, but prolonged can lead to hemodynamic compromise and thrombus formation

Arrhythmia

- Low threshold for DC cardioversion
 - TEE recommended unless symptoms are known to have occurred within 48 hours or documented therapeutic INR for at least 3 weeks

- For recurrent episodes:
 - Antiarrhythmic drugs
 - EP study/ablation
 - Fontan conversion + maze operation
Fontan conversion

- Conversion to total cavopulmonary anastomosis
 - Lowers systemic venous pressures
 - Removes hepatic vein flow reversal during atrial systole
 - With concomitant arrhythmia surgery, good freedom from arrhythmia
 - Improved New York Heart Association functional class

Backer CL. *Cardiol Young*. 2011; 21(Suppl 2): 169-76.
Fontan conversion

Freedom from Death 1994-2010
(n=132)

Years post-conversion*

n=116 n=72 n=31 n=2

Freedom from Arrhythmia Recurrence

Years post-conversion*

n=58 n=43 n=18 n=1

IART
AF

*All performed with arrhythmia surgery

Backer CL. Cardiol Young. 2011; 21(Suppl 2): 169-76.
Arrhythmia

- Involvement of electrophysiologist with expertise in CHD is crucial!
- Anticoagulation recommended once arrhythmia is documented
Thromboembolic Risk

• Predisposing factors
 – Venous stasis due to lack of contractile chamber
 – Further venous stasis in setting of dilated right atrium in Fontan pathway
 – Atrial arrhythmias
 – Procoagulant state with deficiencies of hepatic clotting factors (e.g. protein C; protein S; factors II, V, VII, IX, and X)

Thromboembolic Risk

- Prevalence of Fontan thrombus: 12-17%
- Mortality rate: 18%
 - 8% in stable patients vs. 75% in unstable patients (p = 0.01)
- Risk of thromboembolic death: 1.3% at 10 years, 9.2% at 25 years
- Primary predictors for thromboembolic death:
 - Thrombus within Fontan (HR 22.7, p = 0.0002)
 - No aspirin or warfarin (HR 91.6, p = 0.0041)

Inconsistent Medication Therapy Across Pediatric Heart Network Centers

Thromboembolic Risk

- No clear guidelines for when to switch from ASA to warfarin
- No evidence demonstrating superiority of warfarin over aspirin
- Anticoagulation recommended for patients with:
 - Atrial arrhythmias
 - Residual ASD/fenestrations
 - Previous thromboembolic events
 - Poor Fontan hemodynamics
 - Atriopulmonary Fontan
- No data thus far to support use of “next generation” oral anticoagulants in Fontan
Thromboembolic Risk

- Beware of fake-outs due to streaming of SVC/IVC flow and/or sluggish flow through the Fontan pathway

Liver Disease

- Results from chronically elevated central venous pressures in Fontan circulation
- Increasingly recognized as contributor to late Fontan morbidity and mortality

Normal liver

Fontan liver showing fibrosis and dilated sinusoids
Liver Disease

- Of 48 Fontan patients at Children’s Hospital who underwent liver biopsy (ages 5 to 47y)
 - 79% had some degree of portal fibrosis, 33% had severe portal fibrosis
 - 100% had some degree of centrilobular fibrosis, 79% had severe centrilobular fibrosis
 - Patients with severe centrilobular fibrosis had significantly higher alkaline phosphatase and total bilirubin and significantly higher MELD-XI score

Complications of Liver Disease

- Ascites
- Spontaneous bacterial peritonitis
- Hepatic encephalopathy
- Portal hypertension and esophageal varices
- Hepatorenal syndrome
Complications of Liver Disease

- **Ascites**
 - First-line treatment of pts with cirrhotic ascites consists of sodium restriction and diuretics (including spironolactone) and abstention from alcohol
 - TIPS is typically NOT an option for Fontan patients because there is rarely a significant hepatic venous pressure gradient to bypass
Complications of Liver Disease

• Spontaneous bacterial peritonitis
 – Risk of SBP in Fontan patients low compared with that in patients with primary liver disease
 – Relatively high opsonic activity of ascites with protein >2.5 g/dL protects against infection
Complications of liver disease

• Hepatic encephalopathy
 – Ammonia-lowering therapies
 • Lactulose to produce 2-4 bowel movements per day
 – Degrades to lactic acid which promotes passage of NH3 from tissues into lumen
 – Acidification inhibits ammoniagenic coliform bacteria
 – Acts as cathartic, reducing colonic bacterial load
 – In patients refractory to lactulose, antibiotics may be added
 • Reduce colonic concentration of ammoniagenic bacteria
 • Rifaximin better tolerated than neomycin but cost and potential of resistance are concerns
Complications of liver disease

- Portal hypertension and esophageal varices
 - Due to generalized venous hypertension
 - Varices develop at portal vein pressures of ~10 mmHg and are at higher risk of bleeding at ~12 mmHg
 - Propranolol used in patients with portal hypertension but may not yield same benefit in Fontan patients
 - Measures for decreasing venous pressures can result in rapid improvement of varices and bleeding
Congestive Hepatopathy and HCC

- Cirrhosis is associated with an increased risk of hepatocellular carcinoma.
- In cases related to hepatitis B or C, hemochromatosis or EtOH, annual risk of HCC is 2-4%.
- Congestive hepatopathy or “cardiac cirrhosis” not typically considered to be associated with high risk of HCC.
Congestive Hepatopathy and HCC

Congestive Hepatopathy and HCC

• Chronicity of hepatic congestion in Fontan physiology is unique

• Screening for HCC suggested in the presence of advanced (3-4/4) centrilobular OR portal fibrosis

• Sensitivity of ultrasound in combination with AFP for detecting early mass lesions ~60% (vs. 80% for CT or MRI)

• After surgical resection, recurrence rate in cirrhosis is high; for Fontan patients, heart-liver transplant may be treatment of choice
Vascular Disease

• Lower extremity venous disease

 – Results in pain, reduced physical function and mobility, depression and social isolation
 – Prevalence of chronic venous insufficiency
 ~60% with 1/3 of those classified as severe
 – Independent risk factors include higher number of prior catheterizations and history of DVT
Graduated Compression Stockings

- Lower extremity elevation and mechanical compression are mainstays of therapy
- Start with 20-30 mmHg pressure
- Do not use TEDS (pressure <10 mmHg)
- Higher pressure at the foot helps push fluid up the leg
- **Knee highs** are better tolerated than thigh highs
Protein-Losing Enteropathy

- Fontan Physiology – Chronically Low Cardiac Output
- Inflammation
- Inflammatory Mediator Release
- Abnormal Mesenteric Vascular Resistance
- Venous Congestion
- Abnormal Enterocyte Function
- Altered Glycosaminoglycans
- ? Congenital Lymphatic Malformations
- +/− ? Genetic Predisposition
- Protein-Losing Enteropathy

Protein-Losing Enteropathy

Survival analysis of patients with PLE

Protein-Losing Enteropathy

- Proposed treatments
 - Dietary modification (low-fat, high MCT diet)
 - Medications
 - Diuretics
 - Spironolactone
 - Unfractionated heparin
 - Steroids (e.g. budesonide)
 - Sildenafil
 - Octreotide
 - Infliximab

- Procedures
 - Pacemaker
 - Fontan fenestration
 - Fontan revision
 - Transplant
Plastic bronchitis

- Higher mortality rate for plastic bronchitis associated with CHD (29%) than non-CHD-related (8%); an additional 12% of CHD patients with plastic bronchitis experience life-threatening events

- Treatments
 - N-acetylcysteine
 - Systemic/inhaled steroids
 - DNase
 - Inhaled urokinase/tPa
 - Sildenafil
 - Bosentan
 - Chest physiotherapy
 - Bronchoscopic removal
 - Fontan fenestration
 - Transplant

Taking the Plunge: Referring for Transplant
Transplantation for ACHD

ADULT HEART TRANSPLANTATION

All pair-wise comparisons with Cardiomyopathy are significant at p < 0.05; Coronary Artery Disease vs. ReTX: p < 0.0001

ISHLT

Issues Complicating Transplant

- Sensitization (h/o multiple transfusions)
- Debilitated/poor substrate/other organ dysfunction
- Elevated PVR
- Increased risk of postoperative infection
- Multiple prior surgeries
- Anatomic complexities
 - Alterations in donor harvest (longer segments of pulmonary artery, aorta, pericardium)
 - Increased risk of bleeding/trauma at transplant
 - Necessity of extracardiac repair
 - Prolonged pump & ischemic times
Exercise Testing Identifies Patients at Increased Risk for Morbidity and Mortality (Fontan)

HR (95% CI): 7.5 (2.6-21.6)

VO₂ ≥ 16.6 ml/kg/min

VO₂ < 16.6 ml/kg/min

Exercise Testing Identifies Patients at Increased Risk for Morbidity and Mortality

Predicting Fontan Failure

MELD-XI Score Predicts Fontan Patients At Risk For Failure

Log rank p = 0.006

MELD-XI score = 11.76(\log_e creatinine) + 5.112(\log_e bilirubin) + 9.44

Assenza GE et al. ACC Scientific Sessions 2011.
Typical follow-up

• Follow-up every 6 to 12 months
• Echo or MR/CT imaging once a year
• Cardiopulmonary stress testing every 1 to 2 years
• Holter/event monitoring based on symptoms
• Laboratory studies
 • Liver function tests including INR
 • Basic metabolic panel
 • Complete blood count
 • Hepatitis C screening if surgery before 1992
 • Alpha fetoprotein every 6 months if advanced fibrosis
• Abdominal imaging (U/S or MRI) every 6 months if advanced fibrosis, otherwise based on labs
• Role for routine liver biopsy?
Indications for Cardiac Catheterization

- Development of volume retention
- Protein-losing enteropathy
- Plastic bronchitis
- Decreasing functional capacity
- Increasing arrhythmias
- Increasing cyanosis
- Hemoptysis
Topics for Routine Counseling

- Weight and exercise
- Smoking
- Alcohol
- Drugs, including caffeine
- Contraception
- Pregnancy
- Oral health/SBE prophylaxis
Exercise

- Physical activity levels for children and adolescents after Fontan are markedly reduced.
- As adults, nearly half of all Fontan patients are either overweight (37%) or obese (5%).
- Bethesda guidelines for competitive sports in Fontan patients are fairly restrictive.
- In adults, we generally few restrictions other than those related to warfarin (contact sports) plus heavy isometric exercises.

Pearson D et al. 2008; 5th National Conference of the ACHA.
Pregnancy in Fontan Patients

- UCLA, multicenter
 - 33 pregnancies, 15 live births (45%)
 - CV complications in 2
 - Atrial flutter, CHF, valvular regurgitation

- CONCOR investigators 1986-2003
 - 10 pregnancies, 4 live births (40%)
 - CV complications in 3 (heart failure, atrial flutter)
 - Obstetrical/fetal complications in 3 (pregnancy induced HTN, premature delivery, small for gestational age)
 - High incidence of menstrual disorders, infertility

- Potential issues: arrhythmia, heart failure, thrombotic events, premature delivery, restricted fetal growth

Potential new therapy?

- Vasodilator therapy
 - PDE5 inhibitors and non-selective ER blockers shown to improve pulmonary vascular resistance
 - Case reports of improved plastic bronchitis, PLE
 - Various small studies showing improved echo indices of myocardial performance, NYHA class, ventilatory efficiency, peak VO$_2$, and non-invasive measures of cardiac index and pulmonary blood flow
Proceed with caution!

- In September, FDA issued a warning about using sildenafil for PAH in patients age 1 to 17 years based on the STARTS-1 trial.
 - Secondary analysis found higher mortality rate in children taking high doses of sildenafil vs. those taking low doses (HR=3.5; p=0.015).
 - Most common causes of death were PAH and heart failure.
 - For now, starting sildenafil in this age group for reasons other than PAH is not recommended.

Fontan Mortality

Logrank p = 0.4840

Current Fontan-Related Studies

- Inspiratory Muscle Training to Improve Functional Capacity in Fontan patients
- Characterization of Renal Function in Adult Fontan Patients
- Transient Elastography of the Liver in Patients with Fontan Circulation
- Multicenter Cross-Sectional Assessment of Liver Health in Adults with Fontan Circulation
- STORCC: Standardized Outcomes in Reproductive Cardiovascular Care
- Cardiopulmonary Rehabilitation for Adolescents and Adults with Congenital Heart Disease
- ACHD Biorepository
Key Points

• Fontan patients are at risk for dysfunction of multiple organ systems

• More data is needed to improve our ability to provide evidence-based care to the ACHD population

• Collaboration with NECCA is crucial to clinical studies aimed at improving Fontan outcomes

• A multidisciplinary approach is necessary to provide optimal care to our patient base
Building an “Adult Fontan Clinic”

- Cardiologists/ACHD specialist
- Hepatologist
- Nephrologist
- Pulmonologist
- Surgeons
- Psychiatrist/Social Worker
- OB/Gyn
Thank you!

- **BACH Physicians**
 - Mike Landzberg
 - Michelle Gurvitz
 - Mary Mullen
 - Sasha Opotowsky
 - Michael Singh
 - Larry Sloss
 - Anne Marie Valente
 - Fred Wu

- **Physician Assistants**
 - Disty Pearson
 - Nancy Barker
 - Caitlyn Joyce

- **Nurse**
 - William Kerr

- **BACH Fellows**
 - Yonathan Buber
 - Sara Partington
 - Keri Shafer
 - Shailendra Upadhyay

- **Administrative Assistants**
 - Samantha Buechner
 - Lauren Serge

- **Research Team**
 - Amy Harmon
 - Alice Huang
 - Lilamarie Moko
 - Jenna Schreier
A Case

- 16yo man with DILV, malposed great vessels, subaortic stenosis and aortic arch hypoplasia.
 - Damus-Kaye-Stansel with aortic reconstruction, R BT shunt in Boston at 3 days of age.
 - At 6 months, bidirectional Glenn, BT takedown, balloon aortoplasty for recurrent coarctation in Portland, ME.
 - Had post-op SVT on procainamide and amiodarone.
 - At 2 years, fenestrated Fontan in Portland, ME.
 - Fenestration closed in 2008.
A Case

- 16yo man with DILV, malposed great vessels, subaortic stenosis and aortic arch hypoplasia.
 - Currently, no shunts, open venous connections, normal BP, no LVOT or desc Ao gradient, mild MVR, mild neo AoVR, SV EF roughly 60-65%.
 - Exercise testing shows single APCs & VPCs, no couplets, no exacerbation with exercise. O2 sat 97% down to 92% during exercise. Able to reach 84% of PMHR, exercise capacity at 10%ile for age.
 - Holter: some VPCs < 10, APCs < 100 per 24 hrs. No recent arrhythmias.
A Case

- 16yo man with DILV, malposed great vessels, subaortic stenosis and aortic arch hypoplasia.
 - He (and his dad) have questions about 16-year-olds with SV physiology:
 - Does sex present a problem for the heart?
 - What illicit drug use poses a cardiac risk?
 - Can he participate in wrestling with the high school team, as the coach wishes?
 - Can he become police officer or security guard as he wishes?
 - What about antibiotic prophylaxis in Fontan patients? Are they palliated cyanotic heart disease with a conduit (yes) or repaired cyanotic heart disease 6 months after patch (no)?