
Statistical normalization methods in interpersonal and 

intertheoretic comparisons1 

 

For a long time, economists and philosophers have puzzled over the problem of 

interpersonal comparisons of utility.2  As economists typically use the term, utility is a 

numerical representation of an individual’s preference ordering. If those preferences 

satisfy the von Neumann-Morgenstern axioms, then her preferences may be 

represented by an interval scale measurable utility function. However, as such the 

unit of utility for each individual is arbitrary: from individuals’ utility functions alone, 

there is therefore no meaning to the claim that the difference in utility between coffee 

and tea for Alice is twice as great as the difference in utility between beer and vodka 

for Bob, or for any claim that makes comparisons of differences in utility between two 

or more individuals.  

Yet it seems that we very often can make comparisons of preference-strength between 

people. And if we wish to endorse an aggregative theory like utilitarianism or 

prioritarianism or egalitarianism, combined with a preference-satisfaction account of 

wellbeing, then we need to be able to make such comparisons. 

																																																													
1 We wish to thank Stuart Armstrong, Hilary Greaves, Stefan Riedener, Bastian Stern, Christian 
Tarsney and Aron Vallinder for helpful discussions and comments. We are especially grateful to Max 
Daniel for painstakingly checking the proofs and suggesting several important improvements. 
2 See Ken Binmore, “Interpersonal Comparison of Utility,” in Don Ross and Harold Kincaid, eds., 
The Oxford Handbook of Philosophy of Economics (Oxford: Oxford University Press, 2009), pp. 540-559 for 
an overview. 
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More recently, a formally analogous problem has appeared in discussions of 

normative uncertainty. The most widely suggested method for taking normative 

uncertainty into account in our decision-making is maximize expected choice-worthiness 

(MEC), where the ‘choice-worthiness’ of an option represents the strength of reasons 

one has to choose an option, according to an individual normative theory. This view 

has been defended by Ted Lockhart, William MacAskill, Toby Ord, Jacob Ross, 

Andrew Sepielli, and Ralph Wedgwood.3  

However, MEC faces a serious problem. Maximizing expected choice-worthiness 

requires there to be a fact about how the difference in choice-worthiness between two 

options, according to one theory, compares with the difference in choice-worthiness 

between those two options, according to every other theory in which the decision-

maker has credence. But how can this be done? For example, according to average 

utilitarianism, it is wrong to halve average wellbeing in order to quadruple population 

size; according to total utilitarianism, it is wrong not to do so. But is halving average 

wellbeing in order to quadruple population more wrong, according to average 

utilitarianism, than failing to do so is wrong according to total utilitarianism? And, in 

the absence of an obvious answer, how could we even begin to go about answering 

this question? 4  Several philosophers have suggested either that intertheoretic 

																																																													
3 Ted Lockhart, Moral Uncertainty and Its Consequences (Oxford: Oxford University Press, 2000); Jacob 
Ross, “Rejecting Ethical Deflationism,” Ethics CXVI (July 2006): 742–68; Andrew Sepielli, “What to Do 
When You Don’t Know What to Do,” in Russ Shafer-Landau, ed., Oxford Studies in Metaethics 4 
(Oxford: Oxford University Press, 2009), pp. 5-28; Ralph Wedgwood, “Akrasia and Uncertainty,” 
Organon F XX, 4 (2013): 484-506, and William MacAskill and Toby Ord, “Why Maximize Expected 
Choice-Worthiness?,” Noûs (forthcoming). It has also been referred to as ‘maximizing expected value’, 
‘maximizing expected rightness’ and ‘minimizing expected wrongness,’ but it is clear that all authors 
are referring to approximately the same concept. 
4 For arguments that average and total utilitarianism must be incomparable, see John Broome, Climate 
Matters: Ethics in a Warming World (New York: W. W. Norton & Company, 2012), at p. 185, and Brian 
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comparisons are never possible5 or that they are almost never possible.6 This is known 

as the problem of intertheoretic comparisons. 

In this article we introduce a class of potential solutions to both of these problems,7 

which we call statistical normalization methods. Normalization methods, because they are 

ways of placing different utility functions or choice-worthiness functions on a common 

scale. Statistical, because they normalize different utility functions or choice-worthiness 

functions based on their statistical properties, such as their range, or mean, or 

variance. 

In this article we introduce some novel statistical normalization methods, and 

tentatively argue that one method, variance normalization, is superior to all other 

statistical normalization methods, including those that have been proposed in the 

literature.  

Though we believe that the arguments we give in this article will be relevant to both 

interpersonal comparisons and to intertheoretic comparisons, for reasons of focus we 

																																																																																																																																																																														
Hedden, “Does MITE Make Right?,” in Russ Shafer-Landau, ed., Oxford Studies in Metaethics 11 
(Oxford: Oxford University Press, 2016), pp. 102-128. 
5 James L. Hudson, “Subjectivization in Ethics,” American Philosophical Quarterly XXVI (1989): 221–29; 
Edward J. Gracely, “On the Noncomparability of Judgments Made by Different Ethical Theories,” 
Metaphilosophy XXVII (1996): 327–32, and Johan E. Gustafsson and Olle Torpman, “In Defence of My 
Favourite Theory,” Pacific Philosophical Quarterly XCV, 2 (201):159-74. 
 
6 John Broome, “The Most Important Thing About Climate Change,” in Jonathan Boston, Andrew 
Bradstock, and David Eng, eds., Public Policy: Why Ethics Matters, (Canberra: ANU E Press, 2010), pp. 
101–16, and Broome, Climate Matters, op. cit., p. 122. 
7 More speculatively, it is possible that our account could also be used as a way to aggregate 
incommensurable goods. It is possible that some goods might be incommensurable in value. But, often, 
we need to make decisions even in the face of that incommensurability. Perhaps, for example, a 
government needs to decide whether to fund a number of economic development program that would 
be positive in terms of improvements to people’s wellbeing, but negative in terms of environmental 
impact. The accounts we suggest may be a way of normalizing the different value functions (such as 
welfarist value and environmental value) such that a decision can be made, and each value is given 
equal consideration. 
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will concentrate our attention on the application of statistical normalization methods 

to intertheoretic comparisons in the context of normative uncertainty.  

The structure of this article is as follows. In section I, we introduce the framework 

within which we operate. In section II, we introduce the class of statistical 

normalization methods, including three novel accounts: variance normalization, 

mean absolute deviation from the median (MADAM) normalization, and mean 

absolute difference (MD) normalization. In section III, we consider specific examples 

and see how different statistical normalization methods fare, arguing that three 

accounts that have been proposed in the literature fail, whereas variance, MADAM 

and MD do better. In section IV, we give the main argument of our paper: two 

approaches to formally specifying the ‘principle of equal say’ and axiomatizations of 

various normalization methods given those specifications. On the first approach, we 

show that each of variance normalization, range normalization and MADAM 

normalization can be axiomatized under reasonable assumptions. On the second 

approach, we show that each of variance normalization and MD normalization can 

be axiomatized under reasonable assumptions. Insofar as only variance normalization 

can be axiomatized using reasonable assumptions in both cases, and that in both cases 

variance normalization results from the most natural choice of assumptions, we 

tentatively conclude that it is the best statistical normalization method.  

 

II. OUR FRAMEWORK 
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We can now introduce the framework within which we work, as follows. A decision 

situation consists of a decision-maker, a time, and a set of options. A decision-maker is an 

actor who faces sets of options and must choose between them. An option is a 

proposition that the decision-maker has the power to make true at a time. The 

decision-maker has a credence function over propositions.8 We note that the decision 

maker’s credence function also assigns credences to propositions concerning which 

choice situations she could face, and to which options she would choose in each 

choice situation.  

Where we depart from standard decision theory is that we allow the decision-maker’s 

credence function to roam over both empirical propositions and normative 

propositions, where normative propositions concern the choice-worthiness of options 

in decision situations.9 Normative propositions can be specific normative claims, such 

as ‘abortion is wrong’ or ‘eating meat is permissible,’ or claims about moral theories, 

such as ‘utilitarianism is true’. In what follows, we will consider situations where the 

decision-maker has credence only in complete normative theories, which we define as 

propositions that give a choice-worthiness value for every possible option in every 

possible choice-situation. 

																																																													
8 Where a credence function is a function from propositions to real numbers in the interval [0, 1], 
which satisfies the Kolmogorov probability axioms, and is such that, for any set of disjoint and 
mutually exhaustive propositions, the sum of credences across those propositions equals 1. We assume 
precise credences for simplicity in this article, but everything we say could be made to work if, as is 
plausible, the decision-maker’s credences are imprecise. One might worry that, if non-cognitivism is 
true, then one cannot make sense of credences over normative theories. This has been a matter of 
some debate (Michael Smith, “Evaluation, Uncertainty and Motivation,” Ethical Theory and Moral 
Practice V, 3 (2002):305–20; Krister Bykvist and Jonas Olson, “Expressivism and Moral Certitude,” The 
Philosophical Quarterly 59 (235) (2009): 202–15; Andrew Sepielli, “Normative Uncertainty for Non-
Cognitivists,” Philosophical Studies, CLX, 2 (2012): 191-207, and Krister Bykvist and Jonas Olson, 
“Against the Being For Account of Normative Certitude,” Journal of Ethics and Social Philosophy VI, 2 
(2012):1-8) so we shall sidestep this issue by assuming that cognitivism is true. 
9 We thank an anonymous referee for helping us to clarify this. 
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We acknowledge that this is an unrealistic assumption for real-life decision-makers, 

who will typically think in terms of credences in specific normative claims rather than 

complete normative theories. However, in order to ultimately make sense of the 

choice-worthiness of an action, conditional on some specific normative claim, we 

need to be able to make sense of the choice-worthiness of that option on all ways in 

which that specific normative claim could be true; that is, we need to be able to make 

sense of the average choice-worthiness of those complete theories on which the 

specific normative claim is true. So we regard the question of how choice-worthiness 

compares across complete theories as the bedrock question to address.  

By ‘choice-worthiness’ we mean the net strength of reasons that a decision-maker has 

in favour of choosing an option. Though ‘choice-worthiness’ is a term of art, it clearly 

refers to a genuine concept: for example, it makes sense to say that, though one has 

reason against lying and reason against murdering, one has much stronger reason 

against murdering.10 That is, if one can choose between a permissible option, lying, 

and murdering, the difference in choice-worthiness between a permissible option and 

murdering is much larger than that between the permissible option and lying. 

Though philosophers in this literature have sometimes chosen to focus on moral 

uncertainty, we understand choice-worthiness as representing the strength of reasons 

in favour of a certain option, all things considered. Prudential reasons, aesthetic reasons 

																																																													
10 This works even if you believe that all wrong acts are equally wrong, so long as you think that other 
people are at least coherent when they deny this. 
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and so forth are all taken into account in a normative theory’s choice-worthiness 

ordering.11  

We speak of choice-worthiness functions, which are numerical representations of a theory’s 

choice-worthiness ordering. In this article we assume that choice-worthiness is 

cardinally measurable. That is, we assume that, whatever normative propositions are 

true, choice-worthiness can be represented using numbers such that statements like 

the following are meaningful: ‘the difference in choice-worthiness between A and B is 

k times as great as the difference in choice-worthiness between C and D’.12  

In this article we are interested in the idea that decision-makers should maximise 

expected choice-worthiness (MEC), where the expected choice-worthiness of an option A is 

the sum, across all theories Ti, of the decision-maker’s credence in Ti multiplied by 

the choice-worthiness of A given Ti. 

MEC is sensitive to both the credences that the decision-maker has in different 

normative theories, and the amounts of choice-worthiness at stake in the decision 

situation according to the different theories. So, in order to apply MEC, you need to 

be able to compare choice-worthiness across different first-order normative theories.13 

But it has been asserted by several philosophers that such intertheoretic comparisons 

are either always or nearly always impossible.14 Those philosophers who believe 

																																																													
11 In what follows, we will assume that the decision-maker’s credence in options is independent of their 
credence in theories. We thank an anonymous reviewer for noting that we need to make this 
assumption. 
12 Of course, real-life decision makers will also have credence in the idea that choice-worthiness is 
merely ordinally measurable. For work exploring what to do in such a situation, see (MacAskill, 2016). 
13 Technically, the thing that needs to be compared between theories is the difference in choice-
worthiness between options, rather than absolute levels of choice-worthiness. 
14 Hudson, “Subjectivization in Ethics,” op. cit.; Gracely, “On the Noncomparability of Judgments 
Made by Different Ethical Theories,” op. cit., and Gustafsson and Torpman, “In Defence of My 
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intertheoretic comparisons to be always or nearly always impossible have taken this to 

be a strong reason to reject MEC. 

 

II. STATISTICAL NORMALIZATION METHODS 

A normalization method is an account of how to simultaneously choose choice-worthiness 

functions to represent different normative theories so that they all lie on a common 

scale – that is, just what is needed to apply MEC. In what follows, we restrict our 

attention to what we call statistical normalization methods: that is, those methods that 

place different normative theories on a common scale by treating some statistical 

property of a choice-worthiness function as being of the same magnitude across all 

normative theories. To our knowledge, only three statistical normalization methods 

have been proposed in the literature. 

The first is known as the ‘zero-one’ rule in the literature on interpersonal utility 

comparisons: one normalizes different utility functions such that the maximal and 

minimal utility on all utility functions are the same.15 In the normative uncertainty 

literature, the analogous rule was suggested by Ted Lockhart, who called it the 

Principle of Equity among Moral Theories (PEMT).  

																																																																																																																																																																														
Favourite Theory,” op. cit. Broome, Climate Matters, op. cit., p. 185, for example, says the following: “We 
then encounter the fundamental difficulty. Each different theory will value the change in population 
according to its own units of value, and those units may be incomparable with one another… Most 
theories of value will be incomparable in this way. Expected value theory is therefore rarely able to 
help with uncertainty about value.” 
 
15  Daniel M. Hausman, “The impossibility of interpersonal utility comparisons,” Mind CIV, 415 (1995): 
473-490 argues that the zero-one rule is the only way that one can make interpersonal comparisons of 
utility when utility is understood as a numerical representation of preference strength. In what follows, 
we show that this is clearly not the case.  
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The maximum degrees of moral rightness of all possible actions in a situation 

according to competing moral theories should be considered equal. The 

minimum degrees of moral rightness of possible actions in a situation 

according to competing theories should be considered equal unless all possible 

actions are equally right according to one of the theories (in which case all of 

the actions should be considered to be maximally right according to that 

theory).16   

The other two proposals we know of have been made in the context of arguing 

against the zero-one rule or the PEMT. Here is Amartya Sen arguing against the 

zero-one rule: 

It may be argued that some systems, e. g., assigning in each person's scale the 

value 0 to the worst alternative and the value 1 to his best alternative are 

interpersonally “fair" but such an argument is dubious. First, there are other 

systems with comparable symmetry, e.g., the system we discussed earlier of 

assigning 0 to the worst alternative and the value 1 to the sum of utilities from 

all alternatives.17 

As long as the number of options under consideration is the same across all utility 

functions, Sen’s proposal is formally identical to normalizing all utility functions at the 

distance between the mean utility and the minimum utility. 

Here is Andrew Sepielli arguing against the PEMT: 

																																																													
16 Lockhart, Moral Uncertainty and Its Consequences, op. cit., p. 84. 
17 Amartya K. Sen, Collective Choice and Social Welfare (San Francisco: Holden-Day, 1970), p. 98. 
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“Lockhart’s proposal seems arbitrary. Why equalize the maximum and 

minimum value, rather than, say, the mean value and the maximum value?”18   

Noting that they each normalize at some statistical properties of a utility or choice-

worthiness function, we can refer to these three proposals as range, max-mean, and 

mean-min normalization.  

In addition to these, we propose three novel normalization methods. (We introduce 

these, and not others, because we will ultimately show that there are natural sets of 

axioms that are only satisfied by these theories.) First, variance normalization, which 

treats the variance of the choice-worthiness of options as the same across all theories.19 

Second, mean absolute deviation around the median normalization (MADAM), which treats the 

mean absolute difference in choice-worthiness between every option and the median 

option as being the same across all theories.20 Third, mean absolute difference normalization 

(MD), which treats the average absolute difference between any two options as the 

same across all theories. We note that, for all of these statistical accounts, if a theory 

ranks all options as exactly equally choice-worthy, then as a special case the 

normalization method leaves the choice-worthiness function alone: the normalized 

choice-worthiness function is just equal to the original one. To not treat it as a special 

case would involve dividing by zero; and since the theory is indifferent between all 

options, how it is normalized does not matter. 
																																																													
18 Andrew Sepielli, “Moral Uncertainty and the Principle of Equity among Moral Theories,” Philosophy 
and Phenomenological Research LXXXVI, 3 (2013):580-89. 
19 Variance is one of the standard measures of the spread of a distribution. It is defined by the sum of 
the squared differences in choice-worthiness of each option from the mean choice-worthiness. 
Variance is closely related to the standard deviation (which is simply the square root of the variance) 
and an account of normalisation based on standard deviations would give exactly the same results as 
using variance. 
20 This is a less common measure of the spread of a distribution than variance, but is still used in some 
contexts. 
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In order to fully describe specific statistical accounts, we need to make three 

clarifications. 

First is the distinction between broad and narrow statistical accounts.21 Narrow accounts 

normalize different theories within each decision-situation. So, for example, narrow 

range normalization would, for any decision situation, treat the difference between 

the maximally and minimally choice-worthy options as being the same for all theories. 

This is what Lockhart proposes above. In contrast, broad accounts normalize 

different theories across all decision-situations. On our preferred way of making this 

precise, one would normalize at the expected range (or variance, and so on) across all 

option sets that the decision-maker might face, where the probabilities that go into the 

expectation are the decision-maker’s fundamental prior probabilities of facing 

different option sets.22 

We think that there are two good reasons for preferring the broad formulation. First, 

as we show in Appendix C, any narrow statistical normalization method generates 

cyclical recommendations across decision-situations.23  That is, it can recommend 

doing A rather than B when the choice is between A and B, then recommend doing B 

rather than C when the choice is between B and C, but then recommend doing C 

rather than A in a third decision-situation when the choice is between A and C. We 

take this to be a reason to reject the narrow formulation, though not necessarily a 
																																																													
21 The terminology of ‘broad’ and ‘narrow’ for this distinction comes from Amartya Sen, Choice, Welfare 
and Measurement (Cambridge, MA: Harvard University Press, 1997), p. 186. 
22 An alternative way of making this precise would be to say that the account should normalize 
different theories over the set of all conceivable options (as suggested by Sepielli, “Moral Uncertainty 
and the Principle of Equity among Moral Theories, op. cit.). However, this suggestion runs into 
numerous problems, including that, on many normative views, the choice-worthiness that a theory 
assigns to an option may depend on what other options are available in the decision situation. 
23 A similar objection is made by Sepielli, but against the PEMT specifically; he does not show that this 
poses a problem for all statistical normalization methods (ibid.). 
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decisive reason. Second, and even more importantly, the broad formulation allows 

theories to regard some decision situations as higher stakes than others. It seems clear 

that some decision situations are higher stakes for some theories than for others: the 

decision about whether to tell a lie or tell the truth might be low stakes for 

utilitarianism but of high stakes for Kantianism. Narrow accounts do not allow for 

this. 

Broad accounts have the problem that they would be significantly harder to use in 

practice than the narrow formulation. On broad accounts, one will often have very 

little idea how the choice-worthiness of an option in a choice-situation compares 

across theories. One would have to know at least approximately where a particular 

option lies within the distribution of the choice-worthiness of all possible options; but 

it seems that very often one will not know this. In contrast, on the narrow formulation, 

one only needs to know where in the distribution of choice-worthiness of all options 

within a decision-situation a particular option lies. This, presumably, would be much 

easier to know. So a decision-maker would more often be able to actually use narrow 

methods, at least approximately, than broad methods. 

However, we ultimately do not think that this worry gives us sufficient reason to 

prefer narrow to broad accounts. We consider our project to be giving a ‘criterion of 

rightness’, concerning what it is correct to do under normative uncertainty, rather 

than a decision-procedure (something that is meant to be useful in guiding agents). So 

whether or not the criterion we give is practically useful for decision-makers is not of 

the first importance: what rules decision-makers should try to follow under normative 

uncertainty is a separate further question. 
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The second clarification is with respect to measure. In order for the accounts we 

develop to be well-specified, we must invoke a measure over all possible options. 

Because options are propositions, and we have already assumed that the decision-

maker has a credence function, one might be inclined to simply use the decision-

maker’s credence over options. However, this would have the counterintuitive result 

that the measure over options changes as the decision-maker makes subsequent 

decisions and learns more about the world, thereby changing how different theories 

are normalized against each other. Whether this is a problem will depend on one’s 

view on the purpose of statistical accounts (see the third clarification, below). But it 

seems to us that at least if normalization is making claims about how theories actually 

compare then the normalization between theories should stay the same across all 

decision-situations.24 

As an alternative to using the decision-maker’s credences over options, we propose we 

use the decision-maker’s fundamental prior credence distribution over options. This 

will not change over time. If one is a subjective Bayesian, then it is simply a brute 

psychological fact what this measure is; if one is an objective Bayesian, then there are 

facts that constrain or specify what this measure should be. We do not wish, however, 

to get into this debate here: all we note is that the decision-maker will have some 
																																																													
24 One might wonder whether this problem is really so bad: if the correct way to normalize theories will 
vary from decision-maker to decision-maker (because decision-makers have different priors), then why 
should we be concerned that the correct way to normalize theories will vary from decision-situation to 
decision-situation? We acknowledge that this could be a motivation for using the decision-maker’s 
posterior credence function rather than their fundamental prior. However, we believe that the 
decision-maker would face problems of dynamic choice: situations where, for example, they should 
choose option A even though they know that, were they to do so, they would wish that they had chosen 
option B (because the measure and therefore the normalization has changed). These seem like 
additional significant problems for the posterior-credence version of our account, which make us 
disinclined to endorse it. However, if one wanted to use the posterior-credence version of our account, 
our arguments in the rest of the paper would go through mutatis mutandis. We thank an anonymous 
reviewer for raising this issue  
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fundamental prior credence distribution over options, and this is sufficient for us to be 

able to define notions such as the variance of a choice-worthiness function.25 

The third clarification is with respect to three distinct possible aims of statistical 

accounts. Statistical accounts could be understood as (i) making claims about how 

different theories actually compare; (ii) making claims about how different theories 

ought to be normalized for the purposes of maximizing expected choice-worthiness 

under moral uncertainty (even though their true normalization might be different); or 

(iii) giving us a way to set different theories on a common scale even though they are 

not genuinely comparable. 

To see the difference, consider the problem of interpersonal comparisons again. First, 

one could claim, for example, that different individuals’ maximal and minimal utilities 

genuinely are the same. Second, one could claim that, even though some people’s 

utility functions have a wider range than others, for reasons of fairness one should set 

all individuals’ maximal and minimal utilities to be the same when aggregating 

different individuals’ preferences. For example, perhaps one individual – a ‘utility 

monster’ – has extremely strong preferences. One might think it unfair that such an 

individual could have such an enormous sway over the social ordering, and therefore 

																																																													
25 One might have the following worry: that, in order for variance normalization to be applicable to 
the case of interpersonal comparisons, it would require that all people have the same fundamental 
prior. But, unless we assume a strong form of objective Bayesianism, which we do not want to do, then 
different people will have different priors. Our response is that the issue that different people have 
different credence functions is a general problem for issues of interpersonal aggregation: if each 
person’s preferences are coherent, and there is disagreement between people about the probabilities of 
different states of nature, then social preferences cannot be both coherent and Paretian (John Broome, 
Weighing Goods: Equality, Uncertainty and Time  (Oxford: Blackwell, 1991), p. 160. So it is already the case 
that, in order to engage in interpersonal aggregation, one need to assume a fixed credence function, 
rather than one that varies from person to person. The fact that we also have to rely on a fixed 
credence function in order to use variance normalization therefore creates no additional problem for us. 
We thank an anonymous reviewer for raising this issue.  
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wish to aggregate only a suitably dampened down normalization of that individual’s 

utility function.  Similarly, it might be the case that there is some fact of the matter 

about how different normative theories compare that is not given by statistical 

normalization methods. Perhaps, for example, all theories agree on the difference in 

choice-worthiness between two options in some specific uncontroversial decision. 

Even if so, statistical normalization methods may still be useful: we may conclude that 

maximizing expected choice-worthiness with respect to the true intertheoretic choice-

worthiness comparisons is not the right approach, perhaps because doing so would 

allow those moral theories on which many decisions are extremely high stakes to have 

too much sway. Instead, one might think that the right way to act under normative 

uncertainty is to maximize variance-renormalized expected choice-worthiness. 

Third, one could claim that, even though there is no real fact of the matter about how 

individuals’ utility functions compare, we can still use range normalization to put 

those preferences on a common scale for the purpose of coming to an equitable 

agreement between different individuals. This is one understanding, for example, of 

range voting. 

Our aim in this article is to assess the comparative merits of different statistical 

normalization methods. It is not to argue in favour of statistical normalization 

methods over other approaches. We therefore do not need to take a stand on which of 

the above three purposes of the statistical account, if any, is correct, though this would 

of course be a valuable further project. 
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III. EQUAL SAY 

With these clarifications on board, we can turn to the methodology of assessing 

different statistical normalization methods. Sen and Sepielli both argue that there is 

no reason to choose between any of these normalization methods, and implicitly 

suggest that there is no non-arbitrary normalization method. However, we do not 

think that this is the case. 

We can judge different statistical normalization methods by how well they capture 

what we’ll call the principle of equal say: the idea (vague for now) that the aim of a 

statistical normalization method is to ensure that if different normative theories have 

equal credence, then in some sense they should get equal influence over the decisions 

of the decision-maker. 

The motivation for the principle of equal say is as follows. In developing an account 

of decision-making under normative uncertainty, we want to remain neutral on what 

the correct normative theory is: we do not want to bias the outcome of the decision-

making in favour of some theories over others. We mean this in the sense that if we 

have very high confidence in one normative theory Ti, then, no matter what theory Ti 

is (whether it is utilitarian or contractualist or a form of virtue ethics), our theory of 

decision-making under normative uncertainty should not generally recommend 

actions which are very bad under that normative theory.  

Let us look at two specific cases of how this could go awry. First, consider average and 

total utilitarianism, and suppose that the decision-maker gives much higher credence 

to average than to total utilitarianism. Suppose that, in order to take an expectation 
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over those theories, we choose to treat them as agreeing on the choice-worthiness of 

options concerning worlds with only one person in them. If so, then, for almost all 

practical decisions involving variable populations, the option with the highest 

expected choice-worthiness will be the option that total utilitarianism regards as most 

choice-worthy because, for almost all real-life decisions (which involve a world with 

billions of people), the stakes would be large for total utilitarianism, but tiny for 

average utilitarianism. So even though the decision-maker has much higher credence 

in average than in total utilitarianism, she still almost always ought to act in 

accordance with total utilitarianism. So it is plausible that, if we treat the theories in 

this way, we are being partisan towards total utilitarianism.  

In contrast, if we chose to treat the two theories as agreeing on the choice-worthiness 

differences between options with worlds involving some extremely large number of 

people (say 10100), then for almost all real-life decisions, the option with the highest 

expected choice-worthiness will be the same as the option that average utilitarianism 

regards as most choice-worthy, even if the decision-maker had much higher credence 

in total utilitarianism than in average utilitarianism. This is because we are 

representing average utilitarianism as claiming that, for almost all decisions, the stakes 

are much higher than for total utilitarianism. In which case, it seems that we are 

being partisan to average utilitarianism. What we really want is to have a way of 

normalizing such that each theory gets equal influence.  

For a second way in which we could fail to give theories equal say, suppose that the 

decision maker has credence in two moral views: utilitarianism, and a near-absolutist 

view on which one ought not to tell a lie unless one can provide a benefit as great as 
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saving 10100 lives,26 and that the decision-maker is 99.9999% sure in utilitarianism, 

but has 0.0001% credence in the near-absolutist view. The ‘natural’ way of 

normalizing these two views is to suppose that they agree on the value of saving lives, 

but that the near-absolutist view also supposes that there are additional, extremely 

strong, reasons not to lie. If so, then the expected choice-worthiness of lying in order 

to save lives (even if that means saving billions of lives) is almost never greater than 

the choice-worthiness of refraining from lying. This conclusion seems perverse: it 

seems that ‘fanatical’ moral views like the near-absolutist view shouldn’t be able to so 

unduly influence what it is rational for a decision-maker to do.  

Against the idea that we should give different theories equal say, one could argue that 

some theories are simply higher stakes in general than other theories. Considerations 

of fairness, one might argue, are relevant to issues about how to treat people: one can 

be unfair to a person, but one cannot be unfair to a theory. Perhaps by saying that 

one was being ‘unfair’ to Kantianism, one could mean that one’s degree of belief was 

too low in it.  But one cannot be unfair to it insofar as it ‘loses out’ in the calculation 

of what it is appropriate to do. If a theory considers a situation to have low stakes, we 

should presumably represent it as such. 

It may be the case that ‘equal say’ has no bearing on how theories actually compare 

(though the authors of this paper are in disagreement on this issue). But it seems 

clearly to have bearing on the other two ways of understanding the purpose of 

																																																													
26 We consider a near-absolutist view rather than an absolutist view because there are difficulties in 
understanding absolutist views in terms of cardinal choice-worthiness. For work on modeling absolutist 
views in decision-theoretic terms, see Mark Colyvan, Damian Cox, and Katie Steele, “Modelling the 
moral dimension of decisions,” Noûs XLIV, 3 (2010): 503-529. 



	 19	

statistical accounts that we described in the previous section. In order to avoid 

‘fanatical’ conclusions, where the expected choice-worthiness of one’s options is 

almost entirely determined by the choice-worthiness function of a theory in which one 

has vanishingly small credence but which claims that most decision situations are 

enormously high stakes, one might wish instead to renormalize the moral views in 

which one has credence. Or, if one concludes that there is no ultimate fact of the 

matter about how to make choice-worthiness comparisons across two different 

theories, then one might conclude that, if we are to make any rational choices at all, 

we need some principled way of placing those theories on a common scale, and 

statistical normalization methods are the best account we have. For either of these 

two approaches, we think that ‘equal say’ is a promising way of adjudicating between 

different statistical normalization methods. 

In the rest of the article, we will use the principle of equal say to assess different 

statistical normalization methods. We will first do so informally, then develop two 

formal arguments in later sections. 

 

IV. APPEAL TO CASES 

To develop an intuitive sense of how different statistical normalization methods can 

differ in how they apportion ‘say’ between theories, and why some accounts seem 

clearly inferior to others, we shall consider some examples. 

To help see the implications of different normalization methods, we shall represent 

normative theories visually, where horizontal lines represent different options and are 



	 20	

connected by a vertical line, representing the choice-worthiness function. The higher 

on the page the option, the more choice-worthy the option, and the greater the 

distance between two horizontal lines, the greater the difference in choice-worthiness 

between those two options. These diagrams are approximately to scale. 

First, let us consider the normalization methods mean-min (as suggested by Sen) and 

max-mean (as suggested by Sepielli). We will consider how they normalize two types 

of normative theories. First Top-Heavy theories, according to which there are a small 

number of outliers in choice-worthiness, but they are only in one direction: there are 

just a small number of extremely un-choice-worthy possible options. Any 

consequentialist theory that has a low upper bound on value, but a very low lower 

bound on value, such that most options are close to the upper bound and far away 

from the lower bound, would count as a Top-Heavy moral theory. Second, Bottom-

Heavy theories, which are the inverse of Top-Heavy theories. 

Because Top-Heavy and Bottom-Heavy theories are simply inversions of each other, 

it seems very plausible, if we are to give theories equal say, that one should treat the 

magnitudes of choice-worthiness differences as the same according to both theories, 

just of opposite sign. But this is not what we find for Sen and Sepielli’s suggestions. 

First let us consider max-mean. The following figure represents the theories after 

normalizing: 
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Top-Heavy     Bottom-Heavy 

Figure 1.  

That is, max-mean favours Top-Heavy theories and punishes Bottom-Heavy theories. 

But these two theories are just inversions of each other, so presumably ought to be 

treated symmetrically. Absent any case that unlikely but extremely good outcomes 

should be treated differently than unlikely but extremely bad outcomes (and we do 

not see such a case), it appears that max-mean does not deal even-handedly between 

these two classes of theories.  

When we consider mean-min, we get exactly the same problem, except that mean-

min favours Bottom-Heavy over Top-Heavy: 
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Top-Heavy     Bottom-Heavy 

Figure 2.  

These examples therefore give us grounds for rejecting both max-mean and mean-

min. 

Next let us consider range normalization. To see the problems with this account, lets 

consider two new classes of theory. The first class is of Bipolar theories, which are 

theories where the choice-worthiness clusters around two different levels, such that 

the differences in choice-worthiness when comparing two highly choice-worthy 

options or two highly un-choice-worthy options are zero or tiny compared to the 

difference in choice-worthiness when comparing a highly choice-worthy option and a 

highly un-choice-worthy option. For example, a view according to which violating 

rights is impermissible, everything else is permissible, and where there is very little 

difference in choice-worthiness between different impermissible options and different 

permissible options, would be a Bipolar theory. 

We will call the second type of theory Outlier theories. According to these theories, 

most options are roughly similar in choice-worthiness, but there are some options that 

are extremely choice-worthy, and some options that are extremely un-choice-worthy. 

A bounded consequentialist theory with a very high and very low bounds on value 

might be like this: the differences in value between most options are about the same, 

but there are some possible worlds which, though unlikely, are very good indeed, and 

some other worlds which, though unlikely, are very bad indeed. 
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If we used range normalization, the normalized versions of examples from the four 

classes of theory would look as follows: 

 

 Bipolar            Outlier             Top-Heavy     Bottom-Heavy 

Figure 3. 

For Top-Heavy and Bottom-Heavy, range normalization yields the intuitively right 

result. Top-Heavy and Bottom-Heavy are simply inversions of each other, so it seems 

very plausible that one should treat the magnitudes of choice-worthiness differences as 

the same according to both theories, just of opposite sign. 

For Bipolar and Outlier, however, range normalization does not yield the right result. 

Because its scaling only cares about the maximal and minimal values of choice-

worthiness, it is insensitive to how choice-worthiness is distributed among options that 

are not maximally or minimally choice-worthy. As we will now show, this means that 

Bipolar theories have much more power, relative to Outlier theories, than they should. 

Let us consider a concrete case. Suppose that Sophie is uncertain between an 

absolutist moral theory, and a form of utilitarianism that has an upper limit of value 

of ten billion happy lives, and a lower limit of ten billion lives of agony. She has 1% 
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credence in the absolutist theory, and 99% credence in bounded utilitarianism. If 

range normalization is correct, then in almost every decision-situation she faces she 

ought to side with the absolutist theory. Let us suppose she is confronted with a 

murderer at her door, and she could lie in order to save her family: an action required 

by utilitarianism, but absolutely wrong according to the absolutist view. Given range 

normalization, it is as wrong to lie, according to the absolutist view, as it is to force ten 

billion people to live lives of agony, according to utilitarianism. So her 1% credence 

in the absolutist view means that she should not lie to the murderer at the door.  In 

fact, she should not lie even if her credence in the absolutist theory was as low as 

0.000001%. That seems incredible. Range normalization flagrantly fails to respect the 

principle of equal say in cases where some theories put almost all options into just two 

categories.27 So this example gives us grounds to reject range normalization. 

What, though, of variance normalization, MADAM, and MD? If we treat the 

variance of choice-worthiness as the same across all four theories, they would be 

represented as follows: 

	
	

																																																													
27 We thank Bastian Stern for initially suggesting this argument. 
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Bipolar            Outlier            Top-Heavy     Bottom-Heavy 

Figure 4.  

 

If we treat the mean absolute difference as the same across all theories, they would be 

represented approximately as follows: 

 

Bipolar            Outlier            Top-Heavy     Bottom-Heavy 

Figure 5.  

 

If we treat the mean absolute distance from the median as the same across all four 

theories, they would be represented approximately as follows: 
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Bipolar            Outlier            Top-Heavy     Bottom-Heavy 

Figure 6.  
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Variance, MADAM, and MD normalizations all do better than max-mean and max-

min insofar as they normalize Top-Heavy and Bottom-Heavy in the same way. They 

also do better than Range insofar as they make Bipolar’s range comparatively smaller 

than Outlier’s range, which is the result we wanted. So the consideration of particular 

cases seems to motivate variance normalization, MADAM, and MD over their rivals. 

It is harder, however, to have clear intuitions about how to compare variance, 

MADAM, and MD with respect to these examples. In comparison to variance or MD 

normalizations, MADAM gives comparatively less weight to Bipolar than to the other 

three theories; it also gives slightly more weight to Outlier than to Top-Heavy and 

Bottom-Heavy. MD and variance give very similar results, though in comparison to 

variance normalization, MD gives slightly more weight to Top-Heavy and Bottom-

Heavy theories compared to Outlier theories. In our view, it is just not clear, 

intuitively, which are the correct results.  

What is more, by its nature an appeal to cases argument can be suggestive, but can 

hardly constitute a knockdown argument. Perhaps there are other normalization 

methods that do as well as variance, MADAM, and MD do on the cases above. 

Perhaps there are other cases in which variance or MADAM or MD do worse than 
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the other methods we have mentioned. It would be nice to rely on more rigorous 

arguments. So in the next section we shall suggest two approaches to making the idea 

of equal say formally precise, though in each case with some leeway in how one 

exactly specifies the notion. On the first approach, we are led to conclude that either 

variance or range or MADAM is the normalization method that best captures the 

principle of equal say; on the second approach, we are led to conclude that either 

variance or MD is best. Let us now turn to these arguments. 

 

V. EQUAL SAY AS EQUAL DISTANCE FROM THE UNIFORM THEORY  

Consider a uniform choice-worthiness function — one that assigns the same degree of 

choice-worthiness to all options. If any theory’s choice-worthiness function were 

normalized to be essentially uniform before applying MEC,28 then that theory would 

not affect the final decision. Such a normalization would give that theory no ‘say’. We 

could measure how much ‘say’ a theory has by how far away its normalized choice-

worthiness function is from the uniform choice-worthiness function. Remember that 

by ‘say’ we are thinking of the degree to which the theory may influence the choice 

between options, for a fixed degree of credence in that theory. 

Imagine starting each theory off with a uniform choice-worthiness function and an 

equal amount of credit, where this credit can be spent on moving the choice-

worthiness function away from the uniform function. Every move away from the 

																																																													
28 If a theory is represented by a choice-worthiness function f, it is also represented by 0.1f, 0.01f, 0.001f, 
and so on. These limit to a uniform choice-worthiness function, and if we go far enough down the 
sequence then the representative will be close enough to uniform as to make no difference.  
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uniform choice-worthiness assignment increases the ‘say’ of that theory, and uses up a 

proportionate amount of credit. On this account, giving every theory equal say means 

giving them an equal amount of starting credit. In this section we will spell out this 

suggestion, explain the motivation for it, and demonstrate that (for our normal notion 

of distance) variance normalization is the only normalization method that gives every 

theory equal say, so understood. 

To illustrate, let us begin by considering different theories that are intertheoretically 

comparable – they have already been normalized in some way, so there is a shared 

unit of choice-worthiness across them. We will say that a completely uniform theory, 

according to which all options are equally choice-worthy, gives all options choice-

worthiness 0 (though we could have just as well have said it gives all options 17, or 

any other number). Next, consider a theory, T1, which differs from the uniform 

theory only insofar as its choice-worthiness function gives one option, A, a different 

choice-worthiness, x. There are two ways in which a theory T2 might have more say 

than T1. First, it could have the same choice-worthiness ordering as T1, but its choice-

worthiness function could give A a higher numerical value (remembering that, 

because we are talking about theories that are intertheoretically comparable, this is a 

meaningful difference between these two theories). If it gave A a numerical value of 2x, 

so that the choice-worthiness difference between A and any other option is twice as 

great according to T2 than according to T1, then T2 would have twice as much ‘say’ as 

T1. A second way in which a theory could have more ‘say’ than T1 is if it assigned 

non-zero numerical values to another option in addition to A. Then it would have 
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equal say with respect to A, but would have a greater say with respect to the other 

options. 

But what does ‘moving away’ from the uniform theory mean? We can take this idea 

beyond metaphor by thinking of choice-worthiness functions geometrically. To see 

this, suppose, to begin with, that there are only two possible options, A and B, and 

three theories, T1, T2, and T3, whose choice-worthiness functions are represented by 

the following table: 

 T1  T2  T3 

A –4 3 4 

B 1 4 1 

Table 1. 

Using the choice-worthiness of A as the x-axis and the choice-worthiness of B as the y-

axis, we may represent this geometrically as follows: 
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Figure 7. 

Any point on this graph represents some choice-worthiness function and those 

corresponding to T1, T2, and T3 are marked. The diagonal line represents all the 

uniform choice-worthiness functions. The dotted lines show the distance from each of 

T1, T2 and, T3 to their nearest uniform choice-worthiness function. These distances 

allow a way of precisely defining ‘equal say’. Giving each theory equal say means 

choosing a (normalized) choice-worthiness function for each theory such that, for 

every choice-worthiness function, the distance from that choice-worthiness function to 

the nearest uniform choice-worthiness function is the same. 

It turns out that the distance from a choice-worthiness function to the nearest uniform 

function is always equal to the standard deviation of the distribution of choice-

worthiness values it assigns to the available options (see Appendix A for a proof). So 

treating all choice-worthiness functions as having equal say means treating them as 

lying at the same distance from the uniform function, which means treating them 

such that they have the same standard deviation and thus the same variance. 

Variance normalization is thus the unique normalization method for preserving equal 

say on this understanding of equal say. 

We can now look at the geometric interpretation of normalizing theories by their 

variance. 
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Figure 8. 

The dashed lines in this diagram represent all the choice-worthiness functions that are 

distance of 1 from the nearest uniform function.29 This means that they also have a 

standard deviation of 1 and hence a variance of 1. In order to normalize each theory 

so that they have the same amount of ‘say’, we move each theory to the closest point 

on one of the dashed lines (the arrows show these moves). This corresponds to linearly 

rescaling all of the theory’s choice-worthiness values so that their variance is equal to 

1, while keeping their means unchanged. This does not change the ordering of the 

options by that theory’s lights, it just compresses it or stretches it so that it has the 

same variance as the others. One can then apply MEC to these normalized choice-

worthiness functions.  

																																																													
29 We could have chosen any non-zero value here; 1 is merely convenient. 
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This all works in the same way for any finite number of options.30 A choice-worthiness 

function gives an assignment of a real number to each option, so if there are n options 

a choice-worthiness function can be represented as a collection of n real numbers. Just 

as pairs of real numbers give us Cartesian coordinates in the plane, and triples give us 

coordinates in three-dimensional space, so we can interpret this collection as the 

coordinates of a point in n-dimensional Euclidean space. We can then proceed the 

same way, looking at the distance in this n-dimensional space from a choice-

worthiness function to the nearest uniform theory, equating this to ‘say’, and 

normalizing to make the distances the same. Just as before, the distance corresponds 

to the standard deviation, and so normalizing to equalise variance is the unique way 

to provide equal say.31 

While there is no need to normalize the means of the choice-worthiness functions (it 

does not affect the MEC calculation, as we are ultimately interested in comparing 

between options) it could be convenient to normalize them all to zero, by adding or 

subtracting a constant from each choice-worthiness function. If so, then the choice-

worthiness functions are in the familiar form of ‘standard scores’ or ‘z-scores’ where 

the mean is zero and the unit is one standard deviation. These z-scores are commonly 

used in statistics as a way to compare quantities that are not directly comparable, so it 

is particularly interesting that our approach to intertheoretic choice-worthiness 

																																																													
30 This argument applies only in the case where, in any decision situation, there are finitely many 
options, and makes an assumption of symmetry in the weight we attach to each. This is the simplest 
case for intertheoretic value comparisons, and any method should at least behave well in this base case. 
Note, however, that our argument applies to all finite decision situations, and so does not prevent us 
from considering what we have called “broad” normalization methods across infinitely many decision 
situations – what is more, the aggregated set of options across all decision situations may be infinite, as 
long as within each single decision situation there are only finitely many options to choose from.  
 
31 Again, see Appendix A for details. 
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comparisons for non-comparable theories could be summarised as ‘compare them via 

their z-scores’. 

This argument made an implicit assumption that the appropriate way to measure 

distance between utility functions is the Euclidean distance (that is, the l2 metric).32 

What happens if we instead use one of the other natural conceptions of distance, such 

as the l� or l� metric? Under a l� metric, sizes are equal when theories are normalized 

so that the average distance in choice-worthiness between a random option 

(according to the measure over options) and the median option is equalized. That is, 

the above argument using the l� metric supports the MADAM normalization. Under 

a l� metric one sets as equal the distance between the best and worst option. That is, 

the above argument using the l	 metric supports range normalization. We show both 

of these results in appendix A. (In both cases the broad formulation would equalize 

the expectations of the respective quantities across choice-situations.) 

Euclidean distance is not obviously correct for this space, and we do not think that 

this argument alone is enough to conclude in favor of variance normalization. Rather, 

we think it suggests using a normalization method corresponding to some natural 

notion of distance. This rules out max-mean and mean-min. It does leave at least an 

infinite family of possibilities, based on the ln distance norms. Among these, the three 

most naturally distinguished points are the three we have just mentioned: l��and l� are 

the ends of the spectrum, and the l2 norm is unique among the whole spectrum in 

giving an isotropic space, meaning that the geometry is particularly well-behaved by 

																																																													
32 We thank an anonymous referee for pressing this issue. 
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treating all directions equally.  Mathematical taste might lead you to prefer one of 

these over the others, but it is at least unclear. Still, it narrows the space.  

In the next section we shall look at a different style of argument that, depending on 

the precise assumptions used, motivates either variance normalization or MAD.   

 

VI. EQUAL SAY AS EQUAL EXPECTED CHOICE-WORTHINESS OF VOTING  

The previous argument cashed out the idea of ‘equal say’ as ‘equal distance from a 

uniform choice-worthiness function’. In our second argument, we shall borrow a 

concept from voting theory: voting power. An individual’s voting power is the a priori 

likelihood of her vote being decisive in an election, given the assumption that all the 

possible ways for other people to vote are equally likely. It is normally used for 

elections with just two candidates, but the concept is perfectly general.  

We could extend this concept to flesh out ‘equal say’. A first challenge is that while 

voters all have just one vote, theories come with different credences. We want theories 

with the same credence to have the same voting power and for voting power to go up 

on average as the credence increases.33 If we knew that all credences in theories were 

multiples of 10%, we could regard this as an electorate with 10 people, and ask that 

the voting power of each was the same. If we knew that the credences were all 

multiples of 1% we could similarly treat this as an electorate of 100 people. But these 

																																																													
33 The qualification ‘on average’ is needed as it is possible for a theory to get its way all the time when it 
is given a credence that is slightly less than 1 and from that point increases in credence will not improve 
its power. This is analogous to how a voting block might have all the power with less than 100% of the 
votes.  
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are special cases. For the general case, we propose instead to imagine asking that 

everyone individual’s voting power is equal in the limit as we take increasingly large 

electorates. And in the limit with larger electorates we could perfectly approximate 

the split of credences between the different theories. Hence we will look at the voting 

power of the first small (and equally sized) amount of credence in each particular 

theory, and ask what would make those the same.  

In Appendix B, we provide a proof that the only normalization aggregation method 

which gives equal voting power to all non-uniform theories in this sense is MD.   

However, a second challenge is that by a theory’s own lights it does not just matter 

that one’s credence in it is decisive in determining which option gets chosen, it 

matters how much better this chosen option is than the option that would have been 

chosen otherwise.  Getting its way in a decision about whether to prick someone with 

a pin matters a lot less, for utilitarianism, than getting its way in a decision about 

whether to let a million people die. If we are normalizing to provide ‘equal say’, we 

should arguably take that into account as well. Since theories come with a measure of 

this difference between the options (the choice-worthiness difference), and they use its 

expectation when considering descriptive uncertainty, it is natural to use this here. 

This means we should speak not just of the likelihood of being decisive, but of the 

increase in expected choice-worthiness. This is not done in normal analysis of voting 

power since it is usually assumed that there is no access to information about how 

strong the preferences of the voters are. In our context, however, we have assumed 

that we do know strengths of choice-worthiness on different theories. We thus achieve 

‘equal say’ when from a position of complete uncertainty about how our credence will 
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be divided over different choice-worthiness functions, an increase in our credence in a 

theory by a tiny amount will increase the expected choice-worthiness of the decision 

for that theory by the same degree regardless of which theory it was whose credence 

was increased. 

There is one final challenge for this approach. If each theory had one canonical 

choice-worthiness function, this definition would work. But since each theory is 

described by infinitely many different choice-worthiness functions (positive affine 

transformations of each other), we do not yet know which choice-worthiness function 

to use to represent each theory and so cannot come up with a unique value for the 

‘expected choice-worthiness’. 

However we can resolve this by considering that the normalization used to choose an 

option in a decision situation should be the same normalization used to measure 

equal say in terms of this version of voting power. This does not sound like a strong 

constraint, but it is enough to let us prove that there is a unique normalization 

method that satisfies it and equalises voting power. In Appendix B, we prove that 

variance normalization is the only normalization method that can coherently satisfy 

this interpretation of equal say as equal impact-adjusted voting power. 

This second interpretation of voting power has given us a different preferred 

normalization method.  We think that it is more natural to think of voting power in 

terms of both likelihood of success and value of success if success is achieved, and 

hence we prefer the set-up of the argument that gives variance normalization.  
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VI. CONCLUSION 

In this article we considered methods of normalizing different choice-worthiness 

functions or utility functions with reference to statistical properties of those functions. 

We first argued, by appeal to cases, that those statistical normalization methods that 

have been proposed in the literature – range, max-mean, and mean-min – are 

unsatisfactory because they fail to give different theories equal say; in contrast, 

variance, MADAM, and MD seem to do well in the cases we considered. We then 

showed that, if we understand ‘equal say’ as distance from the uniform theory, then  

— depending on one’s choice of metric — range normalization, MADAM, or 

variance give all theories equal say. Finally, we showed that, if we understand equal 

say as equal voting power, then, depending on how one understands voting power, 

either variance normalization or MD gives all theories equal say.  

We note that, for both of the arguments we considered, variance normalization is 

what results from what we think is the most natural formulation of the argument, and 

that variance normalization is the only account that has support from both forms of 

argument, rather than just from one.  

Given that two distinct lines of argument, in their most plausible form, motivate 

variance normalization, we conclude that variance normalization is the uniquely best 

statistical normalization method. 

 



1 Equal say as equal distance from the uniform theory
In this section, we will often consider the space of all choice-worthiness functions for
a fixed set D of finitely many options, i. e., the set U = {f : D æ R}. Note that by
choosing an arbitrary numbering of the finitely many options in D we can identify this
set with Rn, where n is the number of options in D.1 We’ll freely make use of this
identification in our proofs.

Thus the propositions in this section are of the following type: “For all finite D, the
following statement is true about the associated space U of choice-worthiness functions
on D, where we tacitly identify U with Rn.”

Proposition 1.1. If there are finitely many options, then Euclidean distance from the
uniform theory in the space of choice-worthiness functions is equal to the standard devi-
ation of the choice-worthiness function.

Proof. Let U denote the space of choice-worthiness functions on n options, equipped
with Euclidean distance. The shortest path from any point in this space to the line of
uniform theories runs perpendicular to that line. Given a point p = (p1, . . . , pn) œ U , we
may replace it by p

Õ = (p1 ≠ m, . . . , pn ≠ m), where m is the mean of p1, . . . , pn. Since
p

Õ is just a translation of p parallel to the line of uniform theories, it will lie at the same
distance from that line. Moreover, since the mean satisfies m = 1

n

qn
i=1 pi, we find that

p
Õ by construction lies in the plane through the origin {(x1, . . . , xn) |

q
i xi = 0} which

is perpendicular to the line of uniform theories. The closest point to p
Õ on this line thus

is the origin (0, . . . , 0).
The Euclidean distance between these two points is (

q
i(pi ≠m)2)1/2, which is just the

standard deviation ‡(pÕ). Since the standard deviation is invariant under translation,
‡(pÕ) equals ‡(p).

Thus to normalize the Euclidean distance from the uniform theory one normalizes
standard deviation, or, equivalently, the variance ‡

2. (To see that normalising the
standard deviation ‡ is equivalent to normalising the variance ‡

2, note that both ‡

and ‡
2 are non-negative real numbers, and that for such numbers x and y we have x = y

if and only if x
2 = y

2.)

Proposition 1.2. If there are finitely many options, then the l
1-distance from the uni-

form theory is directly proportional to the mean absolute deviation around the median
for its choice-worthiness function.

Proof. Let U denote the space of choice-worthiness functions on n options, equipped
with l

1-distance. Given a point p = (p1, . . . , pn) œ U , and a point on the line of uniform
theories q = (a, . . . , a), then the l

1-distance between p and q is
q

i|pi ≠ a|. This is

1Formally, any numbering is just a bijection „ : {1, . . . , n} ≥≠æ D. It is routine to see that this yields
an isomorphism of vector spaces Â : U

≥≠æ Rn, f ‘æ (f(„(i)))i=1,...n, where U is a vector space via
point-wise operations.

1



minimized when an equal number of pi lie above a as lie below it2 – which holds when
a is the median of the pi (and may also hold for some other values if the median does
not coincide with one of the pi – in this case there is not a unique closest point). The
distance to this point is equal to the sum of the absolute deviation around the median.
Since there are a fixed n options, this sum is directly proportional to the mean absolute
distance around the median.

Thus to normalize the l
1-distance from the uniform theory one normalizes MADAM

(mean absolute deviation around median). (This follows immediately from x = y if and
only if nx = ny for any real numbers x, y, and n ”= 0.)

Proposition 1.3. If there are finitely many options, then the l
Œ-distance from the

uniform theory is directly proportional to the range of its choice-worthiness function.

Proof. Let U denote the space of choice-worthiness functions on n options, equipped
with l

Œ-distance. Given a point p = (p1, . . . , pn) œ U , and a point on the line of uniform
theories q = (a, . . . , a), then the l

Œ-distance between p and q is maxi|pi ≠ a|. This
is minimized when a is half-way between the largest and smallest pi. In that case the
distance is equal to half the range of the pi. This is directly proportional to the range.

Thus to normalize the l
Œ-distance from the uniform theory one normalizes range.

2 Equal say as equal expected choice-worthiness of voting
We will work in the following setting.

• O – any countable set. Will be treated as fixed throughout. Contains all options
between which we might choose in any decision situation.

• D = {finite subsets of O}, which we’ll interpret as the set of admissible decision-
situations. We interpret a member D œ D as representing the decision between
precisely the options A with A œ D µ O. For simplicity, we only consider decisions
between finitely many options.

• A (moral) theory T is an equivalence class of families of choice-worthiness functions
T = (TD)DœD, where TD : D æ R. Two families T and T

Õ represent the same theory
T if and only if there is a constant k > 0 such that ’D œ D : T

Õ

D = kTD. For a
fixed decision situation D we will often identify the space of all choice-worthiness
functions TD : D æ R with R#D, where #D denotes the number of options in D.

2To see the claim about what values of a minimize
q

i
|pi ≠ a|, assume without loss of generality

that p1 Æ · · · Æ pn and consider the continuous map f : R æ R, a ‘æ
q

i
|pi ≠ a|. Clearly, we

have maxp1ÆaÆpn f(a) < mina/œ[p1,pn] f(a). A minimum of f in the interval [p1, pn] thus is a global
minimum of f . Since the image of a compact set under a continuous map is compact, the image of
[p1, pn] under f is a compact subset of R, which thus has a minimal element. It therefore su�ces to
show that for any a œ [p1, pn] such that there are not as many pi below as above it the value f(a) is
not minimal, which is routine.
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• A (statistical) normalization method N is a selection, for each theory T, of one
familiy of choice-worthiness functions T = N(T) representing that theory. We
interpret the functions in N(T) for varying theories T as having values on a com-
mon scale, such that it makes sense to aggregate them by maximizing expected
choice-worthiness (MEC).

• P will denote a prior over decision-situations, i.e. a probability measure on D

(where we use the full power set as ‡-algebra, which works as D is countable).

• Q will denote a prior over normalized (!) theories, i.e. a probability measure on
the space T =

r
DœD R#D of families of choice-worthiness functions. Since T is a

product of uncountably infinite sets this requires some elaboration. For each D,
we equip R#D with the familiar ‡-algebra of Lebesgue-measurable sets. We then
get a ‡-algebra on T by taking the product ‡-algebra.

Remark 2.1. We suspect that our results and proofs essentially remain valid for un-
countable option sets O. However, this would require modifications to our exposition.
For instance, the set of decision situations D would then be uncountable as well, and
so the choice of ‡-algebra would matter for which priors P are feasible. We would also
need to replace some sums with integrals.

We are interested in precise notions of

(i) the expected chance of voting being pivotal to the outcome, and

(ii) the expected choice-worthiness of voting (the choice-worthiness as regarded by the
theory, per unit of credence held in that theory),

but as mentioned in the main text this is dependent on the credences held. To remove
this dependence we look at the expected e�ect of adding a very small level of credence
in the theory, using the machinery of derivatives to take the limit as the extra credence
allocated goes to zero.

First, consider a fixed decision situation D. Our prior Q determines a probability
measure on the space R#D of choice-worthiness functions for this decision situation.
The expected value relative to that probability measure is a choice-worthiness function
SD that represents just how we would decide in this situation when using MEC together
with the normalization method and credences implicit in Q. Now consider if we were
to make a small change p in credence for some family of normalized choice-worthiness
functions T , adjusting credence in all other families uniformly. We’d then replace SD

with pTD + (1 ≠ p)SD. We are interested in:

i. The probability (with respect to Q) that this replacement changes the set of options
with maximal choice-worthiness. Call this PT,D(p). Regarding it as a function of p,
we calculate the derivative at 0: call this gD(T ).

ii. The expected improvement in choice-worthiness of the chosen option, according to
T . Call this ET,D(p). We again look at the derivative at p = 0: call this fD(T ). It
is expressed in units of choice-worthiness according to T .
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The fairness conditions we’re interested in will be expressed in terms of the expected
value of these derivatives across all decision situations, assuming the latter are distributed
according to P :

g(T ) = ED≥P [gD(T )] (1)
f(T ) = ED≥P [fD(T )] (2)

Remark 2.2. Without assumptions on the priors P and Q, neither the derivative gD(T )
nor the expectation g(T ) need exist, and similar for fD(T ) and f(T ). For example:

(a) Consider the case that Q almost surely picks out a family of indi�erent choice-
worthiness functions. That is, with probability 1 we have SD(A) = SD(B) for all
decision situations D œ D and all options A, B œ D. Pick some D, options A, B œ D,
and choice-worthiness functions T such that TD(A) ”= TD(B). Then almost surely
any nonzero perturbation of SD in the direction of TD changes the set of top options.
That is, we have PT,D(p) = 1 for all p ”= 0, but of course PT,D(0) = 0. Thus, PT,D(p)
is not continuous in p = 0, and in particular has no derivative in p = 0.

(b) Even if gD(T ) exists for all D œ D, its expectation across decision situations need
not. To give an example, we’ll fix an arbitrary numbering D = {Dn | n œ N}.
It is easy to see that there is a prior Q such that gDn(T ) = 1

nP (Dn) for all n; the
expectation g(T ) is then given by the harmonic series

q
n

1
n , which does not converge

to a finite value.

We will later make assumptions that guarantee that all of gD(T ), g(T ), fD(T ), and f(T )
are well-defined and finite.

Definition 2.3. A normalization method N (when used with MEC as aggregation
method and relative to priors P and Q) is

i. fair with respect to probabilities (in giving equal say to all moral theories with respect
to P and Q) if and only if, for any two moral theories T and TÕ, we have g(N(T)) =
g(N(TÕ));

ii. self-consistently fair with respect to expected choice-worthiness (in giving equal say
to all moral theories with respect to P and Q) if and only if, for any two moral
theories T and TÕ, we have f(N(T)) = f(N(TÕ)).

These definitions are understood to in particular require that g(N(T)) and f(N(T)),
respectively, are well-defined and finite for all theories T.

Remark 2.4. In our definitions of g(T ) and f(T ) we have first defined a derivative
capturing an intuitive notion from voting theory within each decision situation D œ D;
then we took the expectation across decision situations. We could also have proceeded
the other way around, as follows:

1. Define PT (p) = EDœP [PT,D(p)], i.e. first take the expectation of the probability
that a slight perturbation will change the set of top options.
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2. Define g̃(T ) to be the derivative of PT (p) in p = 0.

It is not clear if our intuitive notion of fairness with respect to probabilities is better
captured by defining it in terms of g(T ) or g̃(T ). If we define f̃(T ) similarly, this applies
mutatis mutandis to self-consistent fairness with respect to expected choice-worthiness.
We will therefore make assumptions guaranteeing that g(T ) = g̃(T ) and f(T ) = f̃(T ).

In order to say anything further about which methods might be fair in either sense,
we need to make some assumptions about the priors P and Q. We want to assume that
they are essentially ignorant, analogous to the assumption for computing voting power
that other people are equally likely to vote in all possible combinatorial permutations.
But rather than assume a specified form for these priors, we will just make assumptions
about some of their properties.

Smoothness assumption (on Q): For all D œ D, the marginal distribution QD on R#D

has a continuously di�erentiable cumulative distribution function.

Boundedness assumption (on P and Q): There is a nonnegative random variable X

on D that has a finite expectation relative to P and such that we have |
PT,D(p)

p | <

X(D) for all D œ D and p ”= 0. (Note that PT,D(p) depends on Q.)

First ignorance assumption (on Q): Using MEC on Q for each decision situation re-
sults in a measure that’s symmetric in options; that is, shu�ing the labels of
options in the description of an event doesn’t change its probability according to
any QD.

Second ignorance assumption (on Q): For all D œ D, the derivative of the cumula-
tive distribution function of QD vanishes almost nowhere, i.e. its set of zeros has
Lebesgue measure 0. (In other words, the Lebesgue density of QD is nonzero
almost everywhere.)

Third ignorance assumption (on P ): According to P , the probability of a given option
appearing in a decision-situation is independent of which other options appear
there.

Note that the boundedness assumption allows us to use the dominated convergence
theorem to conclude that g(T ) = g̃(T ) and f(T ) = f̃(T ) (see Remark 2.4 for notation
and context).

We are now in a position to state the theorem.

Theorem 2.5. Suppose that P and Q satisfy the above assumptions. Then:
1. The normalization method N is fair with respect to probabilities if and only if N

normalizes the mean absolute di�erence of the choice-worthiness functions – that
is,

MADP (T) :=
ÿ

A,BœO

PD≥P (A œ D)PD≥P (B œ D)|N(T)D(A) ≠ N(T)D(B)|

does not depend on the theory T; and
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2. N is self-consistently fair with respect to expected choice-worthiness if and only if
N normalizes the variance of the choice-worthiness functions – that is,

VarP (T) :=
ÿ

A,BœO

PD≥P (A œ D)PD≥P (B œ D)(N(T)D(A) ≠ N(T)D(B))2

does not depend on the theory T.
In the proof of the theorem, we’ll use the following notation for fixed T œ T , D œ D,

A, B œ D, and p < 1.

i. PT,D,A,B(p) denotes the probability (according to Q) that SD and pTD + (1 ≠ p)SD

di�er in their ranking of options A and B; and

ii. ET,D,A,B(p) denotes the expected choice-worthiness (in units according to TD) of
that flip in ranking – that is, ET,D,A,B(p) = PT,D,A,B(p)(TD(A) ≠ TD(B)).

We’ll also use the following

Lemma 2.6. Suppose that the above assumptions are satisfied. Then, for each decision
situation D, the derivatives gD(T ) and fD(T ) depend only on the event that SD and
pTD + (1 ≠ p)SD di�er in their ranking of the top and a single other option. That is,

gD(T ) = lim
pæ0

1
p

ÿ

BœD

PS≥Q(SD has top option B)
ÿ

AœD:TD(A)>TD(B)
PT,D,A,B(p)

fD(T ) = lim
pæ0

1
p

ÿ

BœD

PS≥Q(SD has top option B)
ÿ

AœD:TD(A)>TD(B)
ET,D,A,B(p)

Proof (of the Lemma). Given that we are only adding a small amount of credence to
the theory, it is unlikely that are we are able to a�ect the decision at all. But it is
vanishingly unlikely that we are able to a�ect a choice between three or more outcomes,
so it is enough to consider the chance of moving it between each pair of outcomes
(formally speaking the chance of being able to a�ect it between two outcomes is O(p),
and the chance of being able to a�ect it between three or more outcomes is O(p2) and
thus vanishes as we take the derivative in p = 0).

Proof (of the Theorem). Let T be a moral theory; to avoid clutter, set T = N(T). The
proof will proceed by showing that g(T ) and f(T ) are proportional to the mean absolute
di�erence and variance of T , respectively. We will only give a full proof of the first
statement; a proof of the second statement can then be obtained by multiplying in every
step by TD(A) ≠ TD(B).

Step 1: We calculate PT,D,A,B(p) and its derivative in p = 0.
Two choice-worthiness functions SD and S

Õ

D rank A and B di�erently if and only if
SD(A) ≠ SD(B) and S

Õ

D(A) ≠ S
Õ

D(B) have di�erent signs. Therefore,

PT,D,A,B(p) = PS≥Q

1
(SD(A) ≠ SD(B))

!
(1 ≠ p)(SD(A) ≠ SD(B) + p(TD(A) ≠ TD(B))

"
< 0

2

= PS≥Q

3
p

p ≠ 1(TD(A) ≠ TD(B)) < SD(A) ≠ SD(B) < 0
4

,
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where for the second equality we have without loss of generality assumed that TD(A) >

TD(B). (Note that PT,D,A,B(p) = 0 if TD(A) = TD(B).)
The smoothness assumption implies that SD(A)≠SD(B) is a real-valued random vari-

able (where S is distributed according to Q) with a Lebesgue density and a continuously
di�erentiable cumulative distribution function FD,A,B. We thus have:

PT,D,A,B(p) = FD,A,B(0) ≠ FD,A,B( p

p ≠ 1(TD(A) ≠ TD(B))) .

By the chain rule, since FD,A,B is di�erentiable in p
p≠1(TD(A)≠TD(B)), we can calculate

the derivative in p as

P
Õ

T,D,A,B(p) = F
Õ

D,A,B( p

p ≠ 1(TD(A) ≠ TD(B))) 1
(p ≠ 1)2 (TD(A) ≠ TD(B)) .

In particular, for p = 0 we get

P
Õ

T,D,A,B(0) = F
Õ

D,A,B(0)(TD(A) ≠ TD(B)) . (3)

Step 2: We calculate gD(T ) for fixed D.
By the first ignorance assumption, the cumulative distribution function FD,A,B intro-

duced in the first step depends only on the number of options #D in D, and in particular
is independent of A and B – going forward, we’ll denote it by F#D. Using this notation,
Lemma 2.6 and the first step imply that

gD(T ) = lim
pæ0

1
p

ÿ

BœD

PS≥Q(SD has top option B)
ÿ

AœD:TD(A)>TD(B)
PT,D,A,B(p)

= 1
#D

ÿ

A,BœD:TD(A)>TD(B)
P

Õ

T,D,A,B(0)

=
F

Õ

#D(0)
2#D

ÿ

A,BœD

|TD(A) ≠ TD(B)| .

Step 3: We take the expectation over decision situations D œ D according
to P to obtain g(T ) from the gD(T ).

By the second step and the ignorance assumptions, we have

g(T ) = ED≥P [gD(T )] =
ÿ

DœD

P (D)gD(T ) =
ÿ

DœD

P (D)
F

Õ

#D(0)
2#D

ÿ

A,BœD

|TD(A) ≠ TD(B)|

= 1
2

Œÿ

n=2

F
Õ
n(0)
n

ÿ

DœD:#D=n

P (D)
ÿ

A,BœD

|TD(A) ≠ TD(B)|

= 1
2

ÿ

A,BœO

Œÿ

n=2
PD≥P (#D = n)F

Õ
n(0)
n

PD≥P (A œ D)PD≥P (B œ D)|TD(A) ≠ TD(B)|

Now consider k :=
q

Œ

n=2 PD≥P (#D = n)F Õ
n(0)
n , which does not depend on any of

T, D, A, B. The boundedness assumption implies that k is finite, for else we could express
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PT,D(p) in terms of the probabilities PT,D,A,B(p) calculated in step 1 and use equation
(3) to derive that |

PT,D(p)
p | has infinite expectation across decision situations D. Also,

k ”= 0 by the second ignorance assumption. We thus have seen that g(T ) = k
2 MADP (T )

is proportional to MADP (T ), as desired.

3 Narrow statistical normalization methods make cyclical
recommendations across choice situations.

Proposition 3.1. There is a decision-maker with fixed credences in fixed moral theo-
ries, so that applying any narrow statistical normalization method will result in cyclical
recommendations of options over one another, in varying choice-situations.

Proof. The proof is straightforward, based on the fact that when there are only two
options in a choice situation, all narrow statistical normalization methods must make
the same recommendation. Let A, B, and C be options, and consider three moral theories
with choice-worthiness across these options as indicated by R, S, and T in table 1.

R S T

A 0 2 1
B 1 0 2
C 2 1 0

Table 1: Choice-worthiness functions generating cyclic preferences.

Suppose the decision-maker has credence 0.4 in R and 0.3 in each of S and T , and that
she faces a choice between A and B only. All that a narrow and statistical normalization
method can see of each theory is whether it prefers A or B, and it must treat each of
these in the same way. Since it is a normalization method, they are all normalized to the
same thing – without loss of generality, the preferred option at 1 and the less preferred
option at 0. Then the expected choice-worthiness of A is 0.4 ·0+0.3 ·1+0.3 ·0 = 0.3. The
expected choice-worthiness of B is 0.4 · 1 + 0.3 · 0 + 0.3 · 1 = 0.7. In e�ect the procedure
has reduced to asking whether there is more credence on theories preferring A or B. In
this case credence 0.7 lay with theories preferring B, so the decision maker will choose
B over A.

Suppose now that the decision maker faces instead a decision between B and C. Again
the theories will all be normalized, so we need know only the total credences preferring
each option. Now R and S (with total credence 0.7) prefer C to B, so the decision-maker
will choose C over B.

Finally suppose the decision maker faces a decision between C and A. Here R prefers
C to A, but the other two theories prefer A to C. Since there is credence 0.6 in these
theories the decision-maker will choose A over C.
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