

NobleHour API Quickstart

Introduction

Our API (Application Programming Interface) allows users to customize and tailor their own features

using the NobleHour platform. It provides you with a framework to develop your own tools, specifically

geared to the needs of your organization. Our growing library of routines integrate various NobleHour

tasks, interactions, or functions with your organization. We provide the tools and best practices

necessary so that NobleHour functions on any device, operating system, or application. All that we ask is

that you provide the imagination!

What can I do with the NobleHour API?

Having worked with organizations such as schools, businesses, and non-profit entities, we continuously

encounter situations where certain software functions require custom development for an

organization’s operational needs. Using our API Endpoints, easily create and manage NobleHour

information. We’ve also included a search component that allows keyword, location, and relational

queries. Our API is designed with REST principles. Later in this document, we’ll also discuss our SDK

(Software Development Kit) that works on top of REST API endpoints.

The NobleHour API is our development ecosystem. As we continue to update our libraries, we

encourage suggestions from our users on how we can help you build applications that benefit your

organization.

Our API enables interoperability between an organization’s system(s) and NobleHour. To get a better

idea as to how to envision this, let’s consider the following scenarios:

 While on campus, a student is searching for community service opportunities for extracurricular

 credit. Using their iPhone, they quickly access the online calendar system for the latest updates

 around campus, including NobleHour events and opportunities.

 A registered organization using NobleHour recently started a campaign to recruit volunteers for

 an organized food drive. Volunteers register through the store’s webpage, which immediately

 retrieves the latest event times, dates, and locations from NobleHour.com.

 A non-profit organization taking part in a mobile blood drive must schedule and track the hours

 of volunteers working shifts throughout the month. Using their own organization’s custom

 scheduling application for the iPad, hours can be recorded. This data is also synced directly to the

 organization’s NobleHour.com account.

Before Getting Started

To use our API, you’ll need to be familiar with following:

 HTTP (Hypertext Transfer Protocol)

 REST (Representational State Transfer). To learn more about REST principles, checkout the

 REST API Tutorial.

http://www.restapitutorial.com/

 Understanding the NobleHour API

1. Get acquainted with NobleHour’s API by reviewing the NobleHour API Basics section. This

provides an overview and glossary on how we define and associate objects when working with

the API.

2. Review the next section, NobleHour Endpoints. Each API endpoint represents a set of resources

within NobleHour. We’ll breakdown the capabilities of each, giving you an idea of the scope of

custom resources available to you.

3. In Accessing the NobleHour API, we’ll walk you through the initial development stages and help

you get started.

4. Be sure to check out our software development kits in the final section, Our SDK (Software

Development Kit).

NobleHour API Basics

Our database uses a “graph” approach to model relationships between multiple things and is our

primary way of retrieving data. It’s both HTTP-based and domain specific, allowing you to perform tasks

such as query data, log hours, schedule events, or create opportunities.

When envisioning graph theory, vertices and edges are used to distinguish and associate these

relationships. In the NobleHour database, we use different vertex types and different edge types to

model these relationships.

 Vertex: A generic node in the graph (can represent one of many things).

 Edge: A connection between two vertices.

Vertices and edges provide a relational way to model and link our API endpoints together. You can

create vertices to associate information such as organizations, groups, and projects. This is what we can

an entity. Users then submit their information to this entity, otherwise known as content. Content

represents various information that would be inputted on the user’s side. For example, logging hours or

locations into NobleHour.

 Entity: A vertex that is formed by an administrator in order to relate users and content.

 Specifically: Organizations, Groups, and Projects.

 Content: Vertices created by users for submission to an Entity. Specifically: News, Events,

 Opportunities, Media, Hours, Donations, and Goods & Services.

For each vertex type or edge type we have assigned a Universally Unique Identifier (UUID) and

description. When you request for a vertex or edge, you’ll include this ID. UUID is defined by RFC 4122,

ISO/IEC 9834-8:2005, and related standards. In some systems, this term is UUID is referred to GUID

(Globally Unique Identifier).

Example

POST / organizations/ :id/groups

Where the :id would be replaced by the UUID of the organization.

An edge type of 0 (Parent) would be created between the group and organization.

NobleHour Vertex Types

Type ID Description

Address 11

Asset 12

Customer 6

Event 5

Group 1 A subset of users within an
organization

Hours 10

News 0 Content like a blog post or a
youtube video

Opportunity 3

Organization 2

Organization (Offline) 4

Submission 8 A request to moderate
something

Submission History 9

URL 13

User 7 An account representing a
person using NobleHour

NobleHour Edge Types

Type ID Description

Parent 0 Parent in an
Organization/Group/User
Hierarchy

Content 1 Content that has been
approved/accepted (via
Submission process)

Admin 2 An approved admin user role
for a given vertex

Moderator 3 An approved moderator role for
a given vertex

Contributor 4 An approved contributor role
for a given vertex

Citizen 5 An approved citizen user role
for a given vertex

Follower 6 Denotes the follower
relationship for a given vertex

Like 7 Facebook/Google+ style such as
“like” or “+1” or “star”

Author 8 Indicates which User has
created the other vertex

Verifier 9 Indicates which User has
verified the given Submission

Submission 10 Indicates the vertex that has
received a submission

Hours 11 Set of hour log entries (for a
Submission)

Change 12 Log of changes made to an
Hours Submission (ordered by
time)

Location 13 Indicates a location for the
given vertex

Additional Terminology

Term Description

Content Stuff that is created & contributed by users, e.g.
“News”, “Opportunity”

Destination Refers to the entity that received a submission

Role Establishes the permissions of a user with a
vertex.

Accessing the NobleHour API in 3 Steps:

Note: For mobile clients, application code will need to utilize the API with the appropriate credentials.

Step 1.

Point the client to the appropriate environment base URL from the list below. Typically, the “Staging

Environment” is commonly used. Depending on your needs, use an integration or a personal

development server to point your client to.

Environment URL
Development Varies

Integration https://integration-api.noblehour.com

Staging https://staging-api.noblehour.com

Production (1.x) https://api.noblehour.com

Production (2.0 temp) https://developer.noblehour.com

Step 2.

In order to access private endpoints and obtain authorization tokens, please configure your client

credentials. These will be provided by our support team upon activation.

Step 3.

Obtain tokens for user-scoped access. Use the Authentication endpoint to create, refresh, or revoke a

token.

Obtaining Client ID Authorization

Authorization for the NobleHour API is done using OAuth 2.0. OAuth is a protocol that lets external
applications request authorization to private details without storing passwords. This is preferred over
Basic Authentication because tokens can be limited to specific types of data, and can be revoked by
users at any time.

Clients by default have some access to publicly available information - similar to anyone browsing the
NobleHour.com website itself. To obtain access to information on a user’s behalf, an application must
request the user’s permission using the OAuth 2.0 protocol. A new authorization token is provided and
may be used to gain further information as authorized by the user. A valid authorization token is needed
for each request requiring access to secure, non-public data. Once obtained, the token may be used
repeatedly until it expires.

What is OAuth 2.0 Protocol?
OAuth is a process for owners to authorize 3rd party access to their server without the need to share
their credentials. On behalf of the resource owner, OAuth allows access tokens to be issued by third-
party clients with their approval. For example, each day users log into 3rd party websites such as

Facebook or Twitter without the need to worry about security credentials thanks to the open standards
that OAuth provides.

To learn more about OAuth 2.0 RFC please visit the resource page here.

Grant Types
Currently we only support two grant_types. These are password and refresh. Additional types are in
development and being added as necessary.

Obtaining Tokens
To obtain an authorization token, a grant_type, username, password, and client_id must be encoded in
JSON and sent via POST to the following url: https://api.noblehour.com/oauth/token

Attribute Range Notes

grant_type password, refresh Always password for first token
request

client_id a-zA-Z0-9 Provided by NobleHour

Username any valid email address

Password user password

Example body:

{
"grant_type":"password",
"username":"batman@gotham.com",
"password":"jokersmells",
"client_id":"aB23rsdfkj11ff"
}

A successful token request will result in a JSON response body that has access_token, token_type,
expires_in, and refresh_token as attributes.

Example JSON response:

{
"access_token":"1245Fadsf",
"token_type":"Bearer",
"expires_in":3600,
"refresh_token":"asv2qrdsfR"
}

The access_token attribute may be used to access the API by supplying it as the Authorization HTTP
header value.

http://tools.ietf.org/html/draft-ietf-oauth-v2-27

The token_type should always be Bearer, meaning it acts very much like a simple random cookie token
for sessions.

The expires_in value determines in seconds how long the token is valid.

Refreshing Tokens
The refresh_token may be used to obtain a new token and invalidate the old token at any time.

A refresh token request requires a POST body that looks like the following:

{
"grant_type":"refresh_token"
"refresh_token":"asv2qrdsfR"
"client_id":"aB23rsdfkj11ff"
}

The response will look the same as a password request, e.g.:

{
"access_token":"1246Gadsg",
"token_type":"Bearer",
"expires_in":3600,
"refresh_token":"btu3qrdsfS"
}

Authorized Requests

Once a client has authorized, requests should include the Authorization header in subsequent requests.
For more information on header format, refer to the RFC on HTTP Authentication: RFC-2617.

Website Flow
Clients authorized directly via the API can transition a user to an authenticated session on
NobleHour.com by posting to /login with a valid access token in the Authorization header. The server
will validate the token and redirect the now logged-in user to the appropriate destination on
NobleHour.com.

You’re Done!

Now that you have access to our API, you can perform the following:

Use your tokens with an SDK configuration

Our SDKs are tools that allow organizations a flexible way in creating applications for specific software

and hardware platforms. The SDK works directly with the NobleHour REST API, using library routines to

call API endpoints.

Our SDKs support the following languages:

 JavaScript: https://github.com/treetopllc/noble.js
 Golang: https://github.com/treetopllc/noble-go-sdk
 Objective-C: https://github.com/treetopllc/noblehour-objc-sdk
 Java: https://github.com/treetopllc/noble-java-sdk

OR

Access our API Endpoints

These are organized by various categories, each with a specific list of functions to enable within your

application (as permissions allow). You can access our Endpoints at http://treetopllc.github.io/redox/.

https://github.com/treetopllc/noble.js
https://github.com/treetopllc/noble-go-sdk
https://github.com/treetopllc/noblehour-objc-sdk
https://github.com/treetopllc/noble-java-sdk
http://treetopllc.github.io/redox/

Revision History

6.11.2015 Document approved for circulation.

