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A B S T R A C T   

Recent years have witnessed calls for increased rigour and credibility in the cognitive and behavioural sciences, 
including psychophysiology. Many procedures exist to increase rigour, and among the most important is the need 
to increase statistical power. Achieving sufficient statistical power, however, is a considerable challenge for 
resource intensive methodologies, particularly for between-subjects designs. Meta-analysis is one potential so
lution; yet, the validity of such quantitative review is limited by potential bias in both the primary literature and 
in meta-analysis itself. Here, we provide a non-technical overview and evaluation of open science methods that 
could be adopted to increase the transparency of novel meta-analyses. We also contrast post hoc statistical 
procedures that can be used to correct for publication bias in the primary literature. We suggest that traditional 
meta-analyses, as applied in ERP research, are exploratory in nature, providing a range of plausible effect sizes 
without necessarily having the ability to confirm (or disconfirm) existing hypotheses. To complement traditional 
approaches, we detail how prospective meta-analyses, combined with multisite collaboration, could be used to 
conduct statistically powerful, confirmatory ERP research.   

1. Introduction 

Recent years have witnessed a call for increased rigour, credibility, 
and transparency in the methods used to create, synthesize, and 
communicate science. This credibility revolution (Vazire, 2018) has 
been motivated in part by findings that results are often unreliable 
because they are published selectively (Ferguson and Brannick, 2012), 
derived from underpowered statistical analyses (Rossi, 1990; Stanley 
et al., 2018), and because questionable research practices (QRPs) drive 
unacceptably high false-positive rates (John et al., 2012; Simmons et al., 
2011). Multiple open science methods have been proposed to enhance 
rigour, including preregistration, increasing statistical power, encour
aging replication, the free sharing materials and data, and new pub
lishing formats that accept articles based on the soundness of their 
question and methods prior to data collection and analysis (i.e., Regis
tered Reports: Chambers, 2013; Nosek and Lakens, 2014). 

Recent reviews indicate that low statistical power is a particularly 
acute problem in cognitive neuroscience (Button et al., 2013; Clayson 
et al., 2019; Clayson et al., 2020; Szucs and Ioannidis, 2017). Szucs and 
Ioannidis (2017) estimated statistical power for over 25,000 statistical 

tests in 3801 cognitive neuroscience and psychology papers, and found 
that studies achieve 12%, 44%, and 73% statistical power for small, 
medium, and large effect sizes, respectively (see Clayson et al., 2019 for 
similar results for ERP research). Another review estimated that statis
tical power was as low as 20% in ERP studies of feedback processing in 
depression (Clayson et al., 2020)—this finding indicates that even if the 
underlying hypothesis was true, that 8/10 studies testing this hypothesis 
should return null results (i.e., false negatives). Equally troubling, 
though less appreciated, is that low power can also increase the false 
discovery rate (i.e., false positives), that is the rate of significant findings 
that are in fact false (Krzywinski and Altman, 2013). Together, these 
findings suggest that the credibility of cognitive neuroscience as a 
discipline might critically depend on increasing statistical power. 

Particularly strong barriers to increased statistical power exist in 
fields that are resource intensive, such as cognitive neuroscience. Con
ducting a 0.9 powered study for a small-to-medium sized difference 
between means (i.e., Cohen’s d = 0.4), for example, would require 68 
participants for a within-subjects test, and 266 participants for a be
tween subjects test. We suspect that these sample sizes, particularly 
between-subjects, are unachievable for all but the best resourced 
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neuroscience laboratories. Even well-resourced laboratories would 
necessarily reduce their research output if they were to power their 
studies to this level. This issue is likely intensified for the recruitment of 
harder to reach populations (e.g., patients, ethnic/racial minorities, and 
infants), meaning that calls to increase sample sizes might uninten
tionally restrict breadth and generalizability by shifting research to
wards easy to access populations and scalable methodologies (Lakens 
et al., 2018). Despite these legitimate concerns, the nature of null hy
pothesis significance testing, as well as the need to quantify effect sizes 
with precision, means that increasing sample sizes is a valuable goal. 
Here, we evaluate meta-analytical methods as a solution to increasing 
statistical power by pooling data across multiple laboratories. We focus 
specifically on ERP research; however, much of our analysis would likely 
apply equally to other resource intensive cognitive neuroscience 
methods (Elliott et al., 2020) or to other measures of peripheral 
psychophysiology. 

Prior reviews have detailed how meta-analyses could facilitate 
rigorous individual difference ERP studies (Moran et al., 2017). How
ever, the validity of conclusions drawn from meta-analyses are suscep
tible to multiple forms of bias, both in the primary literature and in the 
production of the meta-analyses themselves. Such bias requires close 
consideration before concluding that meta-analyses enhance rigour. 
First, as an initial defence against this bias, we summarize open science 
methods that can make meta-analyses transparent from conception. 
Subsequently, we review post hoc statistical techniques to detect and 
correct for publication bias arising from the primary research. Finally, 
we detail how prospective meta-analyses, in combination with a col
lective, multi-site approach to gathering psychophysiological data, 
could drive stronger, confirmatory inferences in ERP research. 

1.1. Meta-analysis in ERP research 

Meta-analyses combine effects from multiple studies testing the same 
theoretical question, resulting in a meta-analytic effect size that repre
sents a weighted average of included studies (Rosenthal and DiMatteo, 
2002). Meta-analyses are intended to facilitate cumulative science by 
providing an objective measure of consistency across studies (i.e., the 
meta-analytical effect size), while diminishing nonspecific error be
tween smaller studies (Borenstein et al., 2011). In contrast to smaller 
individual studies that often produce wide confidence intervals around 
an effect size, appropriately conducted meta-analyses can draw on the 
power of their large data-sets to more precisely estimate the underlying 
effect size. This apparent power to summarize what is known means that 
meta-analyses are often given considerable weight when developing 
new studies, grants, or public policy (e.g., Hunter and Schmidt, 1996). 

Meta-analysis has a clear appeal in the context of ERP research where 
individual laboratories are often limited in their ability to collect large 
data-sets. There are already six meta-analyses focusing on the relation
ship between trait anxiety and error-related ERPs (i.e., the error-related 
negativity, ERN; Cavanagh and Shackman, 2015; Moser et al., 2016; 
Moser et al., 2013; Pasion and Barbosa, 2019; Riesel, 2019; Saunders 
and Inzlicht, 2020), and other meta-analyses have focused on the P300 
and schizophrenia (Jeon and Polich, 2001); and the face-related N170 
and autism (Kang et al., 2018). Here, meta-analyses are particularly 
useful for between-subject’s contrasts that are notoriously noisy in EEG 
research (Luck, 2014). In addition to confirming established empirical 
effects, many analyses use meta-regression to test novel hypotheses (e. 
g., gender differences; Moser et al., 2016), further highlighting the 
power of meta-analyses to reveal effects otherwise hidden in small, in
dividual studies. 

It cannot be taken as given that any meta-analysis is necessarily 
rigorous. Meta-analyses involve highly multi-dimensional data sets, 
requiring many decisions in their production. Consequently, meta- 
analytic reviews are susceptible to many sources of publication bias 
and questionable research practices (Lakens et al., 2016). Selectively 
reporting significant or large results, while omitting small and non- 

significant results, for example, can give a false impression that the 
meta-analytical effect is large and robust. Other sources of bias include 
selectively reporting moderators based on their statistical significance, 
including dependent effect sizes to increase the sample-size of a meta- 
analysis, or not accounting for the inflationary influence of publica
tion bias on the meta-analytic effect size (Sterne et al., 2001; Thornton 
and Lee, 2000; Williamson et al., 2005). 

Left unchecked, the combined influence of questionable research 
practices and publication bias mean that meta-analyses will often pro
vide effect sizes that are unreliably inflated (Pereira and Ioannidis, 
2011). If a field has even a modest sized file-drawer of studies that do not 
support an established hypothesis, any meta-analysis will be blind to 
these studies, necessarily inflating the average effect size. In addition to 
bias in the primary literature, the potential of the meta-analyst to steer 
the review towards specific outcomes have led some researchers to 
seriously question if meta-analysis can ever truly resolve disputes be
tween opposing ideological positions (Ferguson, 2014). This charge is in 
stark contrast to the occasional valorisation of meta-analyses as tools to 
find truth among seemingly contradictory findings (Hunter and 
Schmidt, 1996). 

Providing definitive, irrefutable evidence about the base truth of a 
prediction is an unrealistically difficult test for any methodology, not 
least because it will never be possible to satisfy every critic—even the 
best conducted review is susceptible to acrimonious and/or ad hominem 
counter arguments (Ferguson, 2015). Furthermore, central to any sci
entific discipline is the need to make inferences based on the generation 
of cumulative knowledge, and scientists will continue to do this with or 
without meta-analyses. Thus, it would be a non-solution to dismiss meta- 
analysis entirely due to challenges to validity. Rather than viewing 
meta-analyses as either credible or not, we take the stance that it is more 
fruitful to accept that there are a range factors that influence the cred
ibility of a meta-analysis that should be considered when conducting a 
new meta-analytic review, or when consuming a published meta- 
analysis. 

In the following, we use the relationship between anxiety and the 
error-related negativity (ERN) to illustrate how open science methods 
can be used to enhance meta-analyses in ERP research. The ERN is a 
negative-going deflection in the response-locked ERP that peaks at 
frontocentral electrodes within 100 ms after mistakes and is putatively 
generated by the anterior midcingulate cortex (Gehring et al., 2012). 
Multiple studies have indicated that this component is increased in 
anxious samples (Hajcak, 2012), with increased reactivity to mistakes 
suggested as a potential biomarker for anxious psychopathology (Meyer, 
2017; Weinberg et al., 2015). The anxiety-ERN relationship is a useful 
case-study for several reasons. Foremost, six meta-analytic reviews have 
already been conducted on this hypothesis in the past 7 years, indicating 
the prominence of this hypothesis in the field. Taking a concrete 
example also allows us to compare and contrast the influence of different 
methodological decisions on meta-analytic conclusions in ERP research. 

2. Open science methods to enhance novel meta-analyses 

Many steps that can improve the credibility and rigour of meta- 
analyses can be taken during the production of the meta-analyses it
self, by publicly declaring a protocol for the production of the review in 
advance, and by publishing the meta-analysis in a transparent manner 
that facilitates the complete understanding, verification, and re-use of 
the meta-analytic data. 

2.1. Preregistration 

The many decisions made to produce a meta-analysis means that 
there is not one inevitable analysis that emerges from the literature, but, 
instead, the process of searching, coding, and analysing data leads the 
researcher to construct only one of many potential meta-analytic re
views from a set of studies. There are justifiable reasons why two meta- 
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analyses on the same topic might differ (e.g., excluding vs. including 
clinical samples; Moser et al., 2013; Cavanagh and Shackman, 2015). 
Other differences emerge through decision points that are less germane 
to the specific research question (e.g., selecting among possible effect 
sizes, coding moderators, exclusion criteria). From the outside, it is often 
impossible to verify if these such decisions were taken with or without 
knowledge of their impact on the outcome. 

Preregistration provides a solution to this garden-of-forking paths for 
two related reasons (Quintana, 2015). First, a sound meta-analysis relies 
on the precise formulation of a research question. Preregistration en
sures that the author starts upfront with a well-formulated research 
question that can constrain subsequent methodological steps, while 
ensuring that the hypotheses do not shift after the results are known, 
itself a questionable research practice (Kerr, 1998). Second, the pre
registration should provide an analysis plan that at least makes a 
transparent distinction between a priori confirmatory analyses and post 
hoc exploratory analyses, avoiding the potential for analytical flexibility 
and the cherry-picking of results. Here, preregistration does not aim to 
eliminate novel analyses or exploratory findings. Instead, the aim is to 
distinguish between confirmatory, a priori hypotheses and exploratory 
analyses to avoid potentially questionable research practices, such as 
hypothesizing after the results are known (i.e., HARKing; Kerr, 1998). 

Preregistration was not referenced in any of the six meta-analyses on 
the relationship between anxiety and performance monitoring. 
Considering the range of decisions necessary to define this research 
question, both variables (i.e., anxiety and performance monitoring) 
could be defined either broadly or narrowly. Performance monitoring 
could refer to multiple ERPs with comparable neural generators and 
functional significance (e.g., ERN, N2, feedback-related negativity; cf., 
Yeung et al., 2004), or, as is more often the case, performance moni
toring could focus exclusively on the ERN. Anxiety could cover a broad 
range of clinical and non-clinical diagnoses and traits, or could focus 
more exclusively on specific diagnoses (e.g., generalised anxiety disor
der, obsessive compulsive disorder). Without preregistration it is 
impossible to know if these meta-analyses started with a broader 
research question that was narrowed based on the results, or if moder
ators (e.g., comparing clinical and non-clinical anxiety) were hypothe
sized a priori, or were included in the final report after results were 
known. Here, we do not wish challenge the validity of existing meta- 
analyses on the anxiety-ERN relationship, but merely highlight that 
the a priori nature of the hypothesis tests cannot be verified. 

Preregistering a meta-analysis may at first seem like an unwieldy 
task. However, extensive evidence-based reporting standards have been 
developed for systematic reviews and meta-analyses, such as the 
Preferred Reporting Items for Systematic Reviews and Meta-analyses 
(PRISMA; Moher, Liberati, Tetzlaff, and Altman, 2009), or the Meta- 
Analysis Reporting Standards (MARS; Cooper, 2010). Checklists are 
freely available online for both sets of standards, and deciding as many 
of these as steps as possible a prioiri can guide the comprehensive pre
registration of a novel meta-analysis. Criteria that can be decided in 
advance include rules for study inclusion and exclusion, search strategy, 
plans for extracting and collating effect sizes, and specifics about sum
mary statistics. Transparency can be enhanced further by preregistering 
a formal analysis plan, ideally posting analysis syntax alongside the 
study preregistration. In psychology and cognitive neuroscience, it is 
common to post these registrations to an online repository such as the 
Open Science Framework (OSF). In addition to the OSF, PROSPERO is an 
international data-base in the health sciences that provides a template to 
prospectively register protocols for systematic reviews along multiple 
dimensions, including the title, research question, population/domain 
of interest, search criteria, outcome measures, and strategy for data 
synthesis (Booth et al., 2012). While deciding this array of criteria up- 
front might seem daunting, it is important to note that each step is 
eventually required for a successful meta-analysis or systematic review, 
meaning that in many cases preregistration largely shifts the timeline of 
work that needs to be done anyway. 

Increased credibility is but one benefit of preregistration. The a priori 
construction of a protocol, for example, means that many difficult 
questions are considered before the labour intensive work of the meta- 
analysis commences. A concrete registered protocol should increase 
the efficiency of the review by properly constraining the search and 
analysis in advance, while building reporting standards into the meta- 
analysis from the start ensures that authors do not omit important 
steps, facilitating publication. Lastly, public registration can establish 
primacy over other meta-analyses, encourage collaboration between 
similar projects, and/or help to uncover unpublished work to incorpo
rate into the meta-analysis. Indeed, a primary objective of the PROS
PERO registration database is to allow researchers to assess if a similar 
review question is already in progress to avoid unplanned duplication of 
systematic reviews or meta-analyses (Booth et al., 2011; Booth et al., 
2012). Together, these considerations suggest that preregistration can 
form an intrinsically valuable component of meta-analysis. 

Finally, one specific challenge for preregistering a meta-analysis in 
ERP research is that even single ERPs can be operationalized in multiple 
different ways depending on choice of referencing system, electrode site, 
ERP quantification, number of trials included in averaged ERPs, or 
baseline selection, and so on. Indeed, many psychometric investigations 
have explored the influence of these decisions on the reliability and 
validity of specific ERP components (e.g., for the ERN: Fischer et al., 
2017; Meyer et al., 2013; Riesel et al., 2013; Sandre et al., 2020). In the 
formulation of a plan to extract data for a meta-analysis, it can be useful 
to review available literature on your ERP of choice to determine a best- 
practice or gold-standard quantification and use this information to 
generate principled approaches for selecting statistics to include in your 
meta-analysis. In many cases, you might be able to implement homog
enous selection criteria, for example, if studies report sufficient infor
mation to select a specific effect size, or if you can obtain original data 
for re-analysis through correspondence with an author. In practice, 
however, there is often a large degree of heterogeneity in quantification 
between studies, and it would be counterproductive to exclude large 
amounts of data due to overly narrow criteria for defining an ERP. As 
such, preregistered criteria might need to strike a programmatic bal
ance, stating the ideal ERP measures that would be extracted wherever 
possible, while also defining a universe of acceptable and unacceptable 
analysis protocols based on psychometric evidence to form data inclu
sion and exclusion criteria, respectively. 

2.2. Increasing transparency beyond (or without) pre-registration 

Preregistration is not the only open science method that facilitates 
rigorous meta-analysis. In addition, the various analytical steps that 
make up a meta-analysis are often neither transparently reported nor 
reproducible (Lakens et al., 2016; Lakens et al., 2017; Polanin et al., 
2020a, 2020b). One investigation examined 150 published meta- 
analyses and reported that just over half of these (55%) included suffi
cient information for replication, and it was particularly rare to include 
effect size and moderator information for each study, and rarer still to 
include analyses scripts to reproduce the meta-analysis from raw data 
(Polanin et al., 2020a, 2020b). Irreproducibility can also arise through 
relatively common errors in statistical transformations applied to 
convert effect sizes onto a common scale (Gøtzsche et al., 2007), and in 
other cases, QRPs have been revealed in registered meta-analyses 
themselves, including switching outcome measures between a priori 
protocols and the final review (Kirkham et al., 2010). This latter finding 
indicates that preregistration, in and of itself, does not guarantee that 
QRPs will not occur. Nevertheless, changes in outcome measurement 
would be entirely concealed without preregistration. 

The reproducibility of published meta-analyses is seriously limited 
by the rarity with which data and analysis syntax are made available 
openly with the publication. One review estimated that only 1% of meta- 
analyses shared analysis code with their publication (Polanin et al., 
2020a, 2020b). An obvious benefit of sharing syntax and data-sets is that 
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peers can independently reproduce and verify the meta-analysis. Given 
the prevalence of various sources of error that have been identified in 
already published meta-analyses (Gøtzsche et al., 2007), the ability to 
check and correct statistical analyses is essential to allow quality control. 
Syntax also provides an unambiguous record of the analysis, meaning 
that readers and reviewers can use this code to aid their comprehension 
of the methodology of a given meta-analysis. As such, sharing code 
enhances transparency as well as reproducibility. One challenge when 
collating data for meta-analyses is that the empirical reports may 
contain insufficient data, meaning that some data points in the meta- 
analysis are obtained through communication with authors. Here, it 
can be useful to maintain a record of this communication to document 
the provenance of the data, as well as getting verification from the au
thors that it is permissible to share this data openly. 

Meta-analyses and systematic reviews become out-of-date rapidly, 
sometimes even before publication (Beller et al., 2013; Créquit et al., 
2016). This might occur because of new studies entering the primary 
literature, or because there is often a long delay between the end of a 
literature research and the publication of the meta-analysis, or due to 
the development of novel statistical techniques to conduct a meta- 
analysis and correct for bias. Adopting transparent reporting standards 
facilitates cumulative science by allowing future researchers to add 
newer studies to open meta-analytic data. To ensure datasets are 
maximally useful for future scientists, Lakens et al. (2016) recommend 
meta-analysts share effect sizes, confidence intervals, sample sizes, 
means, standard deviations, test statistics, and the type of design for 
each study included in the meta-analysis. To facilitate the transparent 
reporting of meta-analyses in ERP research specifically, authors should 
include as a minimum study-level information about analysis electrodes 
and ERP operationalisation (e.g., peak, mean amplitude), as well as 
cataloguing other information that might reasonably contribute to the 
heterogeneity of ERP results (e.g., hardware, electrode numbers, refer
encing system). Where possible, meta-analysts should aim to minimize 
between-study heterogeneity—sometimes by contacting primary au
thors for statistics that more closely match the criteria for the review. We 
are aware of no meta-analysis that reported this range of parameters for 
the anxiety-ERN relationship. Thus, there appears to be considerable 
room for improvement in reporting standards for meta-anlayses in ERP 
research, at least as indicated by the anxiety-ERN relationship. 

Sharing data and analysis scripts alone, however, is insufficient to 
allow existing meta-data to be used in future research. For example, 
inclusion and exclusion criteria for a meta-analysis contain some degree 
of subjectivity (Lakens et al., 2016). Consequently, it can be difficult for 
independent researchers to update already published meta-analyses if it 
is uncertain that their ongoing procedures closely mirror those used to 
construct the pre-existing data-set. Furthermore, for a paper that 
ostensibly meets the exclusion criteria for a given meta-analysis, there 
might be multiple effect sizes that could feasibly be included in the 
analysis. Original articles exploring the anxiety-ERN relationship, for 
example, commonly present the same statistic from multiple electrodes 
(e.g., Fz, FCz, & Cz), and several approaches might be justified to end up 
with only one effect size per data set (e.g., always using FCz, using the 
electrode emphasized by the authors, or pooling across electrodes). 
Supplementary text that unambiguously identifies the selected effect 
size from a given paper (e.g., including quoted text and page numbers to 
identify which effect size that was selected among the many in a paper) 
can be used to document specifically how authors extracted effect sizes 
based on their more subjective inclusion/exclusion criteria. In addition 
to providing supplementary text and analysis scripts, one basic step that 
should be taken in the publication of meta-analyses is to follow estab
lished minimum standards for reporting, such as PRISMA or MARS. Most 
studies that have included a meta-analysis of the anxiety-ERN rela
tionship have included a statement and flow chart indicating that they 
followed the PRIMSA guidelines (cf., Cavanagh and Shackman, 2015; 
Moser et al., 2013, 2016; Riesel, 2019). 

3. Post hoc methods to identify and adjust for publication bias 
in existing meta-analyses 

The validity of even the most open and transparently conducted 
meta-analysis depends on the credibility of the primary literature. A 
fully preregistered and maximally reproducible meta-analysis will 
nevertheless provide a biased estimate of the underlying effect size if 
publication bias and QRPs are present in the summarized literature. 
Without any formal attempt at accounting for these sources of bias, a 
meta-analytical effect size will likely over-estimate the size of a hy
pothesized effect. This can occur for several reasons. If studies are 
selected based on statistical significance or their large effect sizes (i.e., 
publication bias; Rothstein et al., 2006), then multiple null results will 
be omitted from the meta-analytical estimate. Effect sizes are further 
inflated when publication bias is combined with low statistical power as 
only very large effects will reach conventional significance thresholds of 
p < .05 (Sterne et al., 2000). These small study effects do not necessarily 
mean that the true effect is not different from zero, as even true but small 
effects would be inflated by publication bias. Consequently, the validity 
of a meta-analysis also depends on employing some methods to assess 
the extent of this publication bias, and estimating the size of the ‘true’ 
underlying effect size in the absence of small study effects. 

3.1. Emptying the file-drawer by finding unpublished effect sizes 

Publication bias arises when studies with significant results and/or 
large effects are more likely to be published than non-significant results 
(Rothstein et al., 2006). Even if statistical power is 0.8 in a field and 
hypothesis is correct, 20% of the tests of should return non-significant 
results. Non-significant results should become more prevalent when 
statistical power is low, as is likely true for the average ERP study 
(Clayson et al., 2019; Clayson et al., 2020; Szucs and Ioannidis, 2017). 
The inflationary effects of publication bias can be partially mitigated by 
seeking out unpublished effect sizes to include in their meta-analysis 
(Pigott and Polanin, 2020). Unpublished effects can be sought through 
multiple means, including student dissertations, contacting authors 
identified from literature reviews, seeking results from registered studies 
that were not published, or posting data requests—perhaps including 
links to your registration—to mailing lists and/or discussion forums of 
topic-relevant academic societies. This approach works against the so- 
called file-drawer problem by uncovering real studies that were sup
pressed due to publication bias. If publication bias exists, unpublished 
studies will likely have smaller effect sizes that are not statistically sig
nificant (Polanin et al., 2016). We recently sought unpublished studies 
while conducting a meta-analysis on the anxiety-ERN relationship; 
while published studies were associated with a small, significant effect 
(r = − 0.22, N = 2942), no significant effect was observed for unpub
lished studies (r = − 0.03, N = 877; Saunders and Inzlicht, 2020). Thus, 
unpublished effect sizes were not only smaller than published ones, but, 
in fact, suggested no significant relationship between anxiety and the 
ERN. 

Conclusions derived from unpublished effect sizes should be inter
preted with caution. Factors that might contribute to null results 
sometimes give authors good reason to avoid publication (e.g., non- 
specific error, data quality, low statistical power) meaning it is 
possible that unpublished studies have lower quality data. Equally, 
however, it should be noted that small published studies with large ef
fects might also have lower quality data, but that noise moved the effect 
in a predicted direction that was advantageous for publication. In this 
sense, even finding lower quality studies in the opposite direction of the 
predicted effect might still help to get a more balanced picture of the 
field overall. One further limitation of this method is that it relies on 
cooperation from other researchers to locate, and sometimes re-analyse, 
unpublished data. These factors often mean that attempts to find un
published studies returns a low yield (Polanin et al., 2020a). Indeed, we 
(Saunders and Inzlicht, 2020) only uncovered 7 unpublished effect 
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sizes—two of which were from our own laboratory. Consequently, even 
if the unpublished data is of high quality, seeking hidden data sets will 
unlikely uncover sufficient information to markedly change the effect of 
publication bias that exists in the literature. 

3.2. Statistical methods to correct for publication bias 

Beyond seeking unpublished effect sizes, meta-analysts can statisti
cally detect and correct for small publication bias using an ever 
increasing number of distinct techniques (cf., Carter et al., 2019; Duval 
and Tweedie, 2000; Iyengar and Greenhouse, 1988; McShane et al., 
2016; Stanley and Doucouliagos, 2014). Recent studies have indicated 
that some correction methods are more or less valid than others, 
particularly for the type of meta-data common in cognitive science. 

3.2.1. Inappropriate bias-correction methods 
Two popular methods related to publication bias that are insufficient 

are Fail-Safe N (Rosenthal, 1979) and trim-and-fill (Duval and Tweedie, 
2000). Fail-Safe N attempts to determine the number of non-significant 
results that would need to be discovered to render the uncorrected meta- 
analytical effect non-significant. As such, Fail-Safe N attempts to esti
mate the tolerance of a meta-analytical effect sizes to the addition of 
undisclosed null-results, rather than estimating and correcting for pub
lication bias itself. This intuitively appealing method too often over
estimates how robust meta-analytic effect sizes are to the inclusion of 
null results (Becker, 2005). For example, two meta-analyses on the 
anxiety-ERN relationship suggested that more than 1000 null results 
would have to be uncovered in order for the meta-analytical effect to be 
rendered non-significant (Cavanagh and Shackman, 2015; Riesel, 
2019)—these estimates are based on meta-analyses that each contain 
fewer than 40 studies. Large Fail-Safe N does not necessarily indicate 
low publication bias. Most problematically, the number of hidden null 
studies estimated by Fail-Safe N increases with each significant study 
that is added to the analysis, and increases rapidly when significant 
studies in the opposite direction of the hypothesized effect are omitted 
from a meta-analysis (Becker, 2005; Hilgard, 2016). As such, publication 
bias itself can inflate Fail-Safe N. 

Trim-and-fill aims to quantify publication bias, and, unlike Fail-Safe 
N, it provides a bias-corrected estimate of the meta-analytical effect size 
(Duval and Tweedie, 2000). Trim-and-fill centres on detecting asym
metry in funnel plots—scatterplots showing the association between 
study effect sizes and their standard errors. In the absence of publication 
bias, more precise studies (e.g., those with larger samples, lower error) 
are assumed to provide the best estimate of the true underlying effect 
size. Additional nonspecific error in less precise studies would have 
more erratic effect sizes, causing them to fall equally in either direction 
around the stronger estimates. Such an unbiased literature creates the 
symmetrical, pyramid-like distribution on a scatterplot of effect sizes 
against standard error that gives the funnel plot its name (see Fig. 1, left 

chart). However, publication bias results in the omission of effect sizes in 
the opposite direction of the established hypothetical effect, resulting in 
funnel-plot asymmetry and an inflated estimate of the true effect size 
when the biased population of studies is aggregated in a meta-analysis 
(see Fig. 1, right panel). 

Some meta-analysts have assessed publication bias using visual in
spection of scatterplots. However, as has been noted elsewhere (Ioan
nidis, 2008), this method lacks objectivity. Trim-and-fill attempts to 
reinstate symmetry in the funnel plot first by ‘trimming’ studies to 
achieve symmetry, and subsequently imputing (i.e., ‘filling’) values to 
restore symmetry when the trimmed values are re-instated. A corrected 
effect size can then be estimated my meta-analysing over the original 
and imputed values. Methods based around funnel plot asymmetry, in 
addition to Fail-Safe N, are the most frequently used test of bias in the 
anxiety-ERN relationship. Trim-and-fill resulted in little correction in 
our recent meta-analysis of the anxiety-ERN relationship (Saunders and 
Inzlicht, 2020), while one other meta-analytic review detected no funnel 
plot asymmetry (Pasion and Barbosa, 2019). Two other meta-analyses 
reported related methods of visual inspection of funnel plot asymme
try (Cavanagh and Shackman, 2015; Riesel, 2019). In addition to 
popularity in these meta-analyses, trim-and-fill was recommended in a 
recent tutorial on meta-analyses in ERP research (Moran et al., 2017). 

Despite its apparent popularity, trim-and-fill has been criticised for 
failing to adequately adjust for publication bias, resulting in unaccept
ably high false-positive rates. Simulation studies have indicated that 
trim-and-fill performs poorly when there is anything more than mild 
heterogeneity (Carter et al., 2019; Jin et al., 2015). Furthermore, trim- 
and-fill also shows unacceptably high levels of false-positives when 
medium levels of publication bias exist, even under conditions where 
effect size heterogeneity is low (Carter et al., 2019). Heterogeneity levels 
are typically moderate-to-high in psychology (Cafri et al., 2010), and 
were moderate in three of the four meta-analyses that reported hetero
geneity statistics in the anxiety-ERN relationship (Pasion and Barbosa, 
2019; Riesel, 2019; Saunders and Inzlicht, 2020). As such, trim-and-fill 
seems unlikely to provide an appropriately conservative bias adjustment 
is psychology and neuroscience. 

3.2.2. More appropriate tests of publication bias 
Other methods based on regression appear to provide more conser

vative and appropriate adjustments for publication bias: the Precision 
Effect Test (PET) and Precision-Effect Estimate with Standard Error 
(PEESE; Stanley and Doucouliagos, 2014). Both methods follow a 
similar logic where more precise studies (i.e., those with less measure
ment error) are assumed to give a closer estimate of the “true” under
lying effect size than studies with more error. In cases with publication 
bias or other small study effects, an artifactual gradient emerges where 
effect sizes decrease as study precision increases. Regression-based bias- 
detection tools can estimate this artifactual gradient and correct for it 
when estimating meta-analytic effect sizes. PET involves a linear 

Fig. 1. Left chart depicts an idealised funnel plot for 
a meta-analytical effect size of r = 0.29, k = 68, 95% 
CIs [0.25,0.32] based on simulated data. Right panel 
shows an asymmetric funnel plot based on the same 
data set, but excluding the 23 studies with small, 
presumably non-significant, effects (i.e., r < 0.2), that 
would likely not find its way into the published 
literature. This bias results in a rightward skew of the 
funnel plot and an inflated meta-analytical estimate, 
r = 0.37, k = 45, 95% CIs [0.32,0.41].   
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regression predicting effect sizes from their standard errors, weighted by 
the inverse of the standard error squared. In contrast, PEESE follows a 
similar logic but with a quadratic relationship estimated between effect 
sizes and their standard errors. The rationale for the quadratic term is 
that, if there is a true underlying effect, smaller, less precise studies will 
likely only become publishable if they severely overestimate the effect 
size, while larger, more precise studies, will be publishable (e.g., achieve 
conventional levels of statistical significance) even for smaller effect 
sizes. In both cases, the intercept for the model is taken to be the most 
precise study possible, and, therefore be the bias-corrected effect size. 

While PET and PEESE might be used independently, a conditional 
logic (PET-PEESE) has been suggested. If the PET intercept is statistically 
significant (i.e., the corrected effect size is non-zero), it is suggested to 
use PEEESE to get a better estimate of the overall effect size. Alterna
tively, if PET is not significant, then the analyst should conclude that the 
meta-analytical effect size is not different from zero. Recent simulation 
studies have suggested that PET-PEESE works adequately well in rela
tively realistic circumstances, including cases with moderate heteroge
neity, so long as there are sufficient studies in the meta-analysis (~ k ≥
30) to achieve sufficient statistical power (cf., Carter et al., 2019). Our 
recent meta-analysis of the anxiety-ERN relationship included PET- 
PEESE, indicating a significant meta-analytical effect for PEESE (r =
− 0.12) but not PET (r = − 0.05). The conditional logic of PET-PEESE 
would therefore put forward the conclusion that the anxiety-ERN rela
tionship is, overall, not significantly different from zero. This conclusion 
is starkly different from one of little bias suggested by trim-and-fill, but 
is nevertheless consistent with the effect size from our summary of un
covered unpublished effect sizes. 

One final class of correction procedures are selection methods. Here, 
we focus on a three parameter model developed by Iyengar and 
Greenhouse (1988) that has shown favourable results in recent simula
tion studies (Carter et al., 2019; McShane et al., 2016). The three- 
parameter selection method has two parameters that attempt to 
describe the data: an effect size parameter for the population effect size, 
and a second parameter that reflects the heterogeneity of the effect sizes 
in the meta-analyses. The third selection parameter is a weight param
eter that provides the probability that a non-significant effect will enter 
the literature (cf., Iyengar and Greenhouse, 1988). This selection model 
can be implemented using the weightr (Coburn & Vevea, 2017) package 
in R that reports the adjusted effect size and the likelihood ratio test, 
which provides a χ2 statistic comparing the unadjusted and adjusted 
effect-size estimates. We also included the three-parameter selection 
model in our assessment of publication bias in the anxiety-ERN rela
tionship, with this analysis suggesting a small but significant bias- 
corrected effect size (r = − 0.14, Saunders and Inzlicht, 2020). 

Returning mixed results across multiple corrections for publication 
bias, as in the case with our recent investigation of the anxiety-ERN 
relationship, is unsatisfactory, as it leaves confusion about the true ef
fect size. Easing this uncertainty somewhat, Carter et al. (2019) 
compared multiple correction methods—including trim-and-fill, PET- 
PEESE, and selection models—in a simulation that varied parameters to 
capture the typical state of meta-analyses psychology (i.e., publication 
bias, QRPs, heterogeneity, effect sizes). Here, PET-PEESE and the three- 
parameter selection model faired similarly, and both were better than 
trim-and-fill, which showed an unacceptable false-positive rate. Carter 
et al. (2019) suggested using multiple correction methods in a sensitivity 
analysis to determine how robust the meta-analytic effect size is across a 
range of correction methods that perform well under different circum
stances. It should be noted that, while PET-PEESE and the three- 
parameter selection model both performed adequately, the three- 
parameter selection model routinely approximated the true underlying 
effect size best. The three-parameter selection method, then, might 
provide the best currently available bias-corrected effect size for the 
anxiety-ERN relationship as r = − 0.14. However, it is important to know 
that each adjusted effect size is an estimate. Future well-powered 
confirmatory tests are required to assess if the effect sizes predicted by 

each correction method bear out. 

4. Challenges and future directions: prospective meta-analyses 

As can be seen from the prior sections, the straightforward inter
pretation of meta-analyses as a definitive, statistically powerful estimate 
of a true underlying effect size is complicated by factors that introduce 
bias to either the primary literature, the production of the meta-analysis 
itself, or both. Furthermore, while statistical methods can provide a fair 
impression of the bias-corrected effect size, the results from these ana
lyses are also not definitive. As illustrated in our example, viable meta- 
analytic estimates of the anxiety-ERN relationship range between me
dium sized effects (Moser et al., 2013), to an effect that is not distin
guishable from zero bias (PET-PEESE, Saunders and Inzlicht, 2020). 
Whether each of these reflect the true effect size, or whether the truth 
lies somewhere in the middle, cannot be determined from retrospective 
meta-analyses and correction methods. This impasse is particularly 
disappointing considering that recent meta-analyses integrated data 
from thousands of participants. These statistics point to a real in
efficiency in the verification of relatively straightforward hypotheses in 
ERP research, and suggest that steps should be taken to conduct high 
quality confirmatory tests. 

As much of the uncertainty in meta-analytical effect sizes come from 
bias in the primary literature itself, future ERP research could be made 
more confirmatory by increasing the use of preregistration and regis
tered reports. While large meta-analyses often fail to settle debates or 
provide definitive conclusions (Ferguson, 2014), estimates from meta- 
analyses can be used as the basis for power analyses for ongoing 
confirmatory studies. These power analyses should be based on bias- 
corrected estimates unless the author can be confident that publica
tion bias did not influence the uncorrected meta-analytic effect size. 
However, actually running a study that is sufficiently powered to find 
this effect confers a considerable cost on the researcher. A well powered 
study with appropriate parameters (one-tailed, α = 0.05, Power = 0.9) 
would require N = 430 to detect r = − 0.14. As mentioned earlier in this 
manuscript, most labs would be unable or unwilling to collect this 
quantity of data. What this suggests is that other, more prospective 
approaches are also needed. 

Traditional meta-analysis is retrospective, meaning that authors 
often make decisions about meta-analytical protocols (e.g., selection 
criteria, search terms, moderators) based on their expert knowledge of 
the research area subjected to quantitative review. These factors often 
mean that meta-analyses are largely exploratory rather than confirma
tory, as different patterns of decisions by experts in the field can result in 
meta-analyses with diverging conclusions about the same topic (Watt 
and Kennedy, 2017). In prospective meta-analyses, on the other hand, 
the meta-analysis is preregistered following established reporting stan
dards, but, rather than integrating already existing results (a retrospective 
meta-analysis), only data that is collected after the registration is 
included (a prospective meta-analysis; Ghersi et al., 2011; Reade et al., 
2010). This approach allows for truly confirmatory meta-analyses by 
ensuring that analytic decisions cannot be based on prior knowledge of 
existing results. 

While prospective meta-analysis has potential benefits over post hoc 
analyses, some practical limitations exist. First, as it is difficult to 
anticipate the design of future studies, the registered meta-analysis plan 
might need to be adapted to account for new studies with unanticipated 
design quirks (Watt and Kennedy, 2017). In this sense, prospective meta- 
analysis progresses somewhat iteratively as do retrospective analysis 
(Lakens et al., 2016; Moher et al., 2009). Second, it is impossible to know 
if and when new studies will emerge on your prospective research 
question, with the production of new data dependent on the popularity 
of the question. Indeed, it is not unusual for prospective meta-analyses to 
take more than a decade to complete (Reade et al., 2010). Third, while a 
prospective meta-analysis can eliminate bias arising from the meta- 
analysis itself, the validity of meta-analyses is also challenged by bias 
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in the primary literature. One remedy is to base the prospective meta- 
analysis solely on studies with minimal bias (e.g., a meta-analysis of 
Registered Reports; Gronau et al., 2017). However, as registered reports 
only make up a very small minority of published studies, prospective 
meta-analysis based on the ad-hoc publication of registered reports 
would be data poor, and would involve ignoring the majority of studies 
on a topic. Fourth, prospective meta-analysis alone depend on data 
appearing through traditional means, meaning that prospective meta- 
analysis alone would not counter the inability of ERP researchers to 
collect large data sets. 

4.1. Multisite collaboration 

One fruitful approach to resolve these issues it to combine prospec
tive meta-analysis with multi-site projects that coordinate data collec
tion across independent laboratories (Watt and Kennedy, 2017; Simons 
et al., 2014). This method allows for confirmatory meta-analysis based 
on distributed data-collection, while also giving the consortium of re
searchers control over the rate and quantity of data collection. This 
collective approach requires considerable organisation compared to 
each laboratory working independently, however, there are numerous 
examples of such approaches from psychology (Moshontz et al., 2018; 
O’Donnell et al., 2018; Wagenmakers et al., 2016). For example, 
Registered Replication Reports (cf., Simons et al., 2014) aim to replicate 
established and influential effects in psychology by having distributed 
laboratories run a study with an identical preregistered protocol that are 
combined in a meta-analysis with minimal bias. Interestingly, examples 
of this format include cases where retrospective meta-analyses have 
provided conflicting results, such as the effect of so-called ego depletion 
on self-control (Carter and McCullough, 2014; Hagger et al., 2010; 
Hagger et al., 2016; Inzlicht et al., 2015). In addition to Registered 
Replication Reports, other initiatives, such as the Psychological Science 
Accelerator (Moshontz et al., 2018) have attempted to build networks of 
researchers interested in conducting multisite research that are then in a 
state of readiness to join collective data collection efforts once studies 
are accepted by the network. 

While methods exist to conduct multisite prospective meta-analyses, 
challenges arise when conducting such a process in EEG research. First, 
past examples have required each replicating lab to conduct a study that 
was sufficiently powered to detect the effect size of interest (Open Sci
ence Collaboration, 2015). This method would be inappropriate for ERP 
research as it would mandate each lab recruiting hundreds of partici
pants for individual difference studies. Instead, a collective effort in 
which many laboratories collect more modest samples of data and 
integrate this data into a later meta-analysis would likely be more 
practical. Second, hardware differs across labs, including amplifiers, 
electrode sets (active vs. passive; number of electrodes; electrode 
placement), electrical shielding (e.g., labs may or may not record inside 
a faraday cage), and other apparatus common to wider psychological 
experimentation (e.g., response boxes, audio equipment, monitor 
refresh rates). As a minimum, multisite collaborations should provide 
supplemental materials that catalogue differences between labs and 
ensure that some essential similarities are maintained across sites (e.g., 
common references, analysis electrodes). Third, analysis of ERP data is 
incredibly heterogeneous even when authors ostensibly extract the same 
ERP component (see Fischer et al., 2017 for discussion regarding the 
ERN). One method to ensure consistency would be to decide all analysis 
steps in advance through communications within the participating au
thors. Alternatively, analysis of the EEG data could be centralized to one 
lab, or authors might conduct a multiverse analysis in which the 
robustness of a given finding is checked by attempting to conduct every 
justifiable analysis of a given data set to test how much the conclusions 
are consistent across a range of justifiable analytic choices (cf., Steegen 
et al., 2016). 

Finally, prospective multisite investigations present logistic diffi
culties. Multisite studies sometimes occur in a relatively ad hoc manner 

with a collection of researchers interested in a specific hypothesis 
(Nieuwland et al., 2018), while other approaches have been journal led, 
such as the RRR initiative in Perspectives in Psychological Science 
(O’Donnell et al., 2018; Simons et al., 2014; Wagenmakers et al., 2016). 
A benefit of the journal-led approach is that in-principle acceptance can 
be granted before commencing an undertaking that potentially involves 
thousands of research participants in tens of laboratories. This advance 
commitment to publishing the study results not only helps to recruit 
participating labs, but also means that the protocols are both submitted 
to advanced scrutiny meaning that the design can be improved based on 
reviewer and editor feedback, but also that the prospective protocol can 
be decided in advance and locked within the journals systems to protect 
against experimenter degrees of freedom. 

5. Summary and conclusions 

Meta-analysis can be a powerful tool to integrate smaller pools of 
data to make powerful statistical inferences. This benefit might be 
particularly salient in resource intensive fields, such as ERP research, 
where individual laboratories will likely struggle to achieve large 
enough samples to precisely estimate effect sizes associated with a given 
hypothesis, especially for research involving between-subject designs 
such as individual difference research. However, the potential strengths 
of meta-analysis is limited by multiple sources of bias. Despite 6 meta- 
analyses existing on the anxiety-ERN relationship, for example, esti
mates of the true underlying effect range from small-to-medium un
corrected effects, to their potentially being no real relationship between 
anxiety and the ERN after correcting for publication bias. Furthermore, 
while a hierarchy emerges of better and worse performing statistical 
methods that can be applied to correct for publication bias in retro
spective meta-analyses. The post hoc nature of these methods, in addi
tion to the range of values returned by different correction methods, 
makes them more suitable as a sensitivity analysis to determine plau
sible meta-analytical effect sizes, rather than providing a confirmatory 
test of the underlying hypothesis. 

Adopting a range of open science practices can help meta-analyses to 
realise their potential as a method to facilitate cumulative scientific 
inferences. Novel meta-analyses can be improved with a priori prereg
istration and transparent reporting practices that both help consumers of 
meta-analytic reviews to understand and evaluate their claims. One 
further benefit of increase transparency—particularly the sharing of 
data—is that it allows future researchers to update meta-analyses as and 
when newer studies emerge testing the same hypotheses. While these 
open science practices will increase the credibility of meta-analysis, any 
retrospective meta-analysis is limited by multiple sources of bias that, as 
mentioned, cannot be completely resolved through statistical methods 
that correct for publication bias. Prospective meta-analyses, ideally 
based on studies that are preregistered in order to minimize bias—have 
the potential to conduct truly confirmatory hypothesis testing while 
relying on smaller pools of data collected in distributed laboratories. 

In sum, we advocate for a more team science approach to the study of 
neurophysiology. Team-science—in which multiple laboratories 
collaborate to collect sufficient data to test a hypothesis of mutual 
interest—can facilitate the timely completion of prospective meta- 
analyses, and ERP research could follow established models from psy
chology (e.g., Registered Replication Reports; Psychological Science 
Accelerator) in order to achieve this goal. In conjunction with modern 
meta-analytic techniques, team science might allow for a truly cumu
lative science that makes fewer errors and expedites the uncovering of 
truths. 

References 

Becker, B.J., 2005. Failsafe N or file-drawer number. Publication bias in meta-analysis: 
Prevention, assessment and adjustments 111–125. 

Beller, E.M., Chen, J.K., Wang, U.L., Glasziou, P.P., 2013. Are systematic reviews up-to- 
date at the time of publication? Systematic Reviews 2, 36. 

B. Saunders and M. Inzlicht                                                                                                                                                                                                                  

http://refhub.elsevier.com/S0167-8760(21)00036-2/rf0005
http://refhub.elsevier.com/S0167-8760(21)00036-2/rf0005
http://refhub.elsevier.com/S0167-8760(21)00036-2/rf0010
http://refhub.elsevier.com/S0167-8760(21)00036-2/rf0010


International Journal of Psychophysiology 162 (2021) 112–120

119

Booth, A., Clarke, M., Ghersi, D., Moher, D., Petticrew, M., Stewart, L., 2011. An 
international registry of systematic review protocols. Lancet. 377, 108–109. https:// 
doi.org/10.1016/S0140-6736(10)60903-8. 

Booth, A., Clarke, M., Dooley, G., Ghersi, D., Moher, D., Petticrew, M., Stewart, L., 2012. 
The nuts and bolts of PROSPERO: an international prospective register of systematic 
reviews. Systematic Reviews 1, 1–9. 

Borenstein, M., Hedges, L.V., Higgins, J.P., Rothstein, H.R., 2011. Introduction to Meta- 
analysis. John Wiley & Sons. 

Button, K.S., Ioannidis, J.P., Mokrysz, C., Nosek, B.A., Flint, J., Robinson, E.S., 
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