
 

Dec 2017  ver 2.2 MalwareArchaeology.com Page 1 of 12 

WINDOWS SPLUNK LOGGING CHEAT SHEET - Win 7 - Win2012 
 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

  

DEFINITIONS:: 

WINDOWS LOGGING CONFIGURATION:  Before you can Gather anything meaningful with Splunk, or any other log 

management solution, the Windows logging and auditing must be properly Enabled and Configured before you can 

Gather and Harvest the logs into Splunk.  The Center for Internet Security (CIS) Benchmarks will give you some 

guidance on what to configure; but does not go far enough to log and audit what is really needed for a proper 

Information Security program.  The “Windows Logging Cheat Sheet” contains the details needed for proper and 

complete security logging to understand how to Enable and Configure Windows logging and auditing settings so you 

can capture meaningful and actionable security related data.  You can get the “Windows Logging Cheat Sheet” and 

other logging cheat sheets here: 

 MalwareArchaeology.com/cheat-sheets 

REPORTS:  Queries that are saved for reference and can be launched as needed. 

ALERTS:  Queries you want to be emailed on or sent to your smartphone to alert you that something is outside the 

norm and needs to be looked at immediately.  Do not get alert heavy or your staff will ignore them as was the case in 

the Target and Neiman Marcus breaches. 

DASHBOARDS:  A collection of reports or alerts that are saved into a dashboard view for quick reference.  Often used 

for NOC’s and SOC’s to monitor critical activity.  Dashboards are left up to each user as organization’s have different 

needs and preferences on what they want to see. 

RESOURCES:  Places to get more information. 

 MalwareArchaeology.com/cheat-sheets – More Windows Logging Cheat Sheets and resources 

 Better descriptions of Event ID’s  

o www.ultimatewindowssecurity.com/securitylog/encyclopedia/Default.aspx 

 www.EventID.Net – Extensive list of Event ID’s 

 www.CISecurity.org - Center for Internet Security Benchmarks 

 Google – Of course 

 Splunk.com – Endless information on Splunk 

 Auditing the Registry with Splunk UF 

o https://docs.splunk.com/Documentation/Splunk/6.6.2/Data/MonitorWindowsregistrydata 

This “Windows Splunk Logging Cheat Sheet” is intended to help you get started 

setting up Splunk reports and alerts for the most critical Windows security 

related events.  By no means is this list extensive; but it does include some very 

common items that are a must for any Information Security and Log 

Management Program.  Start with these samples and add to it as you 

understand better what is in your logs and what you need to monitor and alert 

on. 

Sponsored by: 



 

Dec 2017  ver 2.2 MalwareArchaeology.com Page 2 of 12 

WINDOWS SPLUNK LOGGING CHEAT SHEET - Win 7 - Win2012 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CRITICAL EVENTS TO MONITOR:: 

1. NEW PROCESS STARTING:  Event Code 4688 will capture when a process or executable starts. 

2. USER LOGON SUCCESS:  Event Code 4624 will capture when a user successfully logons to the system. 

3. SHARE ACCESSED:  Event Code 5140 will capture when a user connects to a file share. 

4. NEW SERVICE INSTALLED:  Event Code 7045 will capture when a new service is installed. 

5. NETWORK CONNECTION MADE:  Event Code 5156 will capture when a network connection is made from the source 

to the destination including the ports used and the process used to initiate the connection.  Requires the use of the 

Windows Firewall  

6. FILE AUDITING:  Event Code 4663 will capture when a new file is added, modified or deleted. 

7. REGISTRY AUDITING:  Event Code 4657 will capture when a new registry item is added, modified or deleted 

8. WINDOWS POWERSHELL COMMAND LINE EXECUTION:  Event Code 500 will capture when PowerShell is executed 

logging the command line used. 

9. WINDOWS FIREWALL CHANGES:  Event Code 2004 will capture when new firewall rules are added. 

10. SCHEDULE TASKS ADDED:  Event Code 106 will capture when a new scheduled task is added. 

FILTERING EVENTS:: 

1. Filter by Message, NOT by Event Code:  It is common to blacklist event codes that are noisy or excessive that 

impacts storage and licensing.  By enabling Process Creation Success (4688) Process Terminate (4689) and Windows 

Firewall Filtering Platform Connection Success (5156 & 5158) they will be the top four event codes in your Splunk 

index.  Filtering by the content of the Message or Field name is the better way to go.  Once you understand what 

normal noise is, has minimal risk to be exploited or important to security monitoring you can filter those out at the 

client or server.  For Windows, Splunk limits the blacklist to only 10 entries, so you will need to chain similar events 

in one line.  Here is an example of a proper exclusion:  

[WinEventLog://Security] 

disabled=0 

current_only=1 

blacklist = 4689,5158 

blacklist1 = EventCode="4688" Message="(?:New Process 

Name:).+(?:SplunkUniversalForwarder\\bin\\splunk.exe)|.+(?:SplunkUniversalForwarder\\bin\\splunkd.exe)|.+(?:Splunk

UniversalForwarder\\bin\\btool.exe)" 

blacklist2 = EventCode="4688" Message="(?:New Process Name:).+(?:SplunkUniversalForwarder\\bin\\splunk-

winprintmon.exe)|.+(?:SplunkUniversalForwarder\\bin\\splunk-

powershell.exe)|.+(?:SplunkUniversalForwarder\\bin\\splunk-

regmon.exe)|.+(?:SplunkUniversalForwarder\\bin\\splunk-netmon.exe)|.+(?:SplunkUniversalForwarder\\bin\\splunk-

admon.exe)|.+(?:SplunkUniversalForwarder\\bin\\splunk-

MonitorNoHandle.exe)|.+(?:SplunkUniversalForwarder\\bin\\splunk-

winevtlog.exe)|.+(?:SplunkUniversalForwarder\\bin\\splunk-

perfmon.exe)|.+(?:SplunkUniversalForwarder\\bin\\splunk-wmi.exe)" 

blacklist3 = EventCode="4688" Message="(?:Process Command Line:).+(?:--scheme)|.+(?:--no-log)|.+(?:-Embedding)" 

blacklist4 = EventCode="4688" Message="(?:Process Command Line:).+(?:system32\\SearchFilterHost.exe)|.+(?:find 

/i)|.+(?:Google\\Update\\GoogleUpdate.exe)|.+(?:WINDOWS\\system32\\conhost.exe)" 

blacklist5 = EventCode="5156" Message="(?:Application 

Name:).+(?:splunkuniversalforwarder\\bin\\splunkd.exe)|.+(?:bigfix enterprise\\bes 



 

Dec 2017  ver 2.2 MalwareArchaeology.com Page 3 of 12 

WINDOWS SPLUNK LOGGING CHEAT SHEET - Win 7 - Win2012 
The following Splunk Queries should be both a Report and an Alert.  Remember that alerts should be 

actionable, meaning when they go off something new and/or odd has occurred and you should 

respond and investigate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MONITOR FOR PROCESSES STARTING - 4688:: 

1. Monitor for Suspicious/Administrative Processes:  This list is based on built-in Windows administrative utilities and 

known hacking utilities that are often seen used in exploitation.  Expand this list as needed to add utilities used in 

hacking attacks.  You do not need to alert on all processes launching, just suspicious ones or ones known to be used 

in hacking attacks.  Some administrative tools are very noisy and normally used or automatically executed regularly 

and should NOT be included to make your alert more actionable and accurate that something suspicious has 

occurred. 

SAMPLE QUERY: 

index=windows LogName=Security EventCode=4688 NOT (Account_Name=*$) (arp.exe OR at.exe OR bcdedit.exe OR bcp.exe OR 

chcp.exe OR cmd.exe OR cscript.exe OR csvde OR dsquery.exe OR ipconfig.exe OR mimikatz.exe OR nbtstat.exe OR nc.exe OR 

netcat.exe OR netstat.exe OR nmap OR nslookup.exe OR netsh OR OSQL.exe OR ping.exe OR powershell.exe OR powercat.ps1 OR 

psexec.exe OR psexecsvc.exe OR psLoggedOn.exe OR procdump.exe OR qprocess.exe OR query.exe OR rar.exe OR reg.exe OR 

route.exe OR runas.exe OR rundll32 OR schtasks.exe OR sethc.exe OR sqlcmd.exe OR sc.exe OR ssh.exe OR sysprep.exe OR 

systeminfo.exe OR system32\\net.exe OR reg.exe OR tasklist.exe OR tracert.exe OR vssadmin.exe OR whoami.exe OR winrar.exe 

OR wscript.exe OR "winrm.*" OR "winrs.*" OR wmic.exe OR wsmprovhost.exe OR wusa.exe) | eval Message=split(Message,".") | 

eval Short_Message=mvindex(Message,0) | table _time, host, Account_Name, Process_Name, Process_ID, 

Process_Command_Line, New_Process_Name, New_Process_ID, Creator_Process_ID, Short_Message 

SAMPLE QUERY:  Trigger alert on 4th command executed (Best alert to catch malwarians on your system) 

(index=win_servers OR index=win_workstations) LogName=Security EventCode=4688 [ | inputlookup InfoSec_Admin_Utils.csv | 

fields New_Process_Name ] NOT (Some_server_name OR some_server_ip) NOT (Account_Name="-" OR Account_Name="*$") NOT 

(Process_Command_Line="some_command_you_trust" OR "some_other_cmd_you_trust") | eval Message=split(Message,".") | 

eval Short_Message=mvindex(Message,0) | replace Server_Name with Descriptive_Name in host | stats count values(host) AS Host 

values(Process_Command_Line) AS CMD_Line, values(New_Process_Name) AS New_Process_Name, values(Creator_Process_ID) 

AS Creator_Process_ID, values(New_Process_ID) AS New_Process_ID, values(Short_Message) AS Status by Account_Name | where 

NOT isnull(CMD_Line) | where count > 3 

2. Monitor for Whitelisting bypass attempts:  Hackers will often use PowerShell to exploit a system due to the 

capability of PowerShell to avoid using built-in utilities and dropping additional malware files on disk.  Watching for 

policy and profile bypasses will allow you to detect this hacking activity. 

SAMPLE QUERY: 

index=windows LogName=Security (EventCode=4688) NOT (Account_Name="Something_good") (iexec.exe OR InstallUtil.exe OR 

Regsrv32.exe OR Regasm.exe OR Regsvcs.exe OR MSBuild.exe) | eval Message=split(Message,".") | eval 

Short_Message=mvindex(Message,0) | table _time, host, Account_Name, Process_Name, Process_ID, Process_Command_Line, 

New_Process_Name, New_Process_ID, Creator_Process_ID, Short_Message 

3. Monitor for PowerShell bypass attempts:  Hackers will often use PowerShell to exploit a system due to the 

capability of PowerShell to avoid using built-in utilities and dropping additional malware files on disk.  Watching for 

policy and profile bypasses will allow you to detect this hacking activity. 

SAMPLE QUERY: 

index=windows EventCode=4688 (powershell* AND (–ExecutionPolicy OR –Exp)) OR (powershell* AND bypass) OR 

(powershell* AND (-noprofile OR -nop)) | eval Message=split(Message,".") | eval Short_Message=mvindex(Message,0) 

| table _time, host, Account_Name, Process_Name, Process_ID, Process_Command_Line, New_Process_Name, 

New_Process_ID, Creator_Process_ID, Short_Message 



 

Dec 2017  ver 2.2 MalwareArchaeology.com Page 4 of 12 

WINDOWS SPLUNK LOGGING CHEAT SHEET - Win 7 - Win2012 
  

MONITOR FOR USER LOGONS – 4624 & 4625:: 

1. Monitor for Logon Success:  Logging for failed logons seems obvious, but when a user credential gets compromised 

and their credentials used for exploitation, successful logins will be a major indicator of malicious activity and 

system crawling.  This alert looks for successful logons > 2 and excludes domain controllers to detect when a rogue 

user account crawls across systems in your network.  

SAMPLE QUERY: 

index=windows LogName=Security EventCode=4624 NOT (host=“DC1" OR host=“DC2" OR host=“DC…”) NOT 

(Account_Name="*$" OR Account_Name="ANONYMOUS LOGON") NOT (Account_Name=“Service_Account") | eval 

Account_Domain=(mvindex(Account_Domain,1)) | eval Account_Name=if(Account_Name="-

",(mvindex(Account_Name,1)), Account_Name) | eval 

Account_Name=if(Account_Name="*$",(mvindex(Account_Name,1)), Account_Name) | eval 

Time=strftime(_time,"%Y/%m/%d %T") | stats count values(Account_Domain) AS Domain, values(host) AS Host, 

dc(host) AS Host_Count, values(Logon_Type) AS Logon_Type, values(Workstation_Name) AS WS_Name, 

values(Source_Network_Address) AS Source_IP, values(Process_Name) AS Process_Name by Account_Name | where 

Host_Count > 2 

 

2. Monitor for Logon Failures:  Watch for excessive logon failures, especially Internet facing systems and systems that 

contain confidential data.  This will also detect brute force attempts and users who have failed to changed their 

passwords on additional devices such as smartphones.  You can add “stats count” to watch for quantity, exclude 

certain accounts you know are good and normally fail.  Avoid excluding administrative accounts as they are the 

ones the hackers are after. 

SAMPLE QUERY: 

index=windows LogName=Security EventCode=4625 | table _time, Workstation_Name, Source_Network_Address, 

host, Account_Name 

 

3. Monitor for Administrative and  Guest Logon Failures:  Hackers and malware often try to brute force known 

accounts, such as Administrator and Guest.  This alert will monitor and alert if configured for attempts > 5. 

SAMPLE QUERY: 

index=windows LogName=Security EventCode=4625 (Account_Name=administrator OR Account_Name=guest) | stats 

count values(Workstation_Name) AS Workstation_Name, Values(Source_Network_Address) AS Source_IP_Address, 

values(host) AS Host by Account_Name | where count > 5 

 

 



 

Dec 2017  ver 2.2 MalwareArchaeology.com Page 5 of 12 

WINDOWS SPLUNK LOGGING CHEAT SHEET - Win 7 - Win2012 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MONITOR FOR FILE SHARES - 5140:: 

1. Monitor for File Shares being accessed:  Once a system is compromised, hackers will connect or jump to other 

systems to infect and/or to steal data.  Watch for accounts crawling across file shares.  Some management 

accounts will do this normally so exclude these to the systems they normally connect.  Other activity from 

management accounts such as new processes launching will alert you to malicious behavior when excluded in this 

alert. 

SAMPLE QUERY: 

index=windows source="WinEventLog:Security" EventCode=5140 (Share_Name="*\\C$" OR Share_Name="*D$" OR 

Share_Name="*E$" OR Share_Name="*F$" OR Share_Name="*U$") NOT Source_Address="::1" | eval 

Destination_Sys1=trim(host,"1") | eval Destination_Sys2=trim(host,"2") | eval Dest_Sys1=lower(Destination_Sys1) | 

eval Dest_Sys2=lower(Destination_Sys2) | rename host AS Destination | rename Account_Domain AS Domain | where 

Account_Name!=Dest_Sys1 | where Account_Name!=Dest_Sys2 | stats count values(Domain) AS Domain, 

values(Source_Address) AS Source_IP, values(Destination) AS Destination, dc(Destination) AS Dest_Count, 

values(Share_Name) AS Share_Name, values(Share_Path) AS Share_Path by Account_Name 

MONITOR FOR SERVICE CHANGES – 7045 & 7040:: 

1. Monitor for New Service Installs:  Monitoring for a new service install is crucial.  Hackers often use a new service to 

gain persistence for their malware when a system restarts.  All the retail Point of Sale breaches included one or 

more new services that could have been easily detected with this alert alone.   

SAMPLE QUERY: 

index=windows LogName=System EventCode=7045 NOT (Service_Name=mgmt_service) | eval 

Message=split(Message,".") | eval Short_Message=mvindex(Message,0) | table _time host Service_Name, 

Service_Type, Service_Start_Type, Service_Account, Short_Message 

2. Monitor for Service State Changes:  Monitoring for a service state changes can show when a service is altered.  

Hackers often use an existing service to avoid new service detection and modify the ServiceDll to point to a 

malicious payload gaining persistence for their malware when a system restarts.  Unfortunately the details are not 

in the logs, but this alert can lead you to look into a service state change or enable auditing on keys that trigger 

seldom used services to watch for ServiceDll changes.  There are a few services that will normally start and stop 

regularly and will need to be excluded.  Use registry auditing (4657) to monitor for changes to the ServiceDll value.   

SAMPLE QUERY: 

index=windows LogName=System EventCode=7040 NOT (“*Windows Modules Installer service*” OR “*Background 

Intelligent Transfer Service service*”) | table _time, host, User, Message 

 



 

Dec 2017  ver 2.2 MalwareArchaeology.com Page 6 of 12 

WINDOWS SPLUNK LOGGING CHEAT SHEET - Win 7 - Win2012 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MONITOR FOR NETWORK CONNECTIONS - 5156:: 

1. Monitor for Suspicious Network IP’s:  This does require the use of the Windows Firewall.  In networks where this is 

normally not used, you can use Group Policy to set the Windows Firewall to an Any/Any configuration so no 

blocking occurs, yet the traffic is captured in the logs and more importantly what process made the connection.   

You can create exclusions by IP addresses (such as broadcast IP’s) and by process names to reduce the output and 

make it more actionable.  The “Lookup” command will benefit this query tremendously by excluding items.  

SAMPLE QUERY: 

index=windows LogName=Security EventCode=5156 NOT (Source_Address="239.255.255.250" OR 

Source_Address="224.0.0.*" OR Source_Address="::1" OR Source_Address="ff02::*" OR Source_Address="fe80::*" OR 

Source_Address="255.255.255.255" OR Source_Address=192.168.1.255) NOT (Destination_Address="127.0.0.1" OR 

Destination_Address="239.255.255.250" OR Destination_Address="*.*.*.255" OR Destination_Address="224.0.0.25*") 

NOT (Destination_Port="0") NOT (Application_Name="\\<some process name>\\" OR 

Application_Name="*\\bin\\splunkd.exe") | dedup Destination_Address Destination_Port | table _time, host, 

Application_Name, Direction, Source_Address, Source_Port, Destination_Address, Destination_Port | sort Direction 

Destination_Port 

MONITOR FOR FILE CHANGES – 4663:: 

1. Monitor for New files:  This requires directories and/or files to have auditing set on each object.  You want to audit 

directories that are well known for malware such as AppData\Local, LocalLow & Roaming as well as \Users\Public 

for the following: 

 

 

 

 

 

 

SAMPLE QUERY: 

index=windows sourcetype=WinEventLog:Security EventCode=4663 NOT 

(Process_Name="*\\Windows\\servicing\\TrustedInstaller.exe" OR "*\\Windows\\System32\\poqexec.exe") NOT 

Object_Name="C:\\Users\\Surf\\AppData\\Local\\Google\\Chrome\\User Data*" NOT 

Object_Name="C:\\Users\\<special user>\\AppData\\Roaming\\Microsoft\\Windows\\Recent\\CustomDestinations") 

NOT (Object_Name="C:\\Windows\\System32\\LogFiles\\*" OR Object_Name="*ProgramData\\Microsoft\\RAC\\*" 

OR Object_Name="*\\Microsoft\\Windows\\Explorer\\thumbcache*" OR Object_Name="*.MAP" OR 

Object_Name="*counters.dat" OR Object_Name="*\\Windows\\Gatherlogs\\SystemIndex\\*") | rename 

Process_Name as Created_By  | table _time, host, Security_ID, Handle_ID, Object_Type, Object_Name, Process_ID, 

Created_By, Accesses 



 

Dec 2017  ver 2.2 MalwareArchaeology.com Page 7 of 12 

WINDOWS SPLUNK LOGGING CHEAT SHEET - Win 7 - Win2012 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MONITOR FOR REGISTRY CHANGES – 4657:: 

1. Monitor for Registry Changes:  Adding auditing to known exploited registry keys is a great way to catch malicious 

activity.  Registry keys should not change very often unless something is installed or updated.  The goal is to look 

for NEW items and changes to known high risk items like the Run and RunOnce keys.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SAMPLE QUERY: 

index=windows LogName=Security (EventCode=4657) Object_Name="*\\Run*" | table _time, host, Security_ID, 

Account_Name, Account_Domain, Operation_Type, Object_Name, Object_Value_Name, Process_Name, New_Value   

MONITOR FOR FILE CHANGES – 4663 continued:: 

2. Monitor for Crypto events:  Setting auditing on a File Server Share will allow large amounts of file changes from a 

crypto event to be detected.  Look at a large quantity of changes > 1000 in 1 hour to detect the event.  Use the 

same settings as above as you only need to monitor for NEW files.  It is obvious when an event occurs! 

 

 

 

SAMPLE QUERY: 

index=windows LogName=Security EventCode=4663 host=* (Accesses="WriteData (or AddFile)" AND 

Object_Name="*.*") NOT (Security_ID="NT AUTHORITY\\SYSTEM") NOT (Object_Name="*\\FireFoxProfile\\*" OR 

Object_Name="*.tmp*" OR Object_Name="*.xml" OR Object_Name="*Thumbs.db" OR 

Object_Name="\\Device\\HarddiskVolumeShadowCopy*") NOT (Object_Name="*:Zone.Identifier" OR 

Object_Name="*.part*") | stats count values(Object_Name), values(Accesses) by Security_ID | where count > 1000   

 



 

Dec 2017  ver 2.2 MalwareArchaeology.com Page 8 of 12 

WINDOWS SPLUNK LOGGING CHEAT SHEET - Win 7 - Win2012 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

MONITOR FOR WINDOWS POWERSHELL COMMAND LINE - 500:: 

1. Monitor for PowerShell Command Execution:  Hackers will often use PowerShell to exploit a system due to the 

capability of PowerShell and to avoid using built-in utilities and drop additional malware on disk.  Monitoring the 

PowerShell command lines that are executed can catching potentially malicious behavior.  PowerShell logs have 

some odd formatting, the sample below shows a unique non-RegEx way to parse odd logs using the Splunk “split” 

command.  PowerShell logs are the worst as far as using the “split” command.  These logs are not in the standard 

Windows logs and will need to be added to your Splunk inputs.conf file in order to collect them.  The “Windows 

PowerShell” logs may be found under: 

 Applications and Services Logs - Windows PowerShell 

index=powershell LogName="Windows Powershell" (EventCode=500) | eval MessageA=split(Message,"Details:") | Eval 

Short_Message=mvindex(MessageA,0) | Eval MessageB=mvindex(MessageA,1) | eval MessageB = replace 

(MessageB,"[\n\r]","!") | eval MessageC=split(MessageB,"!!!!") | Eval Message1=mvindex(MessageC,0) | Eval 

Message2=mvindex(MessageC,1) | Eval Message3=mvindex(MessageC,2) | eval MessageD=split(Message3,"!!") | Eval 

Message4=mvindex(MessageD,3) | eval Message4=split(Message4,"=") | eval PS_Version=mvindex(Message4,1) | Eval 

Message5=mvindex(MessageD,4) | Eval Message6=mvindex(MessageD,5) | Eval Message7=mvindex(MessageD,6) | 

eval Message7=split(Message7,"=") | eval Command_Name=mvindex(Message7,1) | Eval 

Message8=mvindex(MessageD,7) | eval Message8=split(Message8,"=") | eval Command_Type=mvindex(Message8,1) | 

Eval Message9=mvindex(MessageD,8) | eval Message9=split(Message9,"=") | eval 

Script_Name=mvindex(Message9,1)| Eval Message10=mvindex(MessageD,9) | eval Message10=split(Message10,"=") | 

eval Command_Path=mvindex(Message10,1) | Eval Message11=mvindex(MessageD,10) | eval 

Message11=split(Message11,"=") | eval Command_Line=mvindex(Message11,1) | table _time EventCode, 

Short_Message, PS_Version, Command_Name, Command_Type, Script_Name, Command_Path, Command_Line 

MONITOR FOR WINDOWS FIREWALL CHANGES – 2004 & 2005:: 

1. Monitor for Additions to Firewall Rules:  Malware and hackers will often add a firewall rule to allow access to some 

Windows service or application.  These logs are not in the standard Windows logs and will need to be added to 

your Splunk inputs.conf file in order to collect them.  The Windows firewall logs may be found under: 

 Applications and Services Logs – Microsoft - Windows – Windows Firewall with Advanced Security - Firewall 

index=windows LogName=Security EventCode=2004 | table _time, host, Rule_Name, Origin, Active, Direction, Profiles, 

Action, Application_Path, Service_Name, Protocol, Security_Options, Edge_Traversal, Modifying_User, 

Modifying_Application, Rule_ID 

2. Monitor for Changes to Firewall Rules:  Malware and hackers will often modify a firewall rule to allow access to 

some Windows service or application.  These logs are not in the standard Windows logs and will need to be added 

to your Splunk inputs.conf file in order to collect them.    

index=windows LogName=Security EventCode=2005 | table _time, host, Rule_Name, Origin, Active, Direction, Profiles, 

Action, Application_Path, Service_Name, Protocol, Security_Options, Edge_Traversal, Modifying_User, 

Modifying_Application, Rule_ID 

 



 

Dec 2017  ver 2.2 MalwareArchaeology.com Page 9 of 12 

WINDOWS SPLUNK LOGGING CHEAT SHEET - Win 7 - Win2012 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MONITOR FOR WINDOWS POWERSHELL OBFUSCATIION - TICKS AND SPECIAL CHARACTERS:: 

1. Monitor for PowerShell Obfuscation with 4688:  Hackers will often use obfuscation of PowerShell code to hide what they are 

doing.  Monitoring the Process Command Line executions can catch potentially malicious obfuscated PowerShell.  The query 

below looks for and counts the amount of ticks, semicolons, and dollar signs to detect the use of PowerShell obfuscation 

using the Security log and Process Execution 4688 events with Process Command Line logging enabled.   

index=windows LogName="Security" EventCode=4688 NOT ("*ProgramData\\Some_Trusted\\Program*") | eval 

Orig_Command=Process_Command_Line | eval Clean_Command_Line=Process_Command_Line | eval 

Obfuscations=Process_Command_Line | rex field=Obfuscations mode=sed "s/[a-zA-Z0-9]//g" | rex field=Clean_Command_Line 

mode=sed "s/[']//g" | eval Tick_Count = mvcount(split(Obfuscations,"'"))-1 | eval Pct_Count = mvcount(split(Obfuscations,"%"))-1 | 

eval Dollar_Count = mvcount(split(Obfuscations,"$"))-1 | eval Plus_Count = mvcount(split(Obfuscations,"+"))-1 | eval 

SemiCol_Count = mvcount(split(Obfuscations,";"))-1 | table _time host, Orig_Command, Clean_Command_Line, Obfuscations, 

Tick_Count, Pct_Count, Dollar_Count, Plus_Count, SemiCol_Count | where Tick_Count > 2 

2. Monitor for PowerShell Obfuscation with 400:  Hackers will often use obfuscation of PowerShell code to hide what they are 

doing.  Monitoring the Process Command Line executions can catch potentially malicious obfuscated PowerShell.  The query 

below looks for and counts the amount of ticks, semicolons, and dollar signs to detect the use of PowerShell obfuscation 

using the “Windows PowerShell” log (v2-v5) 400 events.  The “Windows PowerShell” logs may be found under: 

 Applications and Services Logs - Windows PowerShell 

index=powershell LogName="Windows Powershell" EventCode=400 | eval MessageA=split(Message,"Details:") | Eval 

Short_Message=mvindex(MessageA,1) | eval MessageA=split(Short_Message,"HostVersion=") | Eval 

MessageA=mvindex(MessageA,1) | eval MessageB=split(MessageA,"HostId=") | Eval PS_Version=mvindex(MessageB,0) | Eval 

MessageC=mvindex(MessageB,1) | eval MessageD=split(MessageC,"HostApplication=") | Eval Host_ID=mvindex(MessageD,0) | 

Eval MessageE=mvindex(MessageD,1) | eval MessageF=split(MessageE,"EngineVersion=") | Eval 

Host_Application=mvindex(MessageF,0) | Eval MessageG=mvindex(MessageF,1) | eval MessageH=split(MessageG,"RunspaceId=") 

| Eval Engine_Version=mvindex(MessageH,0) | Eval MessageJ=mvindex(MessageH,1) | eval 

MessageP=split(MessageJ,"CommandLine=") | Eval Command_Line=mvindex(MessageP,1) | eval Obfuscations=Host_Application | 

rex field=Obfuscations mode=sed "s/[a-zA-Z0-9]//g" | rex field=Clean_Host_Application mode=sed "s/ [^a-zA-Z0-9_]==/ /g" | eval 

Tick_Count = mvcount(split(Obfuscations,"'"))-1 | eval Pct_Count = mvcount(split(Obfuscations,"%"))-1  | table host, 

ComputerName, Host_Application, Clean_Host_Application, Obfuscations, Tick_Count, Pct_Count | where Tick_Count > 2 

MONITOR FOR WINDOWS POWERSHELL BASE64 ENCODED OBFUSCATION:: 

3. Monitor for PowerShell Obfuscation with 4104 or 400:  Hackers will often use obfuscation of PowerShell code to hide what 

they are doing.  Monitoring the size of the PowerShell commands that hide things like Base64 encoded scripts can catch 

potentially malicious obfuscated PowerShell.  The query below looks for the size of a scriptblock over 1000 characters using 

the “PowerShell/Operation” or “Windows PowerShell” log.  The “Windows PowerShell” and “PowerShell Operational” logs 

may be found under: 

 Applications and Services Logs - Windows PowerShell 

 Applications and Services Logs – PowerShell/Operational 

index=powershell (source="WinEventLog:Microsoft-Windows-PowerShell/Operational" OR source="WinEventLog:Windows 

PowerShell") (EventCode=4104 OR EventCode=400) NOT ("*Some_Trusted \\Program*") NOT ("*InvocationName*" OR 

"*InvocationInfo*") | eval Cmd_Length=len(Message) | where Cmd_Length > 1000 | table  _time, host, EventCode, Cmd_Length, 

Message 

 



 

Dec 2017  ver 2.2 MalwareArchaeology.com Page 10 of 12 

WINDOWS SPLUNK LOGGING CHEAT SHEET - Win 7 - Win2012 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BLACKLIST UNWANTED ITEMS USING THE SPLUNK UNIVERSAL FORWARDER:: 

OVERVIEW:: 

With the enhanced logging the other Windows Cheat Sheets recommend, there will unfortunately be a lot more 

events being generated, and noise.  Many Event IDs or the Message within an Event ID do not provide any security 

value and therefore can be dropped versus being sent to Splunk taking up valuable licensing.  The idea here is to 

blacklist or exclude items at the Universal Forwarder (UF) before they are sent to Splunk and take up some of your 

valuable license.  Whitelisting is the opposite where you tell the UF only to collect certain items which is another 

option and works identically.  If you cannot blacklist enough items in the UF and want to do more, you will need to 

use the Splunk Heavy Forwarder, or use another syslog agent like nxlog or the “Windows Logging Service” (WLS). 

LIMITS:: 

There can only be 10 blacklist or whitelist items per sourcetype.  This can be limiting for logs like the Security log 

that have tons of events and messages, many of which we do not need to collect.  However there is the ability to 

nest multiple items within one blacklist item.  

FORMAT::  

The format of the blacklist is RegEx, but not exactly the RegEx you may be used to.  The following should provide 

enough information and detail to build what you need.  The first is a straight blacklist by Event ID: 

 blacklist = 4689,5158 

The next option is to nest multiple messages or parts of a message into one blacklist entry.  The following will drop 

some of the Splunk events from taking up space in Splunk, these are basically worthless events for security 

purposes and are very noisy.  Notice it is by Event ID, Message, and Type within the message (4688, Message, New 

Process Name:) 

 blacklist1 = EventCode="4688" Message="(?:New Process 

Name:).+(?:SplunkUniversalForwarder\\bin\\splunk.exe)|.+(?:SplunkUniversalForwarder\\bin\\splunkd.exe

)|.+(?:SplunkUniversalForwarder\\bin\\btool.exe)" 

The next item is nesting many more similar items, there are no spaces between the |: 

 blacklist2 = EventCode="4688" Message="(?:New Process Name:).+(?:SplunkUniversalForwarder\\bin\\splunk-

winprintmon.exe) |.+(?:SplunkUniversalForwarder\\bin\\splunk-powershell.exe) 

|.+(?:SplunkUniversalForwarder\\bin\\splunk-regmon.exe) |.+(?:SplunkUniversalForwarder\\bin\\splunk-

netmon.exe) |.+(?:SplunkUniversalForwarder\\bin\\splunk-admon.exe) 

|.+(?:SplunkUniversalForwarder\\bin\\splunk-MonitorNoHandle.exe) 

|.+(?:SplunkUniversalForwarder\\bin\\splunk-winevtlog.exe)|.+(?:SplunkUniversalForwarder\\bin\\splunk-

perfmon.exe)|.+(?:SplunkUniversalForwarder\\bin\\splunk-wmi.exe)" 

BLACKLIST UNWANTED ITEMS USING THE SPLUNK UNIVERSAL FORWARDER:: 

Each Event ID or Type of message must be separate blacklists. The following excludes by Process Command Line, 

the one blacklist item I would recommend using most as it will be the most unique thing you can exclude. 



 

Dec 2017  ver 2.2 MalwareArchaeology.com Page 11 of 12 

WINDOWS SPLUNK LOGGING CHEAT SHEET - Win 7 - Win2012 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Dec 2017  ver 2.2 MalwareArchaeology.com Page 12 of 12 

WINDOWS SPLUNK LOGGING CHEAT SHEET - Win 7 - Win2012 
 

 

 

 

AUDIT THE REGISTRY USING THE SPLUNK UNIVERSAL FORWARDER (UF):: 

The Splunk UF allows you to monitor the Registry for Set, Create, Delete, and Renamed items to keys, values and 

data.  There are also Open, Close, and Query, but that would be way too noisy to monitor for. 

 https://docs.splunk.com/Documentation/Splunk/6.6.2/Data/MonitorWindowsregistrydata 

Monitor the keys listed in the “Windows Registry Auditing Cheat Sheet” as a place to start and go from there. 

[WinRegMon://HKCU] 

     index = workstation_win 

     sourcetype = "Win_Registry" 

     source = HKCU 

     disabled = 0 

     hive = \\REGISTRY\\USER\\.*\\Software\\Microsoft\\Windows\\CurrentVersion\\Run\\\\?.* 

     hive = \\REGISTRY\\USER\\.*\\Software\\Microsoft\\Windows\\CurrentVersion\\RunOnce\\\\?.* 

     hive = \\REGISTRY\\USER\\.*\\Software\\\\?.* 

     proc = .* 

     type = set|create|delete|rename 

     baseline = 1 

     baseline_interval = 120 

 

[WinRegMon://HKLM] 

     index = workstation_win 

     sourcetype = "Win_Registry" 

     source = HKLM 

     disabled = 0 

     hive = \\REGISTRY\\MACHINE\\SYSTEM\\CurrentControlSet\\services\\\\?.* 

     hive = \\REGISTRY\\MACHINE\\Software\\Microsoft\\Windows\\CurrentVersion\\Run\\\\?.* 

     hive = \\REGISTRY\\MACHINE\\Software\\Microsoft\\Windows\\CurrentVersion\\RunOnce\\\\?.* 

     proc = .* 

     type = set|create|delete|rename 

     baseline = 1 

     baseline_interval = 120 

 


