Contents lists available at ScienceDirect

Atmospheric Environment

journal homepage: www.elsevier.com/locate/atmosenv

Changes in indoor pollutants since the 1950s

Charles J. Weschler^{a,b}

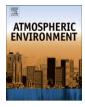
^a Environmental and Occupational Health Sciences Institute, University of Medicine and Dentistry of New Jersey and Rutgers University, Piscataway, NJ 08854, USA ^b International Centre for Indoor Environment and Energy, Technical University of Denmark, DK-2800 Lyngby, Denmark

Keywords: Air conditioning Body burden Building materials Endocrine disrupters Flame-retardants Indoor chemistry Organics Pesticides Plasticizers Smoking

ABSTRACT

Over the past half-century there have been major changes in building materials and consumer products used indoors. Composite-wood, synthetic carpets, polymeric flooring, foam cushioning, plastic items and scented cleaning agents have become ubiquitous. The same is true for mechanical and electrical appliances such as washer/dryers, TVs and computers. These materials and products emit an array of chemicals including solvents, unreacted monomers, and additives. The consequent changes in emission profiles for indoor pollutants have been accompanied by modifications in building operations. Residences and non-residences are less ventilated than they were decades ago. Air-conditioned buildings are more numerous, especially in certain parts of the world. Most of these recirculate a high fraction of their air. The personal habits of building occupants, including the fraction who smoke indoors, have also changed. Taken together, these changes have altered the kind and concentrations of chemicals that occupants are exposed to in their homes, workplaces and schools. Since the 1950s, levels of certain indoor pollutants (e.g., formaldehyde, aromatic and chlorinated solvents, chlorinated pesticides, PCBs) have increased and then decreased. Levels of other indoor pollutants have increased and remain high (e.g., phthalate esters, brominated flame-retardants, nonionic surfactants and their degradation products). Many of the chemicals presently found in indoor environments, as well as in the blood and urine of occupants, were not present 50 years ago. Given the public's exposure to such species, there would be exceptional value in monitoring networks that provided cross-sectional and longitudinal information regarding pollutants found in representative buildings.

© 2008 Elsevier Ltd. All rights reserved.


1. Introduction

The chemicals found indoors are constant in neither kind nor concentration. Changes occur day-to-day, month-to-month, yearto-year and decade-to-decade. Chemicals that building occupants are exposed to today are substantially different from those that occupants experienced 50 years ago. Knowledge of such differences can aid in unraveling the effects that pollutants have on multiple aspects of human health.

This review presents general trends in the concentrations of indoor pollutants since the 1950s. It focuses on the United States, but the trends discussed have also been observed in other industrialized countries. Some of the restrictions or bans on certain chemicals may have occurred earlier or later in different parts of the world, but, to a large extent, the same chemicals have eventually been regulated. Many of the manufacturers of the materials, furnishings and products used indoors are international. Indeed, globalization has increased the extent to which indoor environments in the United States, Europe, Asia and other parts of the world have come to resemble one another.

Initially, because of concerns with outdoor pollution and the understanding that outdoor pollution impacted indoor environments, the indoor pollutants that received the greatest attention were noxious substances that originated outdoors, especially sulfur dioxide, nitrogen oxides, ozone and airborne particles (Biersteker et al., 1965; Andersen, 1972 and references therein; Yocom et al., 1971; Sabersky et al., 1973; Thompson et al., 1973; Shair and Heitner, 1974). Subsequently attention turned to pollutants that were of particular concern indoors and readily measured; these included formaldehyde, radon, asbestos, tobacco smoke and nonpolar volatile organic compounds (National Research Council, 1981 and references therein). Over time, pesticides (Lewis, 2001 and references therein) and other semivolatile organic compounds (Weschler, 1980, 1984; Lioy et al., 1985) were measured indoors. As better analytical instruments were developed and instrument sensitivities improved, the number and types of compounds measured indoors increased. This was particularly true for organic compounds measured by capillary gas chromatographs interfaced to mass spectrometers. Presently researchers have begun to apply sophisticated techniques such as Proton Transfer Reaction-Mass

E-mail address: weschlch@umdnj.edu

^{1352-2310/\$ -} see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.atmosenv.2008.09.044

Spectrometry (PTR-MS) and Atmospheric Sampling Townsend Discharge Ionization Mass Spectrometry (ASTDI-MS) to measure species anticipated to be present in certain indoor settings (e.g., Wisthaler et al., 2005; Nøjgaard et al., 2007). Nonetheless, there remain compounds whose levels have not been directly measured, and whose presence indoors is only inferred (e.g., hydroxyl, nitrate, hydroperoxy and methylperoxy radicals).

How can we discuss indoor pollutant trends over a time-span that includes decades (i.e., prior to the 1970s) with few, if any, measurements of chemicals in indoor air? One way is to examine production figures for different chemicals over the time period of interest. This is a particularly valuable approach for chemicals that have primarily indoor uses such as certain plasticizers or flameretardants. We can also look at the building materials that were common at different points in time. Given the composition of these materials, we can infer the major chemicals that they emitted. A similar approach applies to wall assemblies, floor coverings, architectural coatings, furnishings, cleaning agents and other products used indoors. However, the reader is cautioned that many of the inferences contained in this paper are "*best judgments*" about likely changes and do not have the certainty of findings based on direct empirical evidence.

The concentration of an indoor pollutant depends not only on its indoor emission rate, but also on the rate at which it is being transported from outdoors to indoors, and the rates at which it is scavenged by indoor surfaces, consumed by indoor chemistry and removed by ventilation or filtration. Changes in these source and sink terms are also examined in the present review.

Table 1 presents an admittedly subjective list of major events. actions and regulations that have affected the concentrations of pollutants in U.S. homes, offices and schools. Some of the entries refer to changes in the way that buildings were operated (e.g., air conditioning) or constructed (e.g., increased use of compositewood products). Some refer to changes in the way that products were formulated (reduction of lead and mercury in paint, increased presence of synthetic fibers in carpets). Some refer to regulations that limited the use of certain products (pesticides, asbestos, chlorofluorocarbons). Some are deemed significant because they altered people's thinking about environmental pollution in general (publication of "Silent Spring") or indoor pollution specifically (publication of National Research Council report "Indoor Pollutants"). Some of the events listed were international in scope. Others are specific to the U.S., although analogous events often occurred in other countries. While a number of these will be called out in the course of this review, many are self-explanatory, and no further discussion will be provided. Regardless, stepping through the entries in Table 1 provides a sense of how and why an indoor environment in 2008 is so different from its counterpart in the early 1950s.

2. Building materials and products used indoors

2.1. Building materials

Numerous building materials emit chemicals into indoor air (Levin, 1989). This sub-section briefly discusses three that have come to dominate their respective categories, but were largely absent from buildings prior to the 1950s – composite-wood, PVC pipes and PVC wire/cable insulation.

Composite-wood. Following World War II, plywood began to replace solid wood in home construction, and, in the period from 1954 to 1975, U.S. plywood production rose from 4 billion to 16 billion $ft^2 year^{-1}$ (0.4–1.5 billion $m^2 year^{-1}$; APA, 2008). When plywood first came on the market, its adhesive resin was primarily urea-formaldehyde, and formaldehyde emission rates were relatively large (>1000 µg m⁻² h). Since then, both mandatory and

Table 1

Major events affecting indoor pollutants in the United States: 1948-2008.

- 1948 Chlordane first registered; uses include termite control
- 1950s Synthetic-fiber tufted carpets begin to displace natural-fiber woven carpets
- 1950s Rapid growth in "aerosol" air fresheners propelled by chlorofluorocarbons (CFCs)
- 1950 UL approves use of sprayed asbestos on structural surfaces in multi-storey buildings
- 1953 Over one million window air conditioners sold in the U.S. (43,000 sold in 1947)
- 1953 Industry standards reduce lead levels in paint to 1%
- 1954 U.S. plywood production reaches 4 billion ft² year⁻¹ (0.4 billion m² year ⁻¹)
- 1955 U.S. Air Pollution Control Act first U.S. act addressing air pollution
 1956 United Kingdom Clean Air Act; reduces smoke pollution; garners
 worldwide attention
- 1962 "Silent Spring" by Rachel Carson published
- 1962 90% of U.S. homes have TV sets
- 1963 Clean Air Act; initial enactment of legislation that will be revisited over next four decades
- 1964 First Surgeon General's report on "Smoking and Health"
- 1965 Chlorpyrifos (Dursban®) registered
- Mid-Permanent press clothing introduced source of formaldehyde 1960s
- Mid-Sales of indoor air fresheners grow; scents added to many household products
- 1970 U.S. EPA created
- 1970 Clean Air Act Extension requires EPA to protect public from airborne contaminants
- 1970s Water-based (latex) paint displaces solvent-based (oil) paint for indoor applications
- 1972 DDT banned
- 1973 Arab Oil Embargo
- 1973 Arizona restricts smoking in public places
- 1973 U.S. EPA issues their first standards to reduce lead in gasoline
- 1973 U.S. EPA bans the use of sprayed asbestos for structural insulation and fireproofing
- 1975 Urea-formaldehyde foam insulation (UFFI) grows as an energy-saving measure in homes
- 1975 Andersen, Lundqvist & Molhave publish article on formaldehyde in Danish homes
- 1975 U.S. plywood production reaches 16 billion $ft^2 year^{-1}(1.5 \text{ billion } m^2 year^{-1})$
- 1975 Cars and light trucks manufactured with catalytic converters
- Mid- Aerosol air fresheners replaced by other types due to concerns regarding 1970s CFCs & ozone layer
- 1976 Toxic Substances Control Act (TSCA) becomes law regulates introduction of new chemicals
- 1978 All U.S. uses of mirex canceled
- 1978 Use of PCBs banned, except for totally enclosed applications
- 1978 EPA cancels use of chlordane on food crops and phases out other uses except for control of termites
- 1978 Paint with more than 0.06% lead banned for residential use
- 1978 First of the triennial international Indoor Air conferences, Copenhagen (Fanger and Valbjorn, 1978)
- 1978 Consumer Product Safety Commission (CPSC) proposes ban of benzene in consumer products
- 1979 Almost 25% of U.S. households have central air conditioning
- 1979 Oriented Strand Board (OSB) starts to gain market share
- 1981 National Research Council (NRC) issues report on "Indoor Pollutants"
- 1981 ASHRAE ventilation guidelines distinguish between smoking and
- nonsmoking spaces 1982 Consumer Product Safety Commission bans Urea-Formaldehyde Foam Insulation in homes/schools
- 1984 U.S. EPA restricts indoor use of pentachlorophenol (PCP); had been in paints and wood
- 1984 Finnegan et al. (1984) publish article on prevalence of sick building syndrome
- 1985 Department of Housing and Urban Development (HUD) limits allowable emission of formaldehyde from plywood and particleboard used in prefabricated and mobile homes
- 1985 U.S. EPA establishes Office of Indoor Air Quality
- 1986 Asbestos Hazard Emergency Response Act signed into law
- 1987 Montreal Protocol signed; substantial restrictions on chlorofluorocarbon (CFC) use
- 1987 U.S. EPA "TEAM Study" finds high exposures to indoor air pollutants
- 1988 U.S. EPA bans all uses of chlordane
- 1988 Indoor Radon Abatement Act directs EPA to identify areas with potential for high indoor radon

1989	U.S. EPA issues "Asbestos Ban and Phase-out Rule"; bans most asbestos containing products (overturned by courts in 1991, but ruling supports
	ban on specific products and "new uses")
1990	Clean Air Act Amendments; address air toxics, gasoline formulation and
	evaporative emissions
1990	U.S. EPA bans mercury in interior latex paint
1992	U.S. EPA bans mercury in all interior paints
1994	California restricts smoking in workplaces
1995	Chlorofluorocarbon (CFC) production in the United States ends
Mid-	Emissions from carpet backing and use of SBR backings decline (industry
1990s	self-regulation)
1997	Almost 50% of U.S. households have central air conditioning
1998	EPA issues rule limiting VOC emissions from consumer products and
	architectural coatings
1998	National Research Council issues BEIR VI report "Health Effects of
	Exposure to Radon"
2000	3M voluntarily stops making certain perfluorinated compounds (e.g.,
	PFOA and PFOS)
2000	More than 50% of U.S. homes have personal computers
2001	Registration withdrawn for chlorpyrifos (Dursban®) use in homes
2001	CDC publishes first National Report on Human Exposure to Environmental
	Chemicals
2004	Stockholm Convention on Persistent Organic Pollutants signed; global
	treaty
2005	Surgeon General releases National Health Advisory on Radon
2006	EU adopts Registration, Evaluation, Authorization and Restriction of
	Chemicals (REACH)

voluntary standards have been adopted that limit formaldehyde emissions, and the use of lower emitting phenol-formaldehyde resin has increased. Other composite-wood products that have been adopted by the construction industry include particleboard, oriented strand board (OSB) and medium density fiberboard. Each of these emits a mix of aldehydes and terpenoids (Baumann et al., 1999, 2000; Hodgson et al., 2002; Salthammer et al., 2003).

PVC pipes. PVC pipes have partially replaced copper pipes in many indoor plumbing applications, including drain, waste and vent systems, as well as water distribution systems. PVC piping is rigid and does not emit plasticizers the way that flexible PVC products do (e.g., vinyl flooring and wall covering). However, PVC pipes often contain organotin compounds as stabilizers, and these semivolatile compounds are expected to migrate into indoor environments over time.

PVC wire/cable insulation. Following World War II, flexible PVC insulation began to replace rubber and textile braid insulation on wiring and cable used in both residential and commercial buildings. The total length of insulated wire and cable in homes, offices and schools has increased dramatically with the introduction of more extensive telephone systems, computer networks and both cable and satellite TV distribution systems. Plasticizers are required to make the PVC insulation flexible. These plasticizers, primarily phthalate esters such as di-2-ethylhexyl phthalate (DEHP), are emitted over the life of the product.

2.2. Products used indoors

Carpeting. Prior to World War II, most carpets were woven and consisted of cotton or wool. Nylon was introduced in 1947, and other synthetic fibers followed. During the 1950s, tufted carpets made of nylon, rayon, and acrylics displaced woven carpets. In 1950, ~ 10% of carpets were tufted; today, more than 90% are tufted (Carpet and Rug Institute, 2008). Polyester and polypropylene (olefin) carpets were introduced in the mid-1960s. Stain repellants (e.g., fluorinated surfactants) were applied with increasing frequency to the carpet fibers, while the carpet backing systems (backing, adhesive and pad) were often treated with flame-retardants.

As interest in indoor air quality increased in the 1980s and early 1990s, carpets and carpet backings were identified as major sources of indoor pollutants (e.g., Hodgson et al., 1993). In 1992, the Carpet and Rug Institute (CRI) initiated its "Green Label" program to test emissions from carpets, cushions and adhesives. This voluntary program provided a labeling scheme to help consumers, architects, builders and facility managers specify products with reduced emissions of organic pollutants. Over the years, CRI has tightened its IAQ standards, prompted, in part, by guidelines and regulations that have been implemented in Europe. At present, carpeting is more prevalent in the U.S. than in Europe or Asia.

Flooring. Linoleum was a common flooring material that became less popular after World War II. In the 1950s, asphalt tile was the most widely used flooring material, but vinyl flooring was gaining in popularity. Today, vinyl is the most common flooring material in the U.S. (excluding carpet). Vinyl flooring requires plasticizers to remain flexible and avoid brittleness. It typically contains 30–40% plasticizer by weight (Bornehag et al., 2005a and references therein). The dominant plasticizer for PVC flooring has been di-2-ethylhexyl phthalate (DEHP). As concerns about the potential health effects of DEHP have increased (see Section 6.4), other plasticizers (e.g., DINP) have been substituted.

Paints. For indoor applications, water-based (latex) paints began to replace solvent-based (oil) paints in the 1950s. Water-based paints emit fewer volatile organic pollutants than do solvent-based paints. Their growth increased significantly during the environmentally conscious 1970s, resulting in fewer VOC emissions during indoor painting. The type of binder used in water-based paint determines the residual monomers and degradation products that the paint subsequently emits. Initially, the dominant binder in water-based paint was styrene-butadiene latex: this was later replaced by vinyl acrylic and acrylic latex (Martens, 1981). Common binders today include vinyl, acrylic and vinyl-acrylic blends. The most commonly used coalescing agent in latex paint is Texanol[®], a mix of 3-hydroxy-2,2,4-trimethylpentyl-1-isobutyrate and 1hydroxy-2,2,4-trimethylpentyl-3-isobutyrate (Corsi and Lin, in press). Texanol[®] isomers are semivolatile and continue to be emitted from latex-painted surfaces for months after application (Shields and Weschler, 1992; Corsi and Lin, in press). They have become common indoor pollutants as latex paints have grown in popularity.

Recently so-called "green" or "natural" paints, based on sustainable natural ingredients, have gained in market share. These products typically contain unsaturated organic compounds (e.g., linseed oil, limonene, other terpenoids) that can react with ozone. The resulting oxidation products include secondary organic aerosols (Lamorena et al., 2007).

First lead and then mercury have been removed from interior paints (see Section 6.5). Formaldehyde is still used as an in-can preservative in some paints.

Furnishings. Veneer on composite-wood has replaced solid wood in many furnishings. It is common today for kitchen cabinets, dressers, bed frames, desks and similar products to be constructed primarily with medium density fiberboard or a similar composite-wood material. The cushioning used in bedding, sofas and chairs has evolved from feathers and down to synthetic foams. Since the 1960s, most synthetic foams have been treated with flame-retardants. For example, polyurethane foam used in home cushioning often contains 10–30% (by weight) brominated flame-retardants (Hites, 2004).

Office cubicles. The design and layout of office space has changed to include the use of office cubicles. These were introduced in the mid-1960s and have proliferated. Their partitions are typically constructed of fiber-glass board, chosen in part for its sound deadening properties. Other constituents include fabrics, adhesives and finishes/coatings. Given their large surface area, emissions from cubicles can meaningfully impact air quality in office environments, as became apparent from cubicle emission measurements conducted in the mid-1980s. These, coupled with lawsuits,

158

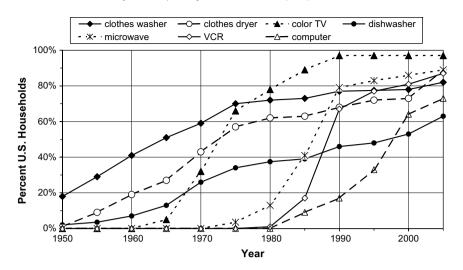


Fig. 1. Percent of U.S. households with selected appliances and electronic equipment for the period from 1950 to 2005 (adapted from Cox and Alm, 2008).

prompted an effort by manufacturers to reduce emissions. Between 1985 and 2005, the average level of formaldehyde emitted from cubicles decreased by 50%, chlorinated VOCs decreased more than 90% and total VOCs decreased 40–70% (Betts, 2005).

Cleaning products. Anionic surfactants such as fatty acid soaps, alkylsulfonic acid salts (e.g., linear alkyl benzene sulfonate), and fatty alcohol sulfates were commonly used in many detergents and cleaning products designed for home and commercial use. Over the past few decades, nonionic surfactants have been substituted for these anionic surfactants. An important class of nonionic surfactants is alkylphenol ethoxylates (APEs), especially nonylphenol ethoxylates, which constitute more than 80% of the APE market in North America (APE Research Council, 2008). These compounds have become common in the dust and air of indoor environments (see Section 6.4).

In the 1950s, benzene was found in many cleaning products, especially those containing a mix of aromatic solvents. Carbon tetrachloride was commonly used as a spot remover. Starting in the late 1980s there was a shift away from aromatic and chlorinated solvents. Both benzene and carbon tetrachloride have virtually disappeared from indoor cleaning products (see Section 6.3).

Various glycol ethers have been used as the active agents in window cleaners and multi-purpose cleaners designed to remove grease and grime (Nazaroff and Weschler, 2004; Singer et al., 2006a). The more toxic glycol ethers have been replaced with ethylene glycol monobutyl ether (2-butoxy ethanol), which is currently the dominant glycol ether used in cleaning products.

Today there is a trend towards "greener" cleaning agents, especially terpenoid based solvents. Many of the terpenoids (e.g., limonene, α -terpinene, α -terpineol, linalool) react at relatively fast rates with ozone and can serve as precursors for ozone oxidation products in indoor environments (Nazaroff and Weschler, 2004; Destaillats et al., 2006; Singer et al., 2006b).

Air fresheners. In the early 1950s there was rapid growth in spray or "aerosol" air fresheners that were propelled by chlorofluorocarbons (CFCs). These products were typically ~1% active ingredients, ~24% solvent and ~75% CFC propellant. The delivery system produced fine droplets that spread out over a wide area and stayed airborne for minutes. In the mid-1970s Rowland and Molina (1974) published their *Nature* paper suggesting that CFCs were depleting the stratospheric ozone layer. Further research supported their hypothesis. The issue attracted wide public attention, and the use of aerosol air fresheners declined. The Montreal Protocol (1987) resulted in the elimination of CFC propelled air fresheners. However, other types of air fresheners took their place. These included scented candles, spray products with alternative propellants, and, later, plug-in units. The sales of these products have continued to increase. In 2000, U.S. consumers spent \$0.9 billion on air fresheners; in 2005, \$1.5 billion (Storey, 2007). Industry testimony in the U.S. Federal Register (2007) stated that ~70% of U.S. homes use air fresheners. Many of the scenting agents used in air fresheners are unsaturated organic compounds that can react with ozone to produce both gas phase and condensed phase products (Liu et al., 2004; Singer et al., 2006a,b).

Appliances. Fig. 1 displays the percent of U.S. households with various appliances for the period from 1950 to 2005. The fraction of homes with clothes washers and dryers grew rapidly from 1950 to 1970, while the fraction with dishwashers grew at a slower rate. These products required the use of new, specialized detergents. The fraction of homes with microwaves grew from 3% in 1975 to almost 80% by 1990; these were typically unvented and emitted cooking fumes while in use. Gas ranges without pilot lights were introduced in the early 1980s and became mandatory on new models starting in January 1990. This feature eliminated an indoor source of carbon monoxide and nitrogen oxides. Following the energy crisis in 1973, there was a temporary increase in the indoor use of unvented kerosene heaters. Both the CPSC and EPA cautioned that these were sources of nitrogen oxides and sulfur dioxide, which led to better venting practices.

A number of appliances manufactured prior to 1978 had transformers and capacitors that contained PCBs. When these leaked, the emitted PCBs eventually redistributed throughout the indoor environment.

Electronic equipment. Destaillats et al. (2008) have published a review of indoor pollutants emitted by modern office equipment. Many of the pollutants tabulated in their review were absent from office environments 50 years ago. Photocopiers have replaced carbon paper and duplicating machines. Certain types of carbon paper were sources of PCBs, while duplicating machines emitted solvent vapors. Photocopiers can be a source of ozone, styrene, formaldehyde, other aldehydes, semivolatile organic compounds (SVOCs) from heat transfer fluids, and particles (Leovic et al., 1996; Wolkoff et al., 1993; Wolkoff, 1999; Brown, 1999). Personal computers and printers have replaced typewriters. Their casings and circuit boards emit plasticizers and flame-retardants, especially brominated flame-retardants. Certain laser printers have been identified as sources of airborne particles (He et al., 2007) and ozone (Lee et al., 2001; Smola et al., 2002). Computer monitors have evolved from CRTs to flat-panel displays; the latter tend to emit fewer organics than the former.

Residences have also experienced increased emissions from electronic equipment. To a first approximation, emissions from home electronics tend to be similar to those from office electronics. Fig. 1 shows the percent of homes with TVs, VCRs and computers for the period from 1950 to 2005. Color TVs increased sharply from 1965 to 1975. A similar rapid increase occurred for VCRs during the period from 1985 to 1990 and for computers during the period from 1990 to 2000. These TVs, VCRs and computers were new indoor sources of plasticizers and flame-retardants. TVs with cathode ray tubes are presently being replaced by flat-panel TVs with presumably lower emissions. At the same time, home entertainment systems are growing in size and number of components, which may result in increased emissions.

Clothing. Synthetic fibers are more common in clothing today than at the end of World War II, but they have not displaced natural fibers to the extent that they have in carpets. Over the years, a higher percentage of clothes have been treated with flame-retardants or stain repellants. The use of mutagenic tris(2,3-dibro-mopropyl)phosphate (tris-BP) as a flame-retardant in children sleepwear received considerable attention in the late 1970s (Blum et al., 1978). This compound was replaced by a chlorinated species, which was also found to be mutagenic (Gold et al., 1978).

The number of dry-cleaning establishments grew throughout the 1950s, meaning more dry-cleaned clothes in U.S. homes. Emission of tetrachloroethylene from dry-cleaned clothing was reported in the U.S. EPA TEAM study (Wallace, 1987). In the 1960s "easy care" and "permanent press" fabrics were introduced. These fabrics were treated with formaldehyde resins, and had meaningful formaldehyde emissions (Kelly et al., 1999). More recently, lower formaldehyde emitting resins have been introduced.

3. Chemical transformations

3.1. Oxidation reactions

Chemical reactions among indoor pollutants alter the mix and concentrations of indoor pollutants (Weschler and Shields, 1997; Weschler, 2004). Indoor oxidation reactions have received the greatest attention to date. Oxidation products include free radicals, secondary ozonides, epoxides, aldehydes, ketones, acids, diacids, dicarbonyls and other oxygenated species (Weschler, 2000, 2006). Some of the products have low vapor pressures and contribute to the growth of secondary organic aerosols (Weschler and Shields, 1999; Weschler, 2003; Sarwar and Corsi, 2007 and references therein). Circumstantial evidence suggests that indoor concentrations of ozone reactive compounds such as terpenoids (e.g., limonene, α -pinene, linalool, α -terpineol) have increased due to their growing use in cleaning agents and air fresheners. As noted earlier, ozone reactive chemicals (e.g., linoleic acid and linolenic acid) are also found in "green" or "natural" paints. This inferred increase in the level of ozone reactive compounds in indoor settings may, in turn, have resulted in increased production of ozone-derived pollutants such as formaldehyde, acrolein, nonanal, decanal, nonenal isomers and secondary organic aerosols.

3.2. Hydrolysis reactions

Hydrolysis reactions are another important class of indoor reactions. The plasticizers and flame-retardants found in many indoor materials are often phthalate or phosphate esters (Wensing et al., 2005). Such esters can hydrolyze (react with water) to yield alcohols and acids. The hydrolysis of PVC on moist concrete has been a recognized indoor air problem for more than two decades (Norback et al., 2000). More recently, the hydrolysis of Texanol[®] isomers, used as coalescing agents in latex paint, has been identified as a source of highly unpleasant butyric acid (Corsi and Lin, in press). Over the past 50 years more and more products that contain esters have entered the indoor environment. At the same time, the fraction of homes with moisture problems appears to be growing (see Section 5.3). Taken together, this suggests that hydrolysis reactions have a larger impact on indoor environments today than they did several decades ago.

4. Personal habits

4.1. Smoking

In 1964, the first U.S. Surgeon General's report on "Smoking and Health" was issued. In 1973, the state of Arizona restricted smoking in public places. In 1994, the state of California restricted smoking in workplaces. In 2003, New York City amended its smoking restrictions to include all restaurants and bars. Today many U.S. state and local governments, as well as many businesses, have bans on smoking in various indoor environments. Furthermore, as illustrated in Fig. 2, the percentage of the U.S. adult population that smokes has been declining over the last 4 decades; in 1965, 43% of U.S. adults smoked; in 1985, 30% smoked; and in 2006, 21% smoked (CDC, 2007). Today, even in those households with smokers, a sizable fraction no longer smokes indoors.

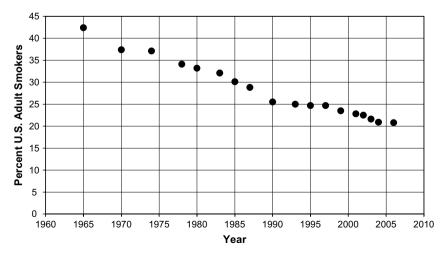


Fig. 2. Percent of U.S. adult smokers for the period from 1965 to 2006 (CDC, 2007).

Analogous restrictions and behavior changes have occurred in a number of European countries. As a consequence of these, there is less ETS in indoor environments and less exposure to ETS among nonsmokers in these countries. The latter has been documented for U.S. residents using biomarkers such as cotinine, a metabolite of nicotine that is present in the blood of nonsmokers exposed to ETS. Over the 11-year period from 1988–1991 to 1999–2002, blood cotinine levels for nonsmoking adults decreased by 75%; for adolescents, 69%; and for children, 68% (CDC, 2005). Although ETS levels have decreased in indoor environments, ETS exposure remains a major indoor health risk.

Anecdotal evidence suggests that in some indoor environments where there was previously smoking, ventilation rates were reduced after smoking was eliminated. This could result in increased concentrations of other pollutants emitted indoors, but unrelated to smoking.

4.2. Time spent indoors

In 1950, 9% of U.S. homes had televisions; by 1954, more than 55% of U.S. homes had TVs; and by 1962, more than 90% of homes had TVs (TV history, 2008). By 2003, more than 60% of U.S. homes had personal computers (World Resources Institute, 2008). Concomitantly, the bandwidth of connections between home and the Internet has continued to grow, which results in more compelling Web-based applications. Over the past 15 years, the sales of electronic gaming units have mushroomed. For example, PlayStation[®] was introduced in 1994; by 2004, Sony had shipped 40 million units in North America and 100 million units worldwide (Sony Computer Entertainment, 2008). The above developments suggest that people, especially children, spend more time in their homes today than they did 50 years ago.

People are also in transit (another type of indoor environment) a larger fraction of the day than they were 50 years ago. As suburbs have grown, daily commutes by car or public transportation are longer. In large metropolitan areas (e.g., New York, Los Angeles, Atlanta), it is not unusual for workers to spend 3 h per day commuting.

4.3. Pet ownership

Pet ownership, especially pets that are kept indoors, has increased (American Veterinary Medical Association, 2007). Hence, it is anticipated that indoor environments contain more cat and dog allergens than they did several decades ago.

5. Building factors

5.1. Tighter buildings

Steps to tighten building envelopes were included in energy conservation measures implemented following the Arab Oil embargo of 1973. Residential buildings constructed in the past two decades tend to be tighter and have lower air exchange rates than buildings constructed in the 1950s, 1960s and early 1970s (Weisel et al., 2005). Although conventional wisdom holds that the same trend applies to non-residential buildings, in a study of data from 139 commercial buildings, no correlation was seen between air leakage and building age (Persily, 1999).

Extensive literature reviews have concluded that low ventilation rates in offices are associated with building related health complaints (Seppanen et al., 2006; Wargocki et al., 2002). In a recent study of children living in 390 Swedish homes, Bornehag et al. (2005b) found that children with allergies lived in homes that had significantly lower ventilation rates than homes inhabited by children without allergies, and that there was an inverse dose– response relationship between ventilation rates and allergic symptoms. However, this association was for children living in Varmland, Sweden, where the outdoor air is quite clean. Whether such an association would be found in regions with highly polluted outdoor air remains to be determined. Indeed, the relationship between ventilation and health risks requires further scrutiny.

5.2. Air conditioning

In the U.S., air conditioning (AC) in residential and commercial buildings has increased dramatically over the last six decades. In 1947, 43,000 window air conditioners were sold; in 1953, that number was more than one million. The rate of growth in air conditioning was greatest in the five-year period from 1967 to 1972 when the percent of households with some type of air conditioning grew from 20% to 48% (Cox and Alm, 2008). Fig. 3 shows the change in air conditioning status of U.S. households for the period from 1978 to 1997 (Energy Information Administration, 2000). During this period the percent of households with window air conditioning actually decreased slightly, while the percent with central AC more than doubled. By 1997, 47% of U.S. households had central

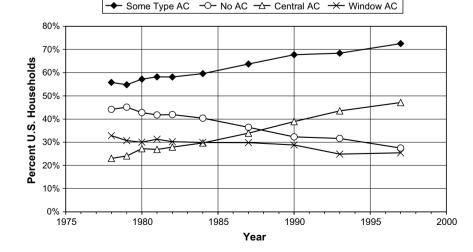


Fig. 3. Percent of U.S. households with some type of air conditioning, with no air-conditioning, with central air-conditioning and with window air-conditioning for the period from 1978 to 1997 (Energy Information Administration, 2000).

AC and 72% had some kind of AC. In the southern region of the U.S., that figure was 93% and most new homes were being constructed with central AC. To a major extent, air conditioning enabled the large influx of people into states such as Florida, Nevada and Arizona.

Air conditioning has changed the way that buildings are operated. Rather than opening windows and operating fans during periods of hot weather, occupants of air-conditioned homes close windows and turn on their "AC". To save energy, home air conditioners tend to be operated in a mode where they recirculate most of the indoor air. In air-conditioned office buildings and schools, it is also common to recirculate indoor air, with more than 90% of the supply-air typically being recirculated-air. Hence air-conditioned buildings exchange indoor air with outdoor air at a much lower rate than buildings without air conditioning. Ventilation, instead of being high in warm weather, has become quite low.

For airborne pollutants with indoor sources, the reduced ventilation that accompanies the use of air conditioning results in higher indoor concentrations. On the other hand, air conditioning results in less outdoor-to-indoor transport of ozone, nitrogen dioxide and submicron particles. Additionally, in commercial buildings the installation of heating, ventilating and air conditioning (HVAC) systems has included filters that remove a fraction of particles from the airstream. Such filtration can meaningfully reduce indoor airborne particles, especially when efficient filters are employed (see *ASHRAE Standard 52-2, 2007* for information on removal efficiencies of HVAC filters).

5.3. Damper buildings?

As the number of homes in the U.S. has grown, houses have been built on land that was previously considered "wetlands". There has also been a large increase in homes in hot, humid regions of the U.S. (e.g., Florida, Georgia, South Carolina), enabled by the growing availability of air conditioning. The combination of air conditioning and a hot, humid climate can often lead to moisture condensation on interior surfaces. Further aggravating matters, gypsum board has largely replaced plaster in home construction; the former does not provide the moisture buffering of the latter. Taken together, these changes suggest that the percentage of U.S. buildings with moisture problems has increased over the past several decades. This trend may be less pronounced in other countries.

6. Trends in indoor pollutants

Table 2 lists selected indoor pollutants and, for each pollutant, an up or down arrow to broadly summarize the trend in its indoor concentration since the 1950s. Most of these trends have been inferred; there are only a small number of pollutants for which indoor measurements exist over an extended period of time. The paragraphs in this section provide supporting information for the "best judgments" presented in the table. Compounds in Table 2 preceded by an asterisk are those for which substantial body burdens in U.S. residents have been reported (NHANES, 2005; see Section 6.6 and Table 3).

Some indoor pollutants are strongly influenced by outdoor concentrations; some have primarily indoor sources; and some are influenced by both outdoor and indoor sources. With the exception of short lived, highly reactive species, pollutants found outdoors will also be found indoors; changes in the concentrations of outdoor pollutants result in changes in the concentration of indoor pollutants. For relatively unreactive pollutants such as benzene or carbon tetrachloride, the indoor concentration will eventually equal the outdoor concentration in the absence of indoor sources. For reactive pollutants such as ozone or nitrogen dioxide, the indoor concentration depends on the air exchange rate; the larger the air exchange rate, the larger the ratio of the indoor concentration to the outdoor concentration (Shair and Heitner, 1974; Weschler et al., 1989).

6.1. Inorganic gases

Carbon monoxide (CO), nitrogen oxides (NO_x) and sulfur dioxide (SO_2). On average, the indoor concentration of each of these gases has decreased since the mid-1950s, partially due to decreases in their outdoor concentrations. The use of low sulfur fossil fuels has resulted in much smaller outdoor emissions of SO_2 . Catalytic converters, first introduced in 1975, have sharply reduced emissions of CO and NO_x from motor vehicles. Indeed, the number of unintentional motor vehicle-related CO deaths decreased from 4.0 to 0.9 deaths/million-person-years between 1975 and 1996 (Mott et al., 2002). Indoor emissions of CO and NO_x from gas appliances, including gas stoves, have decreased with the introduction of units that no longer use "pilot lights". Less indoor smoking has further contributed to reduced indoor emissions of these pollutants.

Ozone (O_3). In contrast to carbon monoxide, nitrogen oxides and sulfur dioxide, the outdoor concentration of ozone has increased over the past five decades (with the exception of a few regions, such as southern California, that have implemented specific ozonereduction measures). This is true not only in urban areas but also at rural and background sites (London and Kelley, 1974; Seinfeld and Pandis, 1998; Derwent et al., 2002). The increase in outdoor ozone levels has been tempered by average reduction in ventilation rates and concomitant decrease in the transport of ozone from outdoors to indoors. Reductions in outdoor-to-indoor transport are anticipated to be greater in those regions of the country with a higher fraction of air-conditioned buildings.

Indoor sources of ozone are more common than they were several decades ago. Perhaps the most important of these is photocopiers (Leovic et al., 1996; Destaillats et al., 2008), which were nonexistent in the early 1950s and have become ubiquitous in offices and schools and are even found in many homes. Other indoor sources include so-called "ionic air cleaners" (Britigan et al., 2006), ozone generators (Boeniger, 1995; Weschler, 2000) and electrostatic precipitators.

Radon. Major indoor sources of radon are soil, ground water and construction materials. The 1981 NRC report on indoor pollutants highlighted radon and its potential health risks. In 1984 the news media publicized the case of Stanley Watras, a worker at a nuclear power plant in Pennsylvania who set off radiation alarms on his way into work. Subsequently testing showed that the radon level in his home was roughly 650 times higher than typical background levels. In 1988, the Indoor Radon Abatement Act required that EPA list and identify areas in the U.S. where indoor radon levels might be elevated. In 1998 the NRC issued its BEIR VI report "Health Effects of Exposure to Radon" (National Research Council, 1998). This report concluded that radon was the second leading cause of lung cancer in the U.S. In 2005, the U.S. Surgeon General issued a Health Advisory noting the serious health threat posed by indoor radon and that lung cancer deaths from radon were almost entirely preventable. Various states have adopted guidelines or regulations regarding radon testing during real estate transactions. As a result of such actions, the number of U.S. homes mitigated for radon increased from 35,000 in 1986 to 80,000 in 2003 (Gregory and Jalbert, 2004), suggesting that the general trend in indoor radon concentrations has been downward over the past two decades.

6.2. Very volatile organic compounds (VVOCs)

Formaldehyde and acetaldehyde. Formaldehyde is, or has been, used in the resin of composite-wood products, in acid-cured cabinet and floor finishes, as a preservative in paints and cosmetics,

Table 2

Selected pollutants and trends in their indoor concentrations since the 1950s. Compounds preceded by an asterisk are those for which substantial body burdens have been reported (NHANES, 2005).

Carlos mesodeIHese index survays; reduced autidors concentrationCarlos mesodeIHese index survays; reduced autidors concentrationSubir diodeIHese index survays index concentrationSubir diodeIHese index survays index concentrationSubir diodeIHese index survays index concentrationSubir diodeIHese index concentrationHere subir diverse survays index concentrationHese index survays index concentrationHere subir diverse survays index concentrationHese index survays index concentrationHere subir diverse subir diverse subir concentrationHese index survays index concentrationHere subir diverse subir diver	Pollutant	Trend	Comment
Nice Databaseiless index canading: fever unwented contabation applicanceNice DatabaseIInterased outdoor constrations (with Sock Securgion): when outdoor-to-indoor transportStart databaseInterased outdoor constrations (with Sock Securgion): when outdoor-to-indoor transportStart databaseIInterased awareness: mitigation measuresStart databaseIInterased databaseStart databaseIInterased database	Inorganic gases		
Nini, Cacheis induo sauking fewer unwented combation signitancesDarenIncreased induor conventions (with S.C. Accerption); reduced autions to induor tanapartic (with S.C. Accerption); reduced autions from composite-wood product; less indoor sanking; owing remains insportant sourcesHay value arguing compounds (VVC)Interased indoor cleanisty?Hay value arguing compounds (VVC), stabuyedInterased indoor cleanisty?Has durated errols on from comportant value value of alphaic solventsInterased indoor cleanisty?Harden (VCC), stabuyedInterased condoors; reduced us of araantic solventsHarden (VCC), stabuyedInterased condoors; reduced us of araantic solventsHar		Ļ	
Dame?Increased number consentrationStaff afonich1Neckode ductor consentrationStaff afonich1Neckode staffersStaff afonich1Neckode staffersStaff afonich1Neckode staffersStaff afonich1Neckode staffersStaff af one grant1Neckode staffersNerside staffers1Neckode staffersNerside staffers1Neckode staffersStaff af one grant1Neckode staffersStaffers1Neckode staffers <tr< td=""><td>•</td><td></td><td></td></tr<>	•		
sign diada i infanta i i i infanta i i i infanta i i i i i i i i i i i i i i i i i i i		•	
Sulfur disolideiReduced outdoor concentrationBalleriincreased awarenes, mitpution measureHery validle arguine compounds (VOC)IBaller disons moting coording remains impacting some and increased indoor chemistry?Werabel arguine compounds (VOC), addayteeIBaller disons moting coording remains impacting some arguine some	020118	1	
Baloninknowski witsginth measuresBary walker organic composits (VOC)Yernaled organic composits (VOC)Yernaled organic composits (VOC)Yernaled organic composits (VOC) allelysesStandarine composits	Sulfur dioxide	1	
<pre>by refer compounds (VVDC)</pre>		↓ 	
from allelyginIElimination of UPE, reduced emission from composite-word products, less indoor smoking, weakalelyginkeralelygin1Lets indoor smoking, concentral support are source and one chemistry?keralelygin2Lets indoor smoking, concentral support are source and sourc		*	included dividicities, integration include co
Accallelysic17Reduced ensists from some products; increased indoor chemistry?1.3 Builderen17Decreased outdoor ived; emitted when cooking with some oils1.3 Builderen17Decreased outdoor ived; emitted when cooking with some oils1.3 Builderen17Decreased outdoor ived; emitted when cooking with some oils1.3 Builderen17Increased use of composite wood, increased indoor chemistry?1.3 Builderen17Increased indoor chemistry?1.3 Builderen17Increased indoor chemistry?1.3 Builderen17Increased indoor chemistry?1.3 Builderen17Increased indoor chemistry?1.3 Builderen1Decreased outdoors; reduced use of animatic solvents1.3 Builderen1Increased use of represid solvents and scents1.3 Builderen1Increased use of represid solvents and scents1.3 Builderen1Reduced ensister solvent1.3 Builderen1Reduced ensister solvent1.3 Builderen1Reduced ensister solvent1.3 Builderen1Reduced ensister solvent1.3 Builderen1Reduced ensister solvent			
Kenden1Les indoor smeding: cooking remains important sourceSources-Envisions from occupants relatively unchangedSources-Envisions from occupants relatively unchangedSources17Increased uncor chemistry?Vestala17Increased indoor chemistry?Occ. adultation17Increased indoor chemistry?Vestala17Increased indoor chemistry?Vestala17Increased indoor chemistry?Vestala-Continued use of alphatic solventsAutherd alkines-Increased uncor chemistry?Sources1Decreased outdoors; reduced use of aromatic solventsUSC contract-Increased use of aromatic solventsUSC advantic1Decreased outdoors; reduced use of aromatic solventsUSC sources1Decreased outdoors; reduced use a solventUSC chemistry1Decreased outdoors; reduced use a solventUSC chemistry1Decreased outdoors; reduced use a solventUSC sources1Reduced texe in drinking, fully west, and scentsUSC sources1Reduced texe in a solventUSC sources1Reduced texe in a solventUSC sources1Reduced tex			
13-Buddene17Decreased undor invel; emitted when cooking with some oils sopproteVisitelie organic compounds (VOC) addebytesVisitelie organicompound			
sopremEnsistem renorms relatively undargedAction organic monounds (VoC), alide/just1increased user of composite-wood, Increased indoor chemistry?Actional12increased indoor chemistry?Occupitation12increased indoor chemistry?Occupitation-Continued to eral platitic solventsDecand-Continued to eral platitic solventsActional (sp., rootane)-Continued to eral platitic solventsActional (sp., rootane)-Continued to eral platitic solventsActional (sp., rootane)1Decreased outdoors; roduced use of aromatic solventsActional (sp., rootane)1Decreased outdoors; roduced use of aromatic solventsActional (sp., rootane)1Decreased outdoors; roduced use of aromatic solventsApprox1Decreased outdoors; roduced use of aromatic solventsApprox1Decreased outdoors; roduced use of aromatic solventsApprox1Increased use of repressi dovents and scentsApprox1Increased use of repressi dovents and scentsApprox1Reduced trees a solventApprox1Reduced trees a solventApprox1Reduced			
Antime organic compounds (NOC) alledyders Increased indoor chemistry? Namani 1? Increased indoor chemistry? Namanics - Continued use of aliphitic solvents Namanics - Continued use of aliphitic solvents Namanics - Continued use of aliphitic solvents Notemeters 1 Decreased outdoors; reduced use of anomic solvents Nymen isomers 1 Decreased outdoors; reduced use of anomic solvents Nymen isomers 1 Decreased outdoors; reduced use of anomic solvents Nymen isomers 1 Decreased outdoors; reduced use of anomic solvents Nymen isomers 1 Decreased outdoors; reduced use of anomic solvents Nymen isomers 1 Decreased outdoors; reduced use of anomic solvents Nymen isomers 1 Decreased outdoors; reduced use of anomic solvents Nymen isomers 1 Decreased outdoors; reduced use a solvent Oper isomers 1 </td <td>,</td> <td>- + ·</td> <td></td>	,	- + ·	
iterates iterased indoor chemistry? Notania if 2 increased indoor chemistry? Decanal if 2 increased indoor chemistry? PALkanes (cg., n-octure) - Continued use of aliphatic solvents increased indoor chemistry? - Continued use of aliphatic solvents increased indoor chemistry? - Continued use of aliphatic solvents increased indoor chemistry? - Continued use of aliphatic solvents increased oundoors; reduced use of aromatic solvents - Continued use of aliphatic solvents infinitely/benzene 1 Decreased oundoors; reduced use of aromatic solvents infinitely/benzene 1 Decreased oundoors; reduced use of aromatic solvents infinitely/benzene 1 Increased use of terpenoid solvents and scents infinitely/benzene 1 Increased use of terpenoid solvents and scents infinitely/benzene 1 Increased use of terpenoid solvents and scents infinitely/benzene 1 Reduced levels an solvent infinitely/benzene 1 Reduced levels in drinking vater, reduced use as solvent infinitely/benzene 1			
Variant?Increased indoor chemistry?VBC aliphatics-VBC aliphatics- <td></td> <td></td> <td></td>			
Canadian??Increased undor chemistry?Mikenes (c.g., n-cranc)-Continued use of aliphatic solventsMikenes (c.g., n-cranc)-Continued use of aliphatic solventsMikenes (c.g., n-cranc)1Berrased outdoor; reduced use of aromatic solventsMikenes1Decreased outdoor; reduced use of aromatic solventsMikenes1Decreased outdoor; reduced use of aromatic solventsStylePenere1Decreased outdoor; reduced use of aromatic solventsStylePenere1Decreased outdoor; reduced use of aromatic solventsStylePenere1Increased use of terpenoid solvents and scentsStylePenere1Increased use of terpenoid solvents and scentsStylePenere1Increased use of terpenoid solvents and scentsStylePenere1Increased use of terpenoid solvents and scentsStylePenere1Necresed use of scents </td <td></td> <td></td> <td></td>			
DOC. alphanics - Continued use of alphatic solvents Albanes (cg., noctane) - Continued use of alphatic solvents DOC. anomatics - Continued use of alphatic solvents Berance 1 Decreased outdoors; reduced use of anomatic solvents VOC. ground is a solvent (see Fig. 4a and c) Continued use of anomatic solvents Think those 1 Decreased outdoors; reduced use of anomatic solvents Systeme 1 Decreased outdoors; reduced use of anomatic solvents Systeme 1 Decreased outdoors; reduced use of anomatic solvents Systeme 1 Decreased outdoors; reduced use of anomatic solvents Systeme 1 Increased use of terpenoid solvents and scents Systeme 1 Increased use of terpenoid solvents and scents Systeme 1 Increased use of terpenoid solvents and scents Systeme 1 Increased use of terpenoid solvents and scents Systeme 1 Increased use of terpenoid solvents and scents Systeme 1 Increased use of terpenoid solvents and scents Decloromethane 1 Increased use of terpenoid solvents and scents Decloromethane 1			
	Jecalia	?	
Banche alanes-Continue de alaphatic solvensVOC.arroutisINone as alvent (see Fig. 4g and I)VOC.arroutisIDerased audors; reduced se of armanic solvensNone as alvent (see Fig. 4g and I)None as alvent (see Fig. 4g and I)None as alvent (see Fig. 4g and I)Derased audors; reduced use of armanic solvensNone as alvent (see Fig. 4g and I)Derased audors; reduced use of armanic solvensNone as alvent (see Fig. 4g and I)Derased audors; reduced use of armanic solvensNone as alvent (see Fig. 4g and I)Derased audors; reduced use of armanic solvensNone as alvent (see Fig. 4g and I)Derased audors; reduced use formanic solvensNone as alvent (see Fig. 4g and I)Derased audors; reduced use a solvent (see Fig. 4g and I)Lindool IIIIncrease us of repenoid solvents and scentsLindool IIIReduced use solventChristerIReduced use solventChristerIReduced use solventChristerIReduced use solventChristerIReduced use solventChristerIReduced use solventChristerIReduced use a solventChristerIReduced use an ontobalis'ChristerIReduced use an ontobalis'ChristerIReduced use an ontobalis'ChristerIReduced use an ontobalis'ChristerIReduced use ontobalis'ChristerIReduced use an ontobalis'ChristerIReduced use ontobalis'Ch	VOC, aliphatics		
Out anomatics Benzene 1 Bestricted use as solvent (see Fig. 4a and c) Bolane 1 Decreased outdoors; reduced use of anomatic solvents When source 1 Decreased outdoors; reduced use of anomatic solvents When source 1 Decreased outdoors; reduced use of anomatic solvents Syrene 1 Decreased outdoors; reduced use of anomatic solvents Syrene 1 Decreased outdoors; reduced use of anomatic solvents Syrene 1 Decreased outdoors; reduced use of anomatic solvents Innonene 1 Increased use of terpenoid solvents and scents Innonene 1 Increased use of terpenoid solvents and scents Inholo 1 Increased use of terpenoid solvents and scents Inholo 1 Increased use of terpenoid solvents and scents Inholo 1 Increased use of anomatic solvents Cholor tertachhorde 1 Reduced leveis in dring water, reduced use as solvent Cholor tertachhorde 1 Reduced leveis in dring water, reduced use as solvent Cholor tertachhorde 1 Reduced leveis in dring holor bolor bolor bolor bolor bolor bolor bolor bol		-	
Benzene1Restriced use as olvent (see Fig. 4a and c)Bolane1Decreased outdoors; reduced use of aromatic solventsSylene isomers1Decreased outdoors; reduced use of aromatic solventsBilylenzene isomers1Decreased outdoors; reduced use of aromatic solventsSyrene1Decreased outdoors; reduced use of aromatic solventsWC. terpendis1Increased use of terpendi solvents and scentsar/Insen1Increased use of terpendi solvents and scentsar/Insen1Increased use of terpendi solvents and scentsar/Insen1Increased use of terpendi solvents and scentsar/Insen1Reduced lave as solventChrintetd1Reduced lave as solventChrintetd1Reduced lave as solventChrintetd1Reduced lave as solventChrintetd1Increased use a solventChrintetd1Increased use as solventChrintetdromethane1Increased use as solventChrintetdromethane1Increased use as solventChrintetdromethane1Increased use in "dry-cleaning" followed by Montral protocolProtocols1Increased use in continioning, followed by Montral protocolProtocols1Increased use in personal care products and cosmeticsProtocols1Increased use in personal care products and cosmeticsProtocols1Increased use in personal care products and cosmeticsProtocols1Increased use in personal care products and cosmetics </td <td>3ranched alkanes</td> <td>-</td> <td>Continued use of aliphatic solvents</td>	3ranched alkanes	-	Continued use of aliphatic solvents
Benzene1Restriced use as olvent (see Fig. 4a and c)Bolane1Decreased outdoors; reduced use of aromatic solventsSylene isomers1Decreased outdoors; reduced use of aromatic solventsBilylenzene isomers1Decreased outdoors; reduced use of aromatic solventsSyrene1Decreased outdoors; reduced use of aromatic solventsWC. terpendis1Increased use of terpendi solvents and scentsar/Insen1Increased use of terpendi solvents and scentsar/Insen1Increased use of terpendi solvents and scentsar/Insen1Increased use of terpendi solvents and scentsar/Insen1Reduced lave as solventChrintetd1Reduced lave as solventChrintetd1Reduced lave as solventChrintetd1Reduced lave as solventChrintetd1Increased use a solventChrintetd1Increased use as solventChrintetdromethane1Increased use as solventChrintetdromethane1Increased use as solventChrintetdromethane1Increased use in "dry-cleaning" followed by Montral protocolProtocols1Increased use in continioning, followed by Montral protocolProtocols1Increased use in personal care products and cosmeticsProtocols1Increased use in personal care products and cosmeticsProtocols1Increased use in personal care products and cosmeticsProtocols1Increased use in personal care products and cosmetics </td <td>VOC. aromatics</td> <td></td> <td></td>	VOC. aromatics		
IolueneIDecreased outdoors; reduced use of aromatic solventsKiykene isomersIDecreased outdoors; reduced use of aromatic solventsKiykene isomersIDecreased outdoors; reduced use of aromatic solventsStyreineIDecreased outdoors; reduced use of aromatic solventsStyreineIIncreased use of terpenoid solvents and scentsInternationIIncreased use of terpenoid solvents and scentsInternationIReduced use as solventInternationIReduced use as solventInternationIReduced use as solventInternationIIncreased use of "morthalls"InternationIIncreased use (air conditionig), followed by montreal protocolInternationIIncreased use (air conditionig), followed by Montreal protocolInternationIIncreased use in personal care products and cosmeticsInternationIIncreased use in personal c		11	Restricted use as solvent (see Fig. 4a and c)
EthylienzeneiDecreased outdoors; reduced use of aromatic solventsStyreeiDecreased outdoors; reduced use of aromatic solventsStyreeiDecreased outdoors; reduced use of aromatic solventsVOC. treproidsiIncreased use of terpenoid solvents and scentsImonence1Increased use of terpenoid solvents and scentsA Finen1Increased use of terpenoid solvents and scentsA Finence1Increased use of terpenoid solvents and scentsA Finence1Increased use of terpenoid solvents and scentsOCC, choirnatedIIncreased use of verpenoid solvents and scentsDichforomethane11Reduced levels in drinking water, reduced use a solventChoromethane11Montreal protocol: reduced use a solventIfichiorothylene (Perc)1.4Increased use in "dry-cleaning", followed by reduced use in "dry-cleaning"Dichforobenzene4Reduced use as solventDichforobenzene1.4Increased use (air conditioning), followed by Montreal protocolDichforobenzene1.4Increased use (air conditioning), followed by Montreal protocolDichforobenzene1.4Increased use (air conditioning), followed by Montreal protocolDichforobenzene1.4Increased use in personal care products and cosmeticsDichforobenzene1.4Increased use in personal care products and cosmeticsDichforobenzene1.4Increased use in personal care products and cosmeticsDichforobenzene1.4Increased use in informatics of portocolDichf	Toluene		
Trimetplybnzene isomersiDecreased outdoors; reduced use of aromatic solventsSyreneiDecreased outdoors; reduced use of aromatic solventsSyreneiDecreased use of terpenoid solvents and scentsSyreneiIncreased use of terpenoid solvents and scentsSyreneiReduced use a solventChronorthaneiIChronorthaneiReduced use as solventChronorthaneiReduced use as solventSyreneiReduced use as solvent <td>Xylene isomers</td> <td>Ļ</td> <td>Decreased outdoors; reduced use of aromatic solvents</td>	Xylene isomers	Ļ	Decreased outdoors; reduced use of aromatic solvents
Syrene [*] i Decreased outdoors; reduced use of aromatic solvents VOC, terpronids Increased use of terpenoid solvents and scents R-Finene 1 Increased use of terpenoid solvents and scents R-Finene 1 Increased use of terpenoid solvents and scents R-Finene 1 Increased use of terpenoid solvents and scents R-Finenol 1 Increased use of terpenoid solvents and scents Syntherine 1 Reduced use as solvent Chioroform 1 Increased use in derinding', followed by Montreal protocol Dichtoroform 1 Increased use in personal care products and cosmetics Dichtoroform	Ethylbenzene	\downarrow	Decreased outdoors; reduced use of aromatic solvents
No. of the product o	Trimethylbenzene isomers	Ļ	Decreased outdoors; reduced use of aromatic solvents
Linnornie1Increased use of terponoid solvents and scentsAribence1Increased use of terponoid solvents and scentsLinalool1Increased use of terponoid solvents and scentsArefprincol1Increased use of terponoid solvents and scentsVCC, chloritated1Reduced levels in drinking water, reduced use as solventLinalon1Reduced levels in drinking water, reduced use as solventLinalor tertachloride1Reduced levels in drinking water, reduced use as solventLinalor tertachloride/levelse1Reduced use as solventLinalor tertachloride/levelse1Reduced use as solventLinalor tertachloride/levelse1Reduced use as solventTrichloronethane1Reduced use as solventDichlorobenzene1Reduced use ad "mothalls"Dichlorobenzene1Increased use (air conditioning), followed by reduced use in "dry-cleaning"Dichlorobenzene1Increased use (air conditioning), followed by Montreal protocolPren 111Increased use (air conditioning), followed by Montreal protocolPren 121Increased use in personal care products and cosmeticsPren 131Increased use in personal care products and cosmeticsDichlorobenzene1Increased use in disinfecting sops and cleaning productsSemivalite argunic compands (SVC), biocides/functic/preservatusIncreased use and principal acter products and cosmeticsDichlorobenzene1Increased use in personal care products and cosmeticsSemivalite argunic co	Styrene	\downarrow	Decreased outdoors; reduced use of aromatic solvents
Linnoneine1Increased use of terpenoid solvents and scentsArilence1Increased use of terpenoid solvents and scentsLinalool1Increased use of terpenoid solvents and scentsArefprincel1Increased use of terpenoid solvents and scentsVCC, choirnetd1Reduced use as solventDichloromethane1Reduced levels in drinking water, reduced use as solventCarbon tetrachloride1Reduced use as solventLi1,1-Trichloromethane1Reduced use as solventTrichlorophylene1.1Reduced use as solventTrichlorophylene1.1Reduced use as solventTrichlorophylene1.1Reduced use as solventDichlorophenethane1.1Reduced use as molecular solventDichlorophenethane1.1Increased use in "dry-cleaning", followed by reduced use in "dry-cleaning"Dichlorophenethane1.1Increased use in 'dry-cleaning', followed by Montreal protocolDichlorophenethane1.1Increased use (air conditioning), followed by Montreal protocolProtocol1.1Increased use in personal care products and cosmeticsDichlorophylithalate1.1Increased use in personal care products and cosmeticsDichlorophenols1Increased use in disinfecting sops and cleaning productsSemivalite argunic compands (SVOC). biocides/Imrgic/ErreservatusIncreased use in alignificating sops and cleaning productsSemivalite argunic compands (SVOC). biocides/Imrgic/ErreservatusIncreased use in alignificating sops and cleaning productsSemivalite a	VOC ternenoids		
n-Pinene1Increased use of repenoid solvents and scentsLinalool1Increased use of repenoid solvents and scentsa-Terpineol1Increased use of repenoid solvents and scentswCC. chorinated1Reduced use as solventChoroform1Reduced use as solventChoroform1Reduced use as solventChoroform1Montreal protocol; reduced use as solventChoroform1Increased use in "dry-cleaning", followed by reduced use in "dry-cleaning", followed by Montreal protocolProthorophylene1Increased use (air conditioning), followed by Montreal protocolProthorophylene1Increased use (air conditioning), followed by Montreal protocolProton 121Increased use in personal care products and cosmeticsProton 131Increased use in personal care products and cosmeticsProtentyl phthalate1Increased use in personal care products and cosmeticsProtentyl phthalate1Increased use in personal care products and cosmeticsProtentyl phthalate1Increased use in disinfecting soaps and cleaning productsStrytated Mytoroluce/(HTOP)1Increased use in disinfecting soaps and cleaning productsStrytated Mytoroluce/(HTOP)1Increased use in antioxidant in a variety of productsStrytated Mytoroluce/(HTOP)1Increased use in solvent, sindoor use restricted in 1984Strytated Mytoroluce/(HTOP)1Increased use in		Ť	Increased use of terpenoid solvents and scents
LinaloodiIncreased use of terpenoid solvents and scentsa-Terpineoliicreased use of terpenoid solvents and scentsa-TerpineoliReduced use as solventDichforomethaneiReduced laves and infining water, reduced use as solventCarbon tetrachlorideiReduced use as solventIntrictionomethaneiReduced use as solventIntrictionomethaneiReduced use as solventTrictionomethaneiReduced use as solventTrictionomethaneiReduced use as solventTrictionomethaneiReduced use as in "dry-cleaning", followed by reduced use in "dry-cleaning"DichforohenzeneiReduced use as in "dry-cleaning", followed by Montreal protocolDichforohenzeneiIncreased use (air conditioning), followed by Montreal protocolPreon 11i.iIncreased use in personal care products and cosmeticsFreon 12i.iIncreased use in personal care products and cosmeticsProtorbiIncreased use in personal care products and cosmeticsDinethyl phthalaterIncreased use in astronal care products and cosmeticsDinethyl phthalaterIncreased use in astronal care products and cosmeticsDively phthalaterIncreased use an antoxidant in a variety of productsStrobustomethonei.iStates began to restrict use in indoor paints in 1988Bulytated kytroxytoliene (BHT)i.iReduced outdoor concentrationsStrobustom byproductsi.iLess indoor smoking; smaller % of population smoking <td></td> <td>, ↑</td> <td></td>		, ↑	
VCC, chlorinated 11 Reduced use as solvent Dichloromethane 11 Reduced levels in drinking water, reduced use as solvent Carbon tetrachloride 11 Reduced use as solvent Lil-Trichloromethane 11 Montreal protocol; reduced use as solvent Trichloronethane 11 Reduced use as solvent Dichlorobenzene 1 Reduced use as solvent Dichlorobenzene 1 Reduced use as solvent Pontinated 1 Increased use (air conditioning), followed by Montreal protocol Preven 12 1.1 Increased use (air conditioning), followed by Montreal protocol Preven 13 1.1 Increased use in personal care products and cosmetics Dinethyl phthalate 1 Increased use in personal care products and cosmetics Divelyl phthalate 1 Increased use in disinfecting soaps and cleaning products <t< td=""><td>Linalool</td><td></td><td></td></t<>	Linalool		
DichloromethaneI A Reduced use as solventChloroformIReduced use as solventChloroformI AReduced use as solventL1,II-TrichloromethaneI AMontreal protocol; reduced use as solventTrichlorothylene (Perc)I.AIncreased use in "dry-cleaning", followed by reduced use in "dry-cleaning", followed by followed by followed by Montreal protocolDichlorobenesIIncreased use (air conditioning), followed by Montreal protocolFreen 11Increased use in personal care products and cosmeticsFreen 12Increased use in personal care products and cosmeticsOCC, otherIncreased use in personal care products and cosmeticsDichtyl phthalateIncreased use in personal care products and cosmeticsCyclopentailosane (DS)Increased use in personal care products and cosmeticsStributiloxide (TBTO)I,AStates began to restrict use in indoor paints in 1988Butyl by hydradycoluene (BHT)Increased use in as an anticiadant in a variety of productsTrichlorophenoisI,AStates began to restrict use in indoor paints in 1988Butyl by hydradycoluene (BHT)Increased use in opersonal care products and isonal care indoor use restrict in 1984Dickin phyrodycottIIncr	α-Terpineol	↑	Increased use of terpenoid solvents and scents
DichloromethaneI A Reduced use as solventChloroformIReduced use as solventChloroformI AReduced use as solventL1,II-TrichloromethaneI AMontreal protocol; reduced use as solventTrichlorothylene (Perc)I.AIncreased use in "dry-cleaning", followed by reduced use in "dry-cleaning", followed by followed by followed by Montreal protocolDichlorobenesIIncreased use (air conditioning), followed by Montreal protocolFreen 11Increased use in personal care products and cosmeticsFreen 12Increased use in personal care products and cosmeticsOCC, otherIncreased use in personal care products and cosmeticsDichtyl phthalateIncreased use in personal care products and cosmeticsCyclopentailosane (DS)Increased use in personal care products and cosmeticsStributiloxide (TBTO)I,AStates began to restrict use in indoor paints in 1988Butyl by hydradycoluene (BHT)Increased use in as an anticiadant in a variety of productsTrichlorophenoisI,AStates began to restrict use in indoor paints in 1988Butyl by hydradycoluene (BHT)Increased use in opersonal care products and isonal care indoor use restrict in 1984Dickin phyrodycottIIncr	VOC chloringtod		
ChloroformI NReduced levels in drinking water, reduced use as solventLi1Nontreal protocol; reduced use as solventLi1.1-TrichloromethaneLiMontreal protocol; reduced use as solventLi1.1-TrichloromethaneLiReduced use as solventLi1.1-TrichloromethaneLiReduced use as solventDichlorobetxeneLiReduced use as solventDichlorobenzeneLiReduced use of "mothballs"DichlorobenzeneLiRestricted use as herbicides and pesticidesVOC, fluorinatedT.I.Increased use in air conditioning), followed by Montreal protocolFreen 11T.I.Increased use in personal care products and cosmeticsFreen 1131.I.Increased use in personal care products and cosmeticsVOC, otherIncreased use in personal care products and cosmeticsDiethylphthalate1Increased use in personal care products and cosmeticsCyclopentationsue (DS)1.I.Increased use in personal care products and cosmeticsStributile organic compounds (SVOC), biocides/furgic/reserververIncreased use as an anticidant in a variety of productsStributile organic compounds (SVOC), biocides/furgic/reserververIncreased use as an anticidant in a variety of productsStributile organic compounds (SVOC), biocides/furgic/reserververIncreased use in disinfecting soaps and cleaning productsStributile organic compounds (SVOC), biocides/furgic/reserververIncreased use an anticidant in a variety of productsStributile organic compounds (SVOC), biocides/furgic/reserververIncreased use an anticidant in a variety of			Reduced use as solvent
Carbon tetrachloride1Reduced use as solvent1,1,1-Trichloromethane1Montreal protocol; reduced use as solvent1,1,1-Trichloromethane1Reduced use as solventTrichloromethylene1,1Increased use in "dry-cleaning", followed by reduced use in "dry-cleaning"Dichlorobenzene4Reduced use of "mothballs"Dichlorobenzene1Increased use (air conditioning), followed by Montreal protocolFreen 111,1Increased use (air conditioning), followed by Montreal protocolFreen 121,1Increased use (air conditioning), followed by Montreal protocolFreen 131,1Increased use (air conditioning), followed by Montreal protocolOC, cher1Increased use in personal care products and cosmeticsDichthyl phthalate1Increased use in personal care products and cosmeticsCyclopentasiloxane (D5)1Increased use in disinfecting soaps and cleaning productsSist(tibutylin)oxide(TBTO)1,1States began to restrict use in indoor paints in 1988Sist(tibutylin)oxide(TBTO)1,1Used as pesticides; no longer manufacturedSVOC, combustion byproducts1Less indoor smoking; smaller % of population smokingSVOC, combustion byproducts1Less indoor smoking; smaller % of population smokingSVOC, digradation products1Less indoor smoking; smaller % of population smokingSVOC, digradation products1Less indoor smoking;SVOC, digradation products1Less indoor smoking;SVOC, digradation products1Increased			
1,11-Fichloromethane1Montreal protocol; reduced use as solventTrichloroethylene (Perc)1,4Increased use in "dry-cleaning", followed by reduced use in "dry-cleaning"Dichlorobenzene4Reduced use of "mothballs"Dichlorobenzene4Restricted use as herbicides and pesticidesDichlorobenzene1Restricted use as herbicides and pesticidesVOC, fluorinated1.4Increased use (air conditioning), followed by Montreal protocolFreen 111.4Increased use (air conditioning), followed by Montreal protocolFreen 1131.4Increased use (air conditioning), followed by Montreal protocolFreen 1131.4Increased use (air conditioning), followed by Montreal protocolDichlyrophthalate1Increased use (air conditioning), followed by Montreal protocolDichlyrophthalate1Increased use (air conditioning), followed by Montreal protocolDichlyrophthalate1Increased use in personal care products and cosmeticsDichlyrophthalate1Increased use in personal care products and cosmeticsSemivolatile organic compounds (SVOC). biocides/Imgictes/perservativeIncreased use in disinfecting soaps and cleaning productsSemivolatile organic compounds (SVOC). biocides/Imgictes/persorutureIncreased use in disinfecting soaps and cleaning productsSemivolatile organic compounds (SVOC). biocides/Imgictes/persorutureIncreased use in disinfecting soaps and cleaning productsSemivolatile organic compounds (SVOC). biocides/Imgictes/persorutureIncreased use in disinfecting soaps and cleaning productsPitylated hydroxytol		•	
Trichloroethylene1Reduced use as solventTetrachloroethylene (Perc)1.4Increased use in "dry-cleaning", followed by reduced use in "dry-cleaning", followed by reduced use in "dry-cleaning", followed by montreal protocolDichloroetharene1Restricted use as herbicides and pesticidesDichloroetharene1.4Increased use (air conditioning), followed by Montreal protocolFreen 111.4Increased use (air conditioning), followed by Montreal protocolFreen 121.4Increased use (air conditioning), followed by Montreal protocolFreen 131.4Increased use (air conditioning), followed by Montreal protocolOut, other1Increased use in personal care products and cosmeticsDirethyl phthalate1Increased use in personal care products and cosmeticsCyclopentationae (DS)Increased use in disinfecting soaps and cleaning productsSemivlatile organic compounds (SVOC), biocides/fungic//spreservativesIncreased use in disinfecting soaps and cleaning productsStyltate hydroxytoluene (BHT)1Increased use as an antioxidant in a variety of productsStyltate hydroxytoluene (BHT)1,4Biocide in wood, paints in 1988Styltate hydroxytoluene (BHT)1,4Less indoor smoking; smaller % of population smokingDiokins1Less indoor smoking; smaller % of population smokingDiokins1Less indoor smoking; smaller % of population smokingDiokins1Less indoor smoking;Diokins1Less indoor smoking;Trichorophenol KDCIncreased use in foams and electronics; rec			
Tetrachorethylene (Perc)1,1Increased use in "increased use a herbicides and pesticidesDichlorophenols1Reduced use of "mothballs"Dichlorophenols1Increased use (air conditioning), followed by Montreal protocolFreen 111,1Increased use (air conditioning), followed by Montreal protocolFreen 1131,1Increased use in personal care products and cosmeticsDincthyl phthalate1Increased use in personal care products and cosmeticsDincthyl phthalate1Increased use in personal care products and cosmeticsDincthyl phthalate1Increased use in aeronal care products and cosmeticsSemivolatile organic compounds (SVOC), biocide/furgerspretreuterIncreased use in aironal care products/antiperspirantsTriclosan1Increased use an antioxidant in a variety of productsBistribulytin loxide(IBTO)1,4States began to restrict use in indoor use restricted in 1984Bistribulytin loxide(IBTO)1,4Used as peticides: use as an antioxidant in a variety of productsTrichosan1Used as peticide: use as an anticit use in indoor use restricted in 1984Dicking phenol1Used as peticide: use as antipeticidesPentachlorophenol (PCP)1,4Bicide in wood, paints, stains; indoor use restricted in 1984Dicking phenol1Used as peticide: use as antipeticidesDicking phenol1Ese indoor smoking; smaller % of population smokingDicking phenol1I			
DichlorobenzeneIReduced use of "notiballs"'DichlorophenolsIRestricted use as herbicides and pesticides'DichlorophenolsIRestricted use as herbicides and pesticidesVOC, fluorinated1.1Increased use (air conditioning), followed by Montreal protocolFreen 121.1Increased use (air conditioning), followed by Montreal protocolFreen 131.1Increased use (air conditioning), followed by Montreal protocolVOC, otherIncreased use in personal care products and cosmetics'Dichtyl phthalate1Increased use in personal care products and cosmeticsSemivolatile organic compounds (SVOC), biocides/fungicides/preservativesIncreased use in disinfecting soaps and cleaning productsSemivolatile organic compounds (SVOC), biocides/fungicides/preservativesIncreased use a son antioxidant in a variety of productsSemivolated hydroxytoluene (BHT)1Increased use a son antioxidant in a variety of productsStore busiton byproducts1Uses indoor smoking; smaller % of population smokingStore busiton byproducts1Reduced outdoor concentrationsFurans1Reduced outdoor concentrationsFurans1Reduced outdoor concentrationsFurans1Increased use in foams and electronics; recent curailed useStore furans	Tetrachloroethylene (Perc)		
VOC, fluorinated Freon 11 1.1 Increased use (air conditioning), followed by Montreal protocol Freon 12 1.1 Increased use (air conditioning), followed by Montreal protocol VOC, other - Increased use in personal care products and cosmetics 'Dintelyl phthalate 1 Increased use in personal care products and cosmetics 'Dintelyl phthalate 1 Increased use in personal care products and cosmetics 'Octopentasiloxane (D5) 1 Increased use in personal care products and cosmetics 'Semivolatile organic compounds (SVOC), biocides/fungicides/preservatives Increased use in disinfecting soaps and cleaning products 'Semivolatile organic compounds (SVOC), biocides/fungicides/preservatives Increased use in disinfecting soaps and cleaning products 'Semivolatile drydroxytoluene (BHT) 1,1 States began to restrict use in indoor paints in 1988 Butylated hydroxytoluene (BHT) 1,1 Used as pesticides; no longer manufactured 'Trichlorophenol (PCP) 1,1 Bicide in wood, paints, stains; indoor use restricted in 1984 'Trichlorophenols 1,4 Reduced outdoor concentrations 'Patas 1 Reduced outdoor concentrations 'Patas 1 Less indoor smoking; smaller % of population smoking	Dichlorobenzene		
Freen 111,1Increased use (air conditioning), followed by Montreal protocolFreen 121,1Increased use (air conditioning), followed by Montreal protocolFreen 131,1Increased use (air conditioning), followed by Montreal protocolVOC, other*Increased use (air conditioning), followed by Montreal protocol'Diethyl phthalate1Increased use in personal care products and cosmetics'Diethyl phthalate1Increased use in personal care products and cosmeticsCyclopentatiokane (D5)1Increased use in personal care products and cosmeticsSemivlatile organic compounds (SVOC), biocides//fungic=1Increased use in personal care products and cosmeticsSetivated hydroxytolue (BHT)1Increased use to restrict use in indoor patints in 1988Biyl Jaced hydroxytolue (BHT)1Increased use as an antioxidant in a variety of products'Pretachlorophenol (PCP)1,1Biocide in wood, paints, stains; indoor use restricted in 1984Biyl Jaced hydroxytolue (BHT)1Less indoor smoking; smaller % of population smoking'Pretachlorophenols1Reduced outdoor concentrations'Pretachlorophenols1Reduced outdoor concentrations'Pretachlorophenols1Reduced outdoor concentrations'Pretachlorophenols1Reduced outdoor concentrations'Pretachlorophenols1Reduced outdoor concentrations'Pretachlorophenols1Reduced outdoor concentrations'Pretachlorophenols1Reduced outdoor concentrations'Pretachlorophenol1 </td <td>*Dichlorophenols</td> <td>\downarrow</td> <td>Restricted use as herbicides and pesticides</td>	*Dichlorophenols	\downarrow	Restricted use as herbicides and pesticides
Freen 111,1Increased use (air conditioning), followed by Montreal protocolFreen 121,1Increased use (air conditioning), followed by Montreal protocolFreen 131,1Increased use (air conditioning), followed by Montreal protocolVOC, other*Increased use (air conditioning), followed by Montreal protocol'Diethyl phthalate1Increased use in personal care products and cosmetics'Diethyl phthalate1Increased use in personal care products and cosmeticsCyclopentatiokane (D5)1Increased use in personal care products and cosmeticsSemivlatile organic compounds (SVOC), biocides//fungic=1Increased use in personal care products and cosmeticsSetivated hydroxytolue (BHT)1Increased use to restrict use in indoor patints in 1988Biyl Jaced hydroxytolue (BHT)1Increased use as an antioxidant in a variety of products'Pretachlorophenol (PCP)1,1Biocide in wood, paints, stains; indoor use restricted in 1984Biyl Jaced hydroxytolue (BHT)1Less indoor smoking; smaller % of population smoking'Pretachlorophenols1Reduced outdoor concentrations'Pretachlorophenols1Reduced outdoor concentrations'Pretachlorophenols1Reduced outdoor concentrations'Pretachlorophenols1Reduced outdoor concentrations'Pretachlorophenols1Reduced outdoor concentrations'Pretachlorophenols1Reduced outdoor concentrations'Pretachlorophenols1Reduced outdoor concentrations'Pretachlorophenol1 </td <td>VOC fluoringtod</td> <td></td> <td></td>	VOC fluoringtod		
Freen 121.1Increased use (air conditioning), followed by Montreal protocolFreen 1131.1Increased use (solvent), followed by Montreal protocolVOC, other-'Dimethyl phthalate1Increased use in personal care products and cosmetics'Ditchyl phthalate1Increased use in personal care products and cosmeticsCyclopentasiloxane (D5)1Increased use in personal care products and cosmeticsSemivolatile organic compounds (SVOC), biocides/fungicides/preservatives-'Triclosan1Increased use in disinfecting soaps and cleaning productsBit(ributyltin)oxide(TBTO)1.4States began to restrict use in indoor paints in 1988Butylated hydroxytoluene (BHT)1Increased use as an antioxidant in a variety of products'Prentachlorophenol (PCP)1.4Biocide in wood, paints, stains; indoor use restricted in 1984'Prentachlorophenol1.4Less indoor smoking; smaller % of population smokingDioxins1Reduced outdoor concentrations'Prans1Increased use of polycarbonate productsSVOC, fame-retardants1Increased use of polycarbonate productsSVOC, fame-retardants1Increased use of polycarbonate productsSVOC, fame-retardants1.4Increased use in foams and electronics; recent curtailed use'BDE-3091.4Increased use in foams and electronics; recent curtailed use'BDE-2091.4Increased use in foams and electronics; recent curtailed use		↑ I	Increased use (air conditioning) followed by Montreal protocol
Freeon 1131,1Increased use (solvent), followed by Montreal protocolVOC, other"Dimethyl phthalate1Increased use in personal care products and cosmetics"Dinethyl phthalate1Increased use in personal care products and cosmeticsCyclopentasiloxane (D5)1Increased use in personal care products and cosmeticsSemivolatile organic compounds (SVOC), biocides/fungicides/preservativesIncreased use in personal care products/antiperspirantsSemivolatile organic compounds (SVOC), biocides/fungicides/preservativesIncreased use in disinfecting soaps and cleaning productsStates began to restrict use in indoor paints in 1988Increased use as an antioxidant in a variety of productsStates began to restrict use in indoor paints, in 1988Increased use as an antioxidant in a variety of products"Pentachlorophenol (PCP)1,1Biocide in wood, paints, stains; indoor use restricted in 1984"Trichlorophenols1Less indoor smoking; smaller % of population smokingSVOC, combustion byproducts1Reduced outdoor concentrationsFurans1Increased use of polycarbonate productsSVOC, degradation products1Increased use of polycarbonate productsSVOC, flame-retardants1Increased use in foams and electronics; recent curtailed use"BDE-3091,1Increased use in foams and electronics; recent curtailed use"BDE-2091Increased use in foams and electronics; recent curtailed use			
VOC, other"Dimethyl phthalate1Increased use in personal care products and cosmetics"Diethyl phthalate1Increased use in personal care products/antiperspirantsSemivolatile organic compounds (SVOC), biocides/furgic/evervative:Increased use in disinfecting soaps and cleaning products"Triclosan1Increased use in antioxidant in a variety of productsBis(tributyltin)oxide(TBTO)1,1States began to restrict use in indoor paints in 1988Butylated hydroxytoluene (BHT)1Increased use as an antioxidant in a variety of products"Prentachlorophenol (PCP)1,1Biocide in wood, paints, stains; indoor use restricted in 1984"Trichorophenols1,1Used as pesticides; no longer manufacturedSVOC, combustion byproducts1Less indoor smoking; smaller % of population smokingDioxins1Reduced outdoor concentrations"PAHS1Less indoor smokingSVOC, degradation products1Increased use of polycarbonate productsSVOC, fame-retardants1Increased use in foams and electronics; recent curtailed use"Bisphenol-A1,1Increased use in foams and electronics; recent curtailed use"BisPE-2091,4Increased use in foams and electronics; recent curtailed use			
"Dimethyl phthalate1Increased use in personal care products and cosmetics"Diethyl phthalate1Increased use in personal care products and cosmetics"Diethyl phthalate1Increased use in personal care products and cosmetics"Semivolatile organic compounds (SVOC), biocides//multi-systerserververververververververververververve		114	increased ase (softene), fotored by montreal protocol
"Diethyl phthalate1Increased use in personal care products and cosmeticsCyclopentasiloxane (D5)1Increased use in personal care products/antiperspirantsSemivolatile organic compounds (SVOC), biocides/fungicides/preservatives"Triclosan1Increased use in disinfecting soaps and cleaning productsBis(tributyltin)oxide(TBTO)1,1States began to restrict use in indoor paints in 1988Butylated hydroxytoluene (BHT)1Increased use as an antioxidant in a variety of products"Pentachlorophenol (PCP)1,1Biocide in wood, paints, stains; indoor use restricted in 1984"Triclorophenols1,1Used as pesticides; no longer manufacturedSVOC, combustion byproducts1Less indoor smoking; smaller % of population smokingDioxins1Reduced outdoor concentrationsFurans1Less indoor smokingVPAHs1Less indoor smokingSVOC, dgradation products1Increased use of polycarbonate productsSVOC, flame-retardants1Increased use in foams and electronics; recent curtailed useSVOC, flame-retardants1,1Increased use in foams and electronics; recent curtailed use"BDE-2091,1Increased use in foams and electronics; recent curtailed use			
Cyclopentasiloxane (D5)1Increased use in personal care products/antiperspirantsSemivolatile organic compounds (SVOC), biocides/fungicides/preservatives"Triclosan1Increased use in disinfecting soaps and cleaning productsBis(tributyltin)oxide(TBTO)1,↓States began to restrict use in indoor paints in 1988Butylated hydroxytoluene (BHT)1Increased use as an antioxidant in a variety of products"Pentachlorophenol (PCP)1,↓Biocide in wood, paints, stains; indoor use restricted in 1984"Trichorophenols1,↓Used as pesticides; no longer manufacturedSVOC, combustion byproducts1Less indoor smoking; smaller % of population smokingETS↓Reduced outdoor concentrationsPirans↓Reduced outdoor concentrationsFurans↓Increased use of polycarbonate productsSVOC, degradation products1Increased use of polycarbonate productsSVOC, flame-retardants1Increased use in foams and electronics; recent curtailed use"BDE-2091,↓Increased use in foams and electronics; recent curtailed use"BDE-2091,↓Increased use in foams and electronics		Î	
Semivolatile organic compounds (SVOC), biocides/fungicides/preservatives Triclosan Triclosan Triclosan Titclosan Tittlosan Titclosan Tittlosan Titt	• •		
"TriclosanIncreased use in disinfecting soaps and cleaning productsBis(tributyltin)oxide(TBTO)1, ↓States began to restrict use in indoor paints in 1988Butylated hydroxytoluene (BHT)1Increased use as an antioxidant in a variety of products"Pentachlorophenol (PCP)1, ↓Biocide in wood, paints, stains; indoor use restricted in 1984"Trichlorophenols1, ↓Used as pesticides; no longer manufacturedSVOC, combustion byproductsLess indoor smoking; smaller % of population smokingDioxins↓Reduced outdoor concentrationsFurans↓Reduced outdoor concentrations*PAHs↓Less indoor smokingSVOC, degradation products*Bisphenol-A↑*BDE-471, ↓*BDE-491, ↓*BDE-2091, ↓*BDE-2091, ↓*BDE-2091*BDE-2091*BDE-2091*BDE-2091*BDE-2091*BDE-2091*BDE-2091*BDE-2091*BDE-209*BDE-2091*BDE-2091*BDE-2091*BDE-209*BDE-2091*BDE-209*BDE-209*BDE-209*BDE-209*BDE-209*BDE-209*BDE-209*BDE-209*BDE-209*BDE-209*BDE-209*BDE-209*BDE-209*BDE-209*BDE-209*BDE-209 <t< td=""><td>Cyclopentasiloxalle (DS)</td><td></td><td>nicreased use in personal care products/antiperspirants</td></t<>	Cyclopentasiloxalle (DS)		nicreased use in personal care products/antiperspirants
Bis(tributyltin)oxide(TBTO) 1,1 States began to restrict use in indoor paints in 1988 Butylated hydroxytoluene (BHT) 1 Increased use as an antioxidant in a variety of products 'Pentachlorophenol (PCP) 1,1 Biocide in wood, paints, stains; indoor use restricted in 1984 'Trichlorophenols 1,1 Used as pesticides; no longer manufactured SVOC, combustion byproducts Less indoor smoking; smaller % of population smoking Dioxins ↓ Reduced outdoor concentrations Furans ↓ Reduced outdoor concentrations 'PAHs ↓ Less indoor smoking SVOC, degradation products ↓ Less indoor smoking SVOC, flame-retardants ↑ Increased use of polycarbonate products 'BDE-47 ↑,↓ Increased use in foams and electronics; recent curtailed use 'BDE-99 ↑,↓ Increased use in foams and electronics; recent curtailed use 'BDE-209 ↑ Increased use in foams and electronics; recent curtailed use	Semivolatile organic compounds (SVOC), biocides/fun	gicides/preservatives	
Butylated hydroxytoluene (BHT)1Increased use as an antioxidant in a variety of products"Pentachlorophenol (PCP)1,1Biocide in wood, paints, stains; indoor use restricted in 1984"Trichlorophenols1,1Used as pesticides; no longer manufacturedSVOC, combustion byproducts1Less indoor smoking; smaller % of population smokingETS1Less indoor smoking; smaller % of population smokingDioxins1Reduced outdoor concentrationsFurans1Less indoor smoking*PAHs1Less indoor smokingSVOC, degradation products1SVOC, flame-retardants1"BDE-471,1"BDE-991,1"BDE-2091"BDE-2091The Section of the state use in foams and electronics; recent curtailed use"BDE-2091The state use in foams and electronics; recent curtailed use"BDE-2091The state use in foams and electronics; recent curtailed use	*Triclosan	1	
*Pentachlorophenol (PCP) *Trichlorophenols <td>Bis(tributyltin)oxide(TBTO)</td> <td>↑,↓</td> <td></td>	Bis(tributyltin)oxide(TBTO)	↑,↓	
**Trichlorophenols ↑,↓ Used as pesticides; no longer manufactured SVOC, combustion byproducts ↓ Less indoor smoking; smaller % of population smoking ETS ↓ Less indoor smoking; smaller % of population smoking Dioxins ↓ Reduced outdoor concentrations Furans ↓ Reduced outdoor concentrations *PAHs ↓ Reduced outdoor concentrations SVOC, degradation products ↓ Less indoor smoking *Bisphenol-A ↑ Increased use of polycarbonate products SVOC, flame-retardants + Increased use in foams and electronics; recent curtailed use *BDE-99 ↑,↓ Increased use in foams and electronics; recent curtailed use *BDE-209 ↑ Increased use in foams and electronics; recent curtailed use	Butylated hydroxytoluene (BHT)		
SVOC, combustion byproducts ↓ Less indoor smoking; smaller % of population smoking ETS ↓ Reduced outdoor concentrations Dioxins ↓ Reduced outdoor concentrations Furans ↓ Reduced outdoor concentrations *IPAHs ↓ Less indoor smoking SVOC, degradation products ↓ Less indoor smoking *Bisphenol-A ↑ Increased use of polycarbonate products SVOC, flame-retardants * Increased use in foams and electronics; recent curtailed use *BDE-47 ↑.↓ Increased use in foams and electronics; recent curtailed use *BDE-99 ↑.↓ Increased use in foams and electronics; recent curtailed use *BDE-209 ↑ Increased use in foams and electronics; recent curtailed use		↑,↓	
ETS↓Less indoor smoking; smaller % of population smokingDioxins↓Reduced outdoor concentrationsFurans↓Reduced outdoor concentrations*PAHs↓Less indoor smoking\$VOC, degradation products↓Less indoor smoking\$VOC, degradation products↑Increased use of polycarbonate products\$VOC, flame-retardants↑Increased use in foams and electronics; recent curtailed use*BDE-47↑,↓Increased use in foams and electronics; recent curtailed use*BDE-99↑,↓Increased use in foams and electronics; recent curtailed use*BDE-209↑Increased use in foams and electronics; recent curtailed use			
ETS↓Less indoor smoking; smaller % of population smokingDioxins↓Reduced outdoor concentrationsFurans↓Reduced outdoor concentrations*PAHs↓Less indoor smoking\$VOC, degradation products↓Less indoor smoking\$VOC, degradation products↑Increased use of polycarbonate products\$VOC, flame-retardants↑Increased use in foams and electronics; recent curtailed use*BDE-47↑,↓Increased use in foams and electronics; recent curtailed use*BDE-99↑,↓Increased use in foams and electronics; recent curtailed use*BDE-209↑Increased use in foams and electronics; recent curtailed use		↑,↓	Used as pesticides; no longer manufactured
Furans ↓ Reduced outdoor concentrations *PAHs ↓ Less indoor smoking SVOC, degradation products Increased use of polycarbonate products *Bisphenol-A ↑ Increased use of polycarbonate products SVOC, flame-retardants Increased use in foams and electronics; recent curtailed use *BDE-47 ↑,↓ Increased use in foams and electronics; recent curtailed use *BDE-99 ↑,↓ Increased use in foams and electronics; recent curtailed use *BDE-209 ↑ Increased use in foams and electronics	*Trichlorophenols	↑,↓	Used as pesticides; no longer manufactured
*PAHs ↓ Less indoor smoking SVOC, degradation products *Bisphenol-A ↑ Increased use of polycarbonate products SVOC, flame-retardants * Increased use in foams and electronics; recent curtailed use *BDE-47 ↑,↓ Increased use in foams and electronics; recent curtailed use *BDE-99 ↑,↓ Increased use in foams and electronics; recent curtailed use *BDE-209 ↑ Increased use in foams and electronics	*Trichlorophenols SVOC, combustion byproducts	↑,↓	
SVOC, degradation products ↑ Increased use of polycarbonate products *Bisphenol-A ↑ Increased use of polycarbonate products SVOC, flame-retardants * * *BDE-47 ↑,↓ Increased use in foams and electronics; recent curtailed use *BDE-99 ↑,↓ Increased use in foams and electronics; recent curtailed use *BDE-209 ↑ Increased use in foams and electronics	*Trichlorophenols SVOC, combustion byproducts ETS	↑,↓ ↓ ↓	Less indoor smoking; smaller % of population smoking
*Bisphenol-A ↑ Increased use of polycarbonate products SVOC, flame-retardants * Increased use in foams and electronics; recent curtailed use *BDE-47 ↑,↓ Increased use in foams and electronics; recent curtailed use *BDE-99 ↑,↓ Increased use in foams and electronics; recent curtailed use *BDE-209 ↑ Increased use in foams and electronics	*Trichlorophenols SVOC, combustion byproducts ETS Dioxins Furans	↑.↓ ↓ ↓	Less indoor smoking; smaller % of population smoking Reduced outdoor concentrations Reduced outdoor concentrations
*Bisphenol-A ↑ Increased use of polycarbonate products SVOC, flame-retardants * Increased use in foams and electronics; recent curtailed use *BDE-47 ↑,↓ Increased use in foams and electronics; recent curtailed use *BDE-99 ↑,↓ Increased use in foams and electronics; recent curtailed use *BDE-209 ↑ Increased use in foams and electronics	*Trichlorophenols SVOC, combustion byproducts ETS Dioxins Furans	↑,↓ ↓ ↓ ↓	Less indoor smoking; smaller % of population smoking Reduced outdoor concentrations Reduced outdoor concentrations
SVOC, flame-retardants *BDE-47 ↑,↓ Increased use in foams and electronics; recent curtailed use *BDE-99 ↑,↓ Increased use in foams and electronics; recent curtailed use *BDE-209 ↑ Increased use in foams and electronics; recent curtailed use	*Trichlorophenols SVOC, combustion byproducts ETS Dioxins Furans *PAHs	↑,↓ ↓ ↓ ↓	Less indoor smoking; smaller % of population smoking Reduced outdoor concentrations Reduced outdoor concentrations
*BDE-47 ↑,↓ Increased use in foams and electronics; recent curtailed use *BDE-99 ↑,↓ Increased use in foams and electronics; recent curtailed use *BDE-209 ↑,↓ Increased use in foams and electronics; recent curtailed use	"Trichlorophenols SVOC, combustion byproducts ETS Dioxins Furans 'PAHs SVOC, degradation products	$\downarrow \\\downarrow \\\downarrow$	Less indoor smoking; smaller % of population smoking Reduced outdoor concentrations Reduced outdoor concentrations Less indoor smoking
*BDE-99↑,↓Increased use in foams and electronics; recent curtailed use*BDE-209↑Increased use in foams and electronics	*Trichlorophenols SVOC, combustion byproducts ETS Dioxins Furans *PAHs SVOC, degradation products *Bisphenol-A	$\downarrow \\\downarrow \\\downarrow$	Less indoor smoking; smaller % of population smoking Reduced outdoor concentrations Reduced outdoor concentrations Less indoor smoking
*BDE-209	*Trichlorophenols SVOC, combustion byproducts ETS Dioxins Furans *PAHs SVOC, degradation products *Bisphenol-A SVOC, flame-retardants	↓ ↓ ↓	Less indoor smoking; smaller % of population smoking Reduced outdoor concentrations Reduced outdoor concentrations Less indoor smoking Increased use of polycarbonate products
	*Trichlorophenols SVOC, combustion byproducts ETS Dioxins Furans *PAHs SVOC, degradation products *Bisphenol-A SVOC, flame-retardants *BDE-47	↓ ↓ ↓ ↑ ↑,↓	Less indoor smoking; smaller % of population smoking Reduced outdoor concentrations Reduced outdoor concentrations Less indoor smoking Increased use of polycarbonate products Increased use in foams and electronics; recent curtailed use
	*Trichlorophenols SVOC, combustion byproducts ETS Dioxins Furans *PAHs SVOC, degradation products *Bisphenol-A SVOC, flame-retardants *BDE-47 *BDE-99	↓ ↓ ↓ ↑ ↑,↓ ↑,↓	Less indoor smoking; smaller % of population smoking Reduced outdoor concentrations Reduced outdoor concentrations Less indoor smoking Increased use of polycarbonate products Increased use in foams and electronics; recent curtailed use Increased use in foams and electronics; recent curtailed use

Table	2	(continued)

Pollutant	Trend	Comment
Tris(chloropropyl)phosphate	↑,↓	Used as flame-retardant for clothing; use restricted
SVOC, heat transfer fluids *PCBs Polydimethyl siloxanes	↑,↓ ↑	Production peaked in early 1970s; severely restricted in 1978 Increased use as heat transfer fluid in photocopiers
SVOC, personal care products Musk compounds	1	Increased use of synthetic musks in personal care products
SVOC, pesticides and herbicides Aldrin *Chlordane *Chlorpyrifos *p,p'-DDT *p,p'-DDE *Dieldrin *Malathione *Mirex *Permethrin	↑,↓ ↑,↓ ↑,↓ ↓ ↑,↓ ↓ ↑,↓ ↓ ↑,↓	Agriculture uses canceled 1970, termiticide use canceled 1987 Growth in mid-1960s; registration withdrawn in 1988 Registered for indoor use 1965; registration withdrawn in 2001 Banned in 1972 Expected to track trend for DDT Agriculture uses canceled 1970, termiticide use canceled 1987 Restrictions on usage Introduced in 1962; all pesticide uses canceled in 1978 Substitute for other pesticides; recent growth
SVOC, plasticizers *Dibutyl phthalate *Butylbenzyl phthalate *Di-2-ethylhexyl phthalate Triphenylphosphate (TPP)	↑ ↑ ↑,↓ ↑?	Continued increased use in plasticized products Continued increased use in plasticized products Recent elimination from toys and other products Increased use as plasticizer?
SVOC, stain and water repellents *Perfluorinated surfactants	↑,↓	In 2002, 3M stopped producing some perfluorinated compounds
SVOC, nonionic surfactants and coalescing agents *4-Nonylphenol Texanol® isomers	↑ ↑	Increased use of nonylphenol ethoxylates (nonionic surfactants) Increased indoor use of latex paints
SVOC, waxes and polishes Fatty acids Sesquiterpenes	? ?	Longtime ingredient in waxes and polishes Longtime ingredient in waxes and polishes
Metals and mineral fibers Asbestos *Cadmium *Lead *Mercury	↓ ↓? ↓	Regulations restricting use Less indoor smoking; other sources uncertain Eliminated from gasoline and indoor paint Eliminated from indoor paint
Others Allergens (from dust mites, cats, dogs, etc.) Mold/fungi Airborne particles	↑? ↑? ↓	More damp buildings; more pets; less dusting and cleaning More damp buildings; restrictions on moldicides and fungicides Less indoor smoking; lower outdoor concentrations

in the coating for permanent press fabrics, in certain insulation materials (urea-formaldehyde foam and fiber-glass) and in finishes that coat some paper products (CPSC, 1997). It is also generated during combustion and the oxidation of compounds with terminal double bonds. Formaldehyde was one of the first pollutants measured indoors (Andersen et al., 1975). In the 1950s, 1960s and early 1970s, composite-wood products, especially plywood, emitted large amounts of formaldehyde. Starting in the mid-1960s, permanent press fabrics became another important indoor source (Kelly et al., 1999). In the mid-1970s, following the energy crisis, the use of urea-formaldehyde foam insulation (UFFI) in homes, especially in difficult-to-access wall cavities, became popular. By the mid-1980s, with limits on allowable formaldehyde emissions from composite-wood products and bans on the use of UFFI in homes and schools, indoor formaldehyde concentrations were decreasing.

In contrast to formaldehyde, there is little long-term data on indoor levels of acetaldehyde. Indoor smoking, a significant source, has decreased. However, acetaldehyde derived from ozone-initiated chemistry appears to have increased.

Acrolein, 1,3-butadiene and isoprene. Acrolein is an airborne pollutant that has both acute and chronic effects on human health (U.S. EPA, 2003). Measurements by Seaman et al. (2007) indicate that indoor acrolein levels are much larger than outdoor levels. The dominant indoor sources appear to be cooking, smoking and emissions from wood based materials. Indoor acrolein levels have likely decreased as indoor smoking has decreased. 1,3-Butadiene

and isoprene are other unsaturated VVOCs found indoors. Butadiene is present in outdoor air and transported indoors. It is also emitted indoors by rubber products. As its level in outdoor air has gone down, its indoor level has likely followed. Isoprene's indoor concentration is driven by emissions from human occupants, houseplants and wood based materials. Indoor levels of isoprene are not anticipated to have changed greatly over the past five decades.

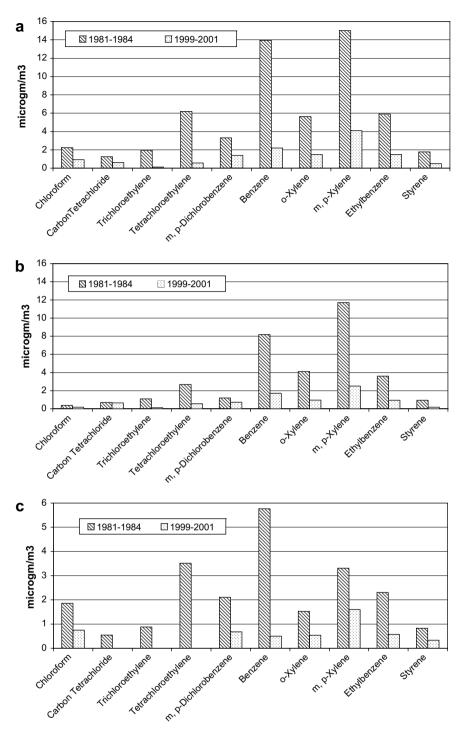
6.3. Volatile organic compounds (VOCs)

Common indoor VOCs. Starting in the late 1970s, there have been numerous measurements of volatile organic compounds (VOCs) in indoor air. Reviews of VOC indoor concentrations include Brown et al. (1994); Wolkoff (1995) and Hodgson and Levin (2003). In their 2003 review Hodgson and Levin concluded, "average indoor concentrations of some toxic indoor air contaminants, such as benzene, 1,1,1-trichloroethane and tetrachloroethylene, have decreased" in comparison to the previous decade. The authors suggest that this was partially driven by the 1990 amendments to the Clean Air Act, which resulted in reduced outdoor concentrations of targeted air pollutants. Fig. 4 presents a similar comparison. It is based on measurements made from 1981 to 1984 as part of the U.S. EPA TEAM study (Wallace, 1987) and measurements made from 1999 to 2001 as part of the RIOPA study (Weisel et al., 2005). These studies included measurements of outdoor, indoor and personal

Table 3

95th percentile concentrations for more abundant compounds detected in blood and urine samples of U.S. residents, based on sampling from 2001–2002 (NHANES, 2005) unless otherwise noted.

Compound	Blood levels		
PCBs 2,2',3,4,4',5,5'- Heptachlorobiphenyl (PCB 180)	$0.61 \text{ ng g}^{-1} \text{ serum}$		
(,4,4',5,5'- Hexachlorobiphenyl (PCB 153)	$0.85 \text{ ng g}^{-1} \text{ serum}$		
2,3',4,4',5- Pentachlorobiphenyl (PCB 118)	$0.29 \text{ ng g}^{-1} \text{ serum}$		
2,4,4',5-Tetrachlorobipheny (PCB 74)			
PBDEs (NHANES for 2003–2 used to convert lipid serve	2004 (Sjodin et al., 2008 Tables 2 and 3); factor of 150 um concentrations)		
BDE-47	$1.05 \text{ ng g}^{-1} \text{ serum}$		
BDE-99 BDE-100	0.28 ng g^{-1} serum 0.24 ng g^{-1} serum		
BDE-100 BDE-153	$0.44 \text{ ng g}^{-1} \text{ serum}$		
Perfluoroalkyls (NHANES for Perfluorooctanesulfonic acid (PFOS)	2003–2004 (Calafat et al., 2007)) 55 ng g ⁻¹ serum		
Perfluorooctanoic acid (PFOA)	9.8 ng g^{-1} serum		
Perfluorohaxanesulfonate (PFHxS)	8.3 ng g ⁻¹ serum		
Perfluorononanoate (PFNA)	$3.2 \text{ ng g}^{-1} \text{ serum}$		
Organochlorine pesticides/he p,p'-DDT	<i>rbicides</i> 0.18 ng g ⁻¹ serum		
p,p'-DDE	15 ng g ⁻¹ serum		
Chlordane	$0.35 \text{ ng g}^{-1} \text{ serum}$		
Mirex Dieldrin	0.41 ng g^{-1} serum 0.15 ng g^{-1} serum		
Environmental tobacco smok Cotinine (metabolite of nicotine)	$2.19 \text{ ng g}^{-1} \text{ serum (non-smokers)}$		
Metals Codmium	12		
Cadmium Lead	1.3 ng g^{-1} serum 44 ng g^{-1} serum		
Mercury	4.6 ng g^{-1} serum		
Compound PAHs	Urine levels		
Fluorene	~ 3.8 μ g g ⁻¹ creatinine (Σ metabolites)		
Phenanthrene	~ 1.7 μ g g ⁻¹ creatinine (Σ metabolites) 0.243 μ g g ⁻¹ creatinine		
Pyrene Benz[<i>a</i>]pyrene	$0.243 \ \mu g g^{-1}$ creatinine $0.184 \ \mu g g^{-1}$ creatinine		
Naphthalene	34.5 μ g g ⁻¹ creatinine (Σ metabolites)		
Organochlorine pesticides/he	rbicides/anti-microbials		
Pentachlorophenol	2.3 μ g g ⁻¹ creatinine 11.6 μ g g ⁻¹ creatinine		
2,4,6-Trichlorophenol 2,4-Dichlorophenol	11.6 μg g ⁻¹ creatinine 18 μg g ⁻¹ creatinine		
2,5-Dichlorophenol	527 μg g ⁻¹ creatinine		
Chlorpyrifos	9.2 μ g g ⁻¹ creatinine (based on metabolite 3,5,6-		
cis-Permethrin	tricholoro-2-pyridinol) 3.8 μ g g ⁻¹ creatining (Σ metabolites)		
Triclosan	3.8 μ g g ⁻¹ creatinine (Σ metabolites) 364 μ g g ⁻¹ creatinine (NHANES for 2003–2004 (Calafat et al., 2008a))		
Organophosphate pesticides Dialkyl phosphates Methyl parathion	\sim 10–30 μgg^{-1} creatinine 2.9 μgg^{-1} creatinine		
Carbamate pesticides Propoxur	$<1~\mu gg^{-1}$ creatinine		
Phthalates			
Diethyl phthalate	1860 μ g g ⁻¹ creatinine		
Dibutyl phthalate Butylbenzyl phthalate	81 μ g g ⁻¹ creatinine 90 μ g g ⁻¹ creatinine		
DEHP	$267 \mu g g^{-1}$ creatinine (Σ metabolites)		


Others	1
Bisphenol-A	11.2 μg g ⁻¹ creatinine (NHANES for 2003–2004 (Calafat et al., 2008b))
4-Nonylphenol	$1.4 \mu g g^{-1}$ creatinine (lower limit; Calafat et al., 2005)
4-Nonyiphenoi	1.4 µgg creatinine (lower mint, calalat et al., 2005)
Metals	
Cadmium	$0.92 \ \mu g \ g^{-1}$ creatinine
Lead	2.0 μg g ⁻¹ creatinine
Mercury	$3.0 \ \mu g \ g^{-1}$ creatinine

concentrations of selected VOCs in several U.S. cities. Fig. 4a compares median indoor concentrations of 10 VOCs measured in both studies; the results from the TEAM study are based on 715 samples collected in Los Angeles, CA and Bayonne/Elizabeth, NJ; the results from the RIOPA study are based on 553 samples collected in Los Angeles, CA, Houston, TX and Elizabeth, NJ. It is apparent from Fig. 4a that the median indoor concentration of each of the displayed compounds decreased significantly from the 1981–1984 period to the 1999–2000 period. The largest relative decreases are seen for trichloroethylene (94%), tetrachloroethylene (91%) and benzene (84%). Fig. 4b is analogous to Fig. 4a, but displays the outdoor concentrations. The outdoor concentrations for most of the displayed compounds have also decreased significantly, indicating that decreasing outdoor concentrations are partially responsible for the observed decrease in indoor concentrations.

For a pollutant that is not significantly removed by surfaces or indoor chemistry, the difference between its indoor and outdoor concentrations is its indoor emission rate (mass per unit time) normalized by the ventilation flow rate (volume per unit time). Fig. 4c compares normalized indoor emission rates, derived in this fashion, for the 10 VOCs displayed in Fig. 4a and b. It is apparent from Fig. 4c that indoor emission rates of carbon tetrachloride, trichloroethylene and tetrachloroethylene dropped from meaningful to negligible levels over the almost two decades that separate the TEAM study and the RIOPA study. The decrease in the normalized emission rate of benzene was almost as great ($\sim 91\%$). The normalized indoor emission rates of each of the other VOCs in the plot decreased by at least 50%, despite the fact that ventilation rates had likely decreased somewhat over the intervening period (which would have resulted in larger normalized emission rates, if all else had remained the same).

The TEAM study included homes with smokers whereas the RIOPA study excluded homes with smokers. However, this is insufficient to account for the magnitude of the decrease in aromatic VOCs between the two studies. The RIOPA study included homes from Houston, whereas the TEAM study did not. However, the Houston results were not substantially different from the Los Angeles or Elizabeth results. Basically, the changes in indoor concentrations and indoor emission rates are consistent with changes that we know occurred in the period between 1981–1984 and 1999-2000. These include a shift away from chlorinated solvents and, to a lesser extent, aromatic solvents in products intended for indoor use; restrictions on the production of trichloroethane as a consequence of the Montreal Protocol; restrictions on the use of benzene (see below); less indoor smoking, and reductions in the concentrations of aromatic compounds in outdoor air due to 1990 amendments to the Clean Air Act.

Benzene. Benzene warrants special comment. Common in products in the 1950s and 1960s, its indoor use was already decreasing in the 1970s. In 1978, the U.S. Consumer Product Safety Commission (CPSC) proposed a ban of benzene in consumer products. In 1980, CPSC proposed that manufacturers identify consumer products to which benzene had been intentionally added. Two years later, IARC (1982a,b) classified benzene as a known human carcinogen. Eventually CPSC withdrew its proposed formal ban on benzene, since extensive surveys indicated

Fig. 4. (a). Median indoor concentrations of VOCs measured in both the 1981–1984 TEAM study and the 1999–2001 RIOPA study. (b). Median outdoor concentrations of VOCs measured in both the 1981–1984 TEAM study and the 1999–2001 RIOPA study. (C). Median indoor emission rates, normalized by ventilation flow rates, of VOCs measured in both the 1981–1984 TEAM study and the 1999–2001 RIOPA study. (C). Median indoor emission rates, normalized by ventilation flow rates, of VOCs measured in both the 1981–1984 TEAM study and the 1999–2001 RIOPA study. (a) = 715; Wallace, 1987; RIOPA study: n = 553; Weisel et al., 2005.

that benzene was no longer being intentionally added to consumer products. Today, almost half the U.S. population's exposure to benzene comes from inhaling air that contains tobacco smoke (National Toxicology Program, 2005).

Chlorofluorocarbons, low molecular weight phthalates and siloxanes. The use of chlorofluorocarbon refrigerants and solvents (sold by Dupont as "Freons") increased from the early 1950s into the mid-1980s. In the years following the 1987 signing of the Montreal Protocol, their indoor concentration decreased sharply. In 1995 chlorofluorocarbon production in the U.S. ceased. The use of dimethyl- and diethyl phthalates in personal care products and cosmetics, as well as the use of cyclopentasiloxane (D5) in antiperspirants, has increased during the past several decades.

6.4. Semivolatile organic compounds (SVOCs)

There are fundamental differences between VOC and SVOC emissions. For volatile organic compounds found within the matrix of a material at the time of manufacture (e.g., solvents, unreacted monomers, byproducts), emissions tend to occur independent of their external environment and decrease over the life of the material. Such emissions often deplete the reservoir of VOCs present within a material during the initial weeks or months that the material is present in an indoor setting. In contrast, semivolatile organic compounds found within the matrix of a material (e.g., plasticizers, flame-retardants, preservatives) tend to be emitted at rates that depend on external factors such as partitioning into the gas phase, the convective mass transfer coefficient and sorption onto indoor surfaces (Xu and Little, 2006). Furthermore, SVOC emissions do not meaningfully deplete the reservoir of SVOC within the material, since the amount of SVOC additive emitted from the material in an hour or a day is only a small fraction of the total amount that is typically present in the material. Plasticized vinyl floors or flame-retarded mattresses continue to emit meaningful amounts of plasticizers or flame-retardants over their entire lifetime. Similarly, when low volatility SVOCs are applied or emitted in indoor environments (e.g., pesticides, stain repellants, dioxins), they will be depleted at a slow rate and will continue to impact their indoor setting for years after their initial release (Weschler and Nazaroff, 2008.).

It is convenient to review semivolatile organic compounds in terms of their source or use categories. Not all of the categories listed in Table 2 will be explicitly discussed. Instead the focus is on those sources that have had the largest impact on indoor environments.

Biocides, fungicides and preservatives. Until the mid-1980s. pentachlorophenol (PCP) was used as a wood preservative for foundation and structural lumber in residential and commercial buildings. It was also the active biocide in a large number of products used indoors, including wood preservatives, paints, wood stains, and sealers. Restrictions on its indoor use were adopted by EPA in 1984 and became effective after failed industry lawsuits in 1986. Nonetheless, due to its extensive indoor uses, PCP was widely distributed in homes built prior to 1984. During the early 1980s, indoor concentrations in the range of 0.1–10 $\mu g\,m^{-3}$ were common in treated wood structures (Levin and Hahn, 1986). Given its moderate vapor pressure, it has not persisted in indoor environments as long as less volatile chlorinated species (e.g., DDT or higher molecular weight PCB congeners). However, treated wood can constitute a very large and persistent reservoir. Additionally, some of the salvaged wood that is used to build or remodel houses today may have been pressure treated with PCP when it was first produced. Rudel et al. (2003) found PCP in the air of 58% of 120 Cape Cod homes sampled from 1999 to 2001; its median concentration was 1.8 ng m^{-3} . Between 2000 and 2001, Wilson et al. (2007) measured very similar levels in the air of 251 homes and 42 daycare facilities in Ohio and North Carolina. PCP is still detected in the urine of almost all U.S. residents (NHANES, 2005), a legacy of its once ubiquitous use.

SVOCs derived from combustion. This category includes PAHs, dioxins and furans. Among the PAHs, benz[a]pyrene (B[a]P) is a known carcinogen and has received substantial attention. Major indoor sources include outdoor air, cooking, smoking and unvented combustion appliances. Given the reduced percentage of U.S. households with smokers (Fig. 2), the concentration of B[a]P has likely decreased.

Flame-retardants. In the U.S., fires that originate in homes or offices have declined over the past several decades, partially due to policies that require flame-retardants in various materials and consumer products (Birnbaum and Staskal, 2004). However, during this same period the concentration of flame-retardants has increased in indoor environments. Certain flame-retardants that were once common are no longer in use. These include polybrominated biphenyls (PBBs) that were discontinued in the early 1970s after an incident in which PBBs were mistakenly mixed with

animal feed (Dunckel, 1975), and tris(2,3-dibromopropyl)phosphate (tris-BP) that was found in the urine of children whose sleepware had been treated with this agent (Blum et al., 1978). Polybrominated dipheynyl ethers (PBDEs) are flame-retardants that have been in widespread use for only the past two decades. They are used in foam cushioning and mattresses, electronic devices such as televisions and computers, as well as a variety of other household products. Hites (2004) has published a critical review that examines the accumulation of PBDEs in different environments, as well as in people. He concludes: "By now it is clear that PBDEs are ubiquitous environmental pollutants and that their concentrations in most environmental compartments are exponentially increasing with doubling times of about 4–6 yr." As their levels increase in indoor environments, their levels increase in the occupants of those environments (Section 6.6).

Heat transfer fluids. Although this review classifies polychlorinated biphenyls (PCBs) as heat transfer fluids (used in oil-filled transformers, capacitors and fluorescent lamp ballasts), they had numerous other indoor uses including stabilizers for PVC wireinsulation, flame-retardants (see above), pesticide extenders, additives (in sealants, adhesives, paints, and floor finishes) and in carbonless copy paper. Their production peaked in the late 1960s/ early 1970s. In 1971, Monsanto, the major U.S. producer, voluntarily cut back production. In 1978, their use (except for totally enclosed situations) was banned. Commercial PCB mixtures often contained a small fraction of polychlorinated dibenzofurans (furans) or polychlorinated dibenzodioxins (dioxins), which were unintended contaminants of the production process. These co-occurring furans and dioxins are worth noting since they tend to be much more toxic than PCBs (Agency for Toxic Substances and Disease Registry, 2000). During the 1970s and 1980s, indoor PCB levels were typically in the $100-500 \text{ ng m}^{-3}$ range (e.g., MacLeod, 1981). By in the late 1990s, indoor levels were in the 1-10 ng m⁻³ range (Menichini et al., 2007 and references therein). Rudel et al. (2003) found PCBs in the air of more than 30% of 120 Cape Cod homes sampled from 1999 to 2001. In a follow-up study of two highly contaminated homes, PCB containing wood floor finish that had been used in the 1950s and 1960s was identified as a strong, continuing source of PCBs (Rudel et al., 2008). Transformers, capacitors and fluorescent lamp ballasts produced before 1978 are among other important indoor source of PCBs. Hence, although their indoor levels have been declining, PCBs are still present in indoor air and dust, and are expected to remain in contaminated indoor environments for years to come.

Personal care products. The constituents of personal care products have received remarkably little attention as indoor pollutants (Daughton and Ternes, 1999). These have evolved over the past several decades to include many complex semivolatile organic compounds. Prime examples are synthetic aromatic nitro-musks and polycyclic musks that have largely replaced natural musk fragrances. Such compounds have been widely used as scenting agents in cosmetics, perfumes and cleaning products and have been reported at tenths of μ g m⁻³ in indoor air and mg kg⁻¹ levels in indoor dust (Fromme et al., 2004). Recently, production of nitromusks has decreased due to concerns about their potential toxicity (OSPAR, 2004).

Pesticides and herbicides. Until it was banned in 1972, DDT was used chiefly as an agricultural pesticide. Nonetheless, DDT (and its degradation product DDE) can still be measured in indoor air and dust, as demonstrated by samples collected in 120 Massachusetts' homes (Rudel et al., 2003). Its presence indoors may be due to outdoor-to-indoor air transport or tracked-in dust. It was also occasionally applied indoors as a pesticide of convenience. Although indoor DDT levels are likely lower than they were in the 1950s and 1960s, its presence in Massachusetts' homes 30 years after it was banned indicates its persistence in indoor environments.

Chlordane is a pesticide that was first registered in 1948; it had numerous applications, both outdoors and indoors. Its history has been repeated by a number of pesticides that have succeeded it. Chlordane production continued to increase through the 1960s, and it became the pesticide of choice for termite control. Starting in 1974, U.S. government agencies placed restrictions on its indoor and outdoor use. By 1983, the only permissible use was as a termiticide. In this year both National Public Radio and 60 Minutes aired shows on chlordane and its presence indoors after sub-slab application as a termiticide. Such publicity increased public awareness of their exposure to chlordane, and in 1988 all sales and uses of chlordane in the U.S. were halted. Despite this, chlordane has persisted in the environment. Approximately 12 years after all uses of chlordane were halted, Rudel et al. (2003) measured a median air concentration of 0.3 $\mathrm{ng}\,\mathrm{m}^{-3}$ for the sum of chlordane isomers in 120 Cape Cod, MA homes. During this same period, the RIOPA study measured geometric mean concentrations of 1.3 ng m⁻³ in NJ homes, 2.0 ng m⁻³ in CA homes and 4.2 ng m⁻³ in TX homes (note that the levels increase for regions more likely to have termite problems). Chlordane is a "legacy indoor pollutant"; once present indoors, its primary removal mechanism is via ventilation. This is a slow process for a contaminant when the airborne concentrations are 0.1–1 ng m⁻³ and milligram amounts were originally applied (Weschler and Nazaroff, 2008). Trends in chlordane's body burden are discussed in Section 6.6.

The indoor use of chlorpyrifos, an organophosphate pesticide, follows a history similar to that of chlordane. It was extensively used in U.S. buildings until 2002, and was routinely applied in milligram amounts using a crack and crevice approach. It has sufficient volatility to migrate from the original point of application to all other indoor surfaces. Chlorpyrifos can also be considered a "legacy pollutant". Its indoor levels are decreasing, but at a slow rate.

In the United States, mirex was used in pesticide formulations starting in 1962. All U.S. uses of mirex as a pesticide were banned in 1978. Mirex was also used in as a flame-retardant in plastics, rubber, paint and electronics.

The use of pyrethroids has grown considerably over the past decade as the use of other pesticides has been eliminated or curtailed. Permethrin is an example of a pyrethroid pesticide now commonly found indoors but absent several decades ago.

Plasticizers. Since the 1950s, increasing amounts of phthalates have been used as plasticizers, especially for flexible polyvinyl chloride (PVC). PVC flooring (Clausen et al., 2004), wall covering (Uhde et al., 2001) and electrical cable insulation are each meaningful emitters of phthalates, and can contain these additives at levels of 30-40% (by wt). Until recently, di-2-ethylhexyl phthalate (DEHP) was the primary phthalate used in flexible PVC. It accounted for more than half of all phthalate ester plasticizers produced and was the dominant SVOC in indoor environments (Bornehag et al., 2005a; Wensing et al., 2005). Recently, the use of DEHP, as well as butyl benzyl phthalate, has been reduced as a consequence of concerns regarding potential health effects (Oie et al., 1997; Adibi et al., 2003; Bornehag et al., 2004; Swan et al., 2005; Hauser et al., 2006). However, given its low vapor pressure and apparently slow indoor degradation rate, DEHP is likely another indoor "legacy pollutant".

Stain repellants and water repellants. Perfluorinated surfactants are an important class of stain and water repellants that have been used extensively on carpets, drapery and upholstery fabrics found indoors. The best known of these is Scotchgard[®], a 3 M product that was introduced in 1956 and voluntarily phased out, together with other perfluorinated compounds, in 2002. Perfluorinated surfactants are robust, low vapor pressure compounds anticipated to persist for years after their introduction into an indoor environment. Shoeib et al. (2004, 2005) have measured perfluorinated

sulfonamides in indoor air and dust samples. Given the production history of these compounds, one can infer that their indoor levels increased from the 1960s through the 1990s, and then began to decline after 2002. Such a trend has been reported for the body burdens of selected perfluorinated compounds (Section 6.6).

Surfactants (nonionic) and coalescing agents. Nonionic surfactants have displaced anionic surfactants in detergents and cleaning products. These compounds and their degradation products (e.g., 4-nonyl phenol) are now commonly found in indoor environments. For example, Rudel et al. (2003) have detected nonylphenol, nonylphenol ehthoxylates and octylphenol ethoxylates in the air and dust of Cape Cod homes. 4-Nonylphenol was detected in the air of all 120 homes sampled, at a median concentration of 110 ng m⁻³.

Indoor Texanol[®] levels have increased with increasing use of latex paints. In measurements made over the last two decades, indoor airborne Texanol[®] concentrations have typically been in the range of 0.1-5 ppb or $0.8-45 \ \mu g \ m^{-3}$ (Corsi and Lin, in press).

Semivolatile terpene oxidation products. As noted in Section 3.1, indoor levels of oxidation products derived from terpene and terpene alcohol precursors appear to have increased over the past 50 years. These products include semivolatile compounds (e.g., Glasius et al., 2000) that partition between the gas phase, the surface of airborne particles, and other indoor surfaces. Partitioning to airborne particles results in increased levels of secondary organic aerosols (SOA). The nature of the SVOCs derived from such oxidation reactions varies with the chemical structure of the precursor.

6.5. Metals, mineral fibers and particles

Lead. The major sources of lead in the indoor environment have been paint and outdoor-to-indoor transport of emissions from motor vehicles burning leaded gasoline. In 1953, industry standards reduced lead levels in paint to 1%. In 1973, the U.S. EPA issued their first standards to reduce lead in gasoline. As a result of the subsequent phase-out of lead in gasoline, its concentration in outdoor air has decreased almost 98% since 1980 (Chemical & Engineering News, 2008). In 1978, the Lead Based Paint Poisoning Prevention Act banned paint with more than 0.06% lead from residential use. These measures have had a dramatic effect – the percentage of children aged 1–5 with blood-lead levels greater than 10 μ g dL⁻¹ has declined from 88% (1976–1980) to 8.6% (1988–1991) to 4.4% (1991–1994) to 1.6% (1999–2002) (CDC, 2005).

Mercury. Historically, the major sources of mercury in indoor environments have included paints, preservatives, thermometers, certain types of switches and lamps, and outdoor-to-indoor transport. A major source of mercury in outdoor air remains combustion of coal that contains mercury. In 1990, the U.S. EPA banned mercury in interior latex paint, and in 1992 it banned mercury in all interior paints. Mercury's presence as a preservative in other products intended for indoor use has also been severely restricted. Indoor levels of mercury have likely declined over the past 15 years.

Cadmium. Cadmium from smelting activities can be present in outdoor air and transported indoors. However, for most of the U.S. population, cigarette smoking and exposure to environmental tobacco smoke is the major source of cadmium. The CDC (2005) found that about 5% of the U.S. population aged 20 and older had urinary cadmium levels high enough to be of concern with respect to kidney injury. Given the decline in indoor smoking, indoor levels of cadmium have likely declined over the past several decades.

Asbestos. Asbestos fibers are flexible, strong, durable and flameproof. These properties led to its use in many products, including thermal and acoustic insulation, flooring, textiles, felts, and coating materials. In 1950, Underwriters Laboratories approved its spray application to steel structural supports in multi-storey buildings to prevent their deformation during fires. This use resulted in substantial releases of asbestos fibers into indoor environments. In 1973 the U.S. EPA banned asbestos spraying for insulation and fireproofing of structural materials. In 1978 the EPA broadened the ban to include all spraying, with the exception of situations where it was encapsulated in a binder that was not friable after drying. Between 1950 and 1978 it is estimated that half a million tons of asbestos was sprayed on surfaces in the U.S. (National Research Council, 1981, p. 113).

Vinyl asbestos floor tiles, popular from the late 1940s to the early 1970s, were another significant indoor use of asbestos. In the early 1990s they were estimated to be present in 42% of U.S. buildings (OSHA, 1994). Fortunately, these tiles release few asbestos fibers unless they are damaged. Regardless, asbestos floor tiles are no longer used in buildings, and the fraction of buildings that contain them has been steadily decreasing over the past 20 years.

In 1989 the U.S. EPA issued a final rule banning most asbestos containing products. This rule was challenged in court and overturned in 1991, but the court ruling retained the ban on asbestos in flooring felt, rollboard, and corrugated, commercial or specialty paper, as well as "new uses" of asbestos (U.S. EPA, 2007).

Airborne particles. There are multiple sources of indoor airborne particles (Abt et al., 2000), including outdoor air, indoor combustion (especially smoking and cooking), abrasion, vacuuming, re-suspension, laser printers (He et al., 2007) and ozone-initiated chemistry (see Section 3.1). The concentration of particles in outdoor air has declined due to regulations on incinerators, industrial emissions and motor vehicle exhaust. The percent of adult smokers has also declined (see Fig. 2). Although emissions of indoor particles from laser printers and indoor chemistry are inferred to have increased, these increases are anticipated to have been overshadowed by reductions in particles derived from indoor smoking and outdoor-to-indoor transport. That is, on average, indoor particle levels are probably lower today than in the 1950s.

6.6. Body burdens

Table 3 lists the 95th percentile levels of the more abundant compounds detected in blood and urine samples collected from over 2000 U.S. residents in 2001-2002 (NHANES, 2005, unless otherwise noted). These blood and urine concentrations provide an indication of the net amount of an environmental pollutant that enters the body from all pathways. While ingestion of food containing these pollutants is often the dominant route of exposure (e.g., PCBs, DDT, mercury), inhalation, ingestion of dust, and dermal absorption can also be important contributing pathways. Almost all of the compounds in Table 3 have been identified in indoor air and dust. Indeed, most of materials that contain PBDE flame-retardants and phthalate ester plasticizers are intended for indoor use. Wilford et al.'s (2005) analysis indicates that ingestion of indoor dust is a major exposure pathway for PBDEs, especially for children. Fromme et al. (2007) used duplicate meal samples, measured indoor air/dust concentrations and back-calculated intake from excreted phthalate metabolites, to show that non-food pathways are important exposure routes for dibutyl and diisobutyl phthalates. Exposures to chlordane and chlorpyrifos in indoor air and dust have been inferred to contribute to their overall body burdens, especially in homes that have been treated with these pesticides for termites (Dearth and Hites, 1991; Morgan et al., 2005; NHANES, 2005). A large study of preschool children's exposure to pentachlorophenol concluded that inhalation was their dominant route of exposure (Wilson et al., 2007). The airborne concentrations of 4-nonylphenol measured by Rudel et al. (2003) suggest that inhalation also contributes meaningfully to its presence in humans. Basically, if a pollutant exists at elevated concentrations in indoor air and dust, humans will inhale, ingest (dust and foods exposed to indoor air prior to consumption), and dermally absorb it, contributing to the compound's resulting body burden.

For some of the chemicals listed in Table 3, the body burdens appear to be relatively steady or increasing. In a 1991 article that examined chlordane accumulation in humans, Dearth & Hites wrote "there has been no measurable decline in these concentrations levels (adipose tissue) even after 10 years of regulation." NHANES data for chlordane metabolites in blood are available for two different time periods: 1999–2000 (n = 1661) and 2001–2002 (n = 2249). In the two-year period between surveys, there was no decline in the blood levels of the chemicals that constituted technical grade chlordane and its metabolites (NHANES, 2005, pp. 331–337). Measurements of PBDE in archived U.S. human serum samples collected from 1985 to 2002 indicate that the serum concentrations of PBDE congeners have been increasing (Sjodin et al., 2004).

For other chemicals listed in Table 3, the body burdens appear to have peaked and are presently declining. In the same serum samples just discussed, collected from 1985 to 2002, blood levels of a PBB and a PCB congener decreased (Sjodin et al., 2004), consistent with restrictions on their use starting in the 1970s. In Section 4.1 we noted that between 1988-1991 and 1999-2002, blood cotinine levels for nonsmoking adults decreased about 75% (NHANES, 2005). This is indicative of reduced exposure to nicotine from environmental tobacco smoke. In the case of fluorinated surfactants, earlier biomonitoring showed that concentrations in human serum had been increasing (Houde et al., 2006). In 2000 the major world producer of perfluoroalkyl compounds, the 3M Company, began a phase-out of certain fluorinated precursors. Calafat et al. (2007) have recently reported that serum concentrations of PFOS, PFOA and PFHxS are lower in samples collected from U.S. residents in 2003-2004 than in samples from 1999-2000. These results are supported by comparisons of perfluoroalkyl levels in serum samples of American Red Cross Blood donors collected in 2000-2001 and 2006, which indicate that the blood levels of certain perfluoroalkyls are declining (Olsen et al., 2008).

A striking feature of the compounds in Table 3 is that many have been produced in meaningful amounts only within the last several decades. These include compounds currently found in tenths to tens of nanograms per gram of blood serum (e.g., PBDEs, perfluroalkyls, chlordane, mirex and dieldrin) and compounds or their metabolites found in microgram to milligram per gram of urine creatinine (e.g., chlorpyrifos, cis-permethrin, triclosan, methyl parathion, various phthalate esters, and 4-nonyl phenol). Humans were not exposed to these compounds two or three generations ago. We know why we are using them: to make plastics perform better, to reduce the risk of fire, to kill pests, to minimize mold growth, to help paint spread, to improve the scent of cleaning products. However, at present we cannot be confident that longterm exposure to these compounds, either individually or in a mixture, is benign.

7. Conclusions

The health risks from indoor pollutants in 2008 differ from those in the 1950s. Indoor exposures to a number of "known" carcinogens (e.g., benzene, formaldehyde, asbestos, environmental tobacco smoke and radon) and "reasonably anticipated" carcinogens (e.g., chloroform, trichloroethylene, carbon tetrachloride and naphthalene) have decreased. Indoor exposures to other recognized toxicants such as carbon monoxide, sulfur dioxide, nitrogen dioxides, lead and mercury have also declined. Conversely, indoor exposures to suspected endocrine disruptors have markedly increased; these include certain phthalate ester plasticizers, certain brominated flame-retardants, bisphenol-A and nonylphenol. Pesticide exposures have changed from compounds that were found to have health risks (e.g., chlordane, chlorpyrifos and mirex) to compounds that are thought to be relatively safe (pyrethroids).

It is apparent that changes in indoor emissions of volatile pollutants (e.g., inorganic gases, VVOCs, VOCs) have impacted indoor environments faster than changes in emissions of less volatile pollutants (e.g., SVOCs, heavy metals, fibers). For example, restrictions on the use of chlorinated solvents influenced indoor environments over a shorter time interval than did restrictions on the use of chlorinated pesticides. While VOC emissions from a product tend to decrease sharply during the first weeks or months of a product's life, SVOC emissions tend to continue throughout the life of a product (Section 6.4). Additionally, SVOCs sorb to other indoor surfaces after they are released to the air, and, in the case of low volatility SVOCs (e.g., DEHP, BDE209, DDT), these sorbed SVOCs continue to desorb long after the host material is removed. In a related fashion, if there is a large residue of a heavy metal or asbestos indoors, it will persist until that residue is deliberately removed.

Given the importance of this subject, it is striking how little directly measured, year-to-year data exist on the kind and concentration of indoor pollutants. It would be exceptionally valuable to establish monitoring networks, in both the U.S. and elsewhere, that provided cross-sectional and longitudinal information about the state of pollutants in representative buildings. Operated in parallel to networks that presently monitor pollutants outdoors and in body fluids, such networks would vastly enhance our knowledge and understanding of the chemicals that we daily inhale, ingest and absorb.

Acknowledgements

I thank Hal Levin for multiple discussions and extensive suggestions regarding the material presented in this review. William W Nazaroff, Tunga Salthammer, Cliff Weisel, Armin Wisthaler and Louise B. Weschler provided further valuable input.

References

- Abt, E., Suh, H.H., Catalano, P., Koutrakis, P., 2000. Relative contribution of outdoor and indoor particle sources to indoor concentrations. Environmental Science and Technology 34, 3579–3587.
- Adibi, J.J., Perera, F.P., Jedrychowsky, W., Camann, D.E., Barr, D., Jacek, R., Whyatt, R.M., 2003. Prenatal exposures to phthalates among women in New York City and Krakow, Poland. Environmental Health Perspectives 111, 1719–1722.
- Agency for Toxic Substances and Disease Registry, 2000. Polychlorinated Biphenyls (PCB) Toxicity Exposure Pathways. Department of Health and Human Services, Atlanta, GA. http://www.atsdr.cdc.gov/csem/pcb/exposure_pathways. html (accessed 22.05.08).
- American Veterinary Medical Association, 2007. U.S. Pet Ownership and Demographics Sourcebook. American Veterinary Medical Association, Schaumburg, IL.
- Andersen, I., 1972. Relationships between outdoor and indoor air pollution. Atmospheric Environment 6, 275–278.
- Andersen, I., Lundqvist, G.R., Molhave, L., 1975. Indoor air pollution due to chipboard used as construction material. Atmospheric Environment 9, 1121–1127.
- APA The Engineered Wood Association, 2008. Milestones in the history of plywood. http://www.apawood.org/level_b.cfm?content = srv_med_new_bkgd_plycen (accessed 21.02.08).
- APE Research Council, 2008. Product uses. http://www.aperc.org/productinfo.htm (accessed 28.01.08).
- Baumann, M.G.D., Batterman, S.A., Zhang, G.-Z., 1999. Terpene emissions from particle-board and medium density fiberboard products. Forest Products Journal 49, 49–56.
- Baumann, M.G.D., Lorenz, L.F., Batterman, S.A., Zhang, G.-Z., 2000. Aldehyde emissions from particleboard and medium density fiberboard products. Forest Products Journal 50, 75–82.
- Betts, K., June 22, 2005. The changing chemistry of office cubicles. Online News. Environmental Science and Technology. http://pubs.acs.org/subscribe/journals/ esthag-w/2005/jun/tech/kb_cubicles.html (accessed 25.05.08).
- Biersteker, K., De Graaf, H., Nass, C.A.G., 1965. Indoor air pollution in Rotterdam homes. International Journal of Air and Water Pollution 9, 343–350.
- Birnbaum, L.S., Staskal, D.F., 2004. Brominated flame retardants: cause for concern? Environmental Health Perspectives 112, 9–17.
- Blum, A., Gold, M.D., Ames, B.N., Jones, F.R., Hett, E.A., Dougherty, R.C., Horning, E.C., Dzidic, I., Carroll, D.I., Stillwell, R.N., Thenot, J.P., 1978. Children absorb tris-BP

flame retardant from sleepwear: urine contains the mutagenic metabolite, 2,3dibromopropanol. Science 201, 1020-1023.

- Boeniger, M.F., 1995. Use of ozone generating devices to improve indoor air quality. American Industrial Hygiene Association Journal 56, 590–598.
- Bornehag, C.-G., Sundell, J., Weschler, C.J., Sigsgaard, T., Lundgren, B., Hasselgren, M., Hägerhed-Engman, L., 2004. The association between asthma and allergic symptoms in children and phthalates in house dust: a nested case-control study. Environmental Health Perspectives 112, 1393–1397.
- Bornehag, C.-G., Lundgren, B., Weschler, C.J., Sigsgaard, T., Hagerhed-Engman, L., Sundell, J., 2005a. Phthalates in indoor dust and their association with building characteristics. Environmental Health Perspectives 113, 1399–1404.
- Bornehag, C.-G., Sundell, J., Hägerhed-Engman, L., Sigsgaard, T., 2005b. Association between ventilation rates in 390 Swedish homes and allergic symptoms in children. Indoor Air 15, 275–280.
- Britigan, N., Alshawa, A., Nizkorodov, S.A., 2006. Quantification of ozone levels in indoor environments generated by ionization and ozonolysis air purifiers. Journal of Air and Waste Management Association 56, 601–610.
- Brown, S.K., Sim, M.R., Abramson, M.J., Gray, C.N., 1994. Concentrations of volatile organic compounds in indoor air a review. Indoor Air 4, 123–134.
- Brown, S.K., 1999. Assessment of pollutant emissions from dry-process photocopiers. Indoor Air 9 (4), 259–267.
- Calafat, A.M., Kuklenyik, Z., Reidy, J.A., Caudill, S.P., Ekong, J., Needham, L.L., 2005. Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population. Environmental Health Perspectives 113, 391–395.
- Calafat, A.M., Wong, L.Y., Kuklenyik, Z., Reidy, J.A., Needham, L.L., 2007. Polyfluoroalkyl chemicals in the U.S. population: data from the National Health and Nutrition Examination Survey (NHANES) 2003–2004 and comparisons with NHANES 1999–2000. Environmental Health Perspectives 115, 1596–1602.
- Calafat, A.M., Ye, X., Wong, L.Y., Reidy, J.A., Needham, L.L. 2008a. Urinary concentrations of triclosan in the U.S. population: 2003–2004. Environmental Health Perspectives. doi:10.1289/ehp.10768.
- Calafat, A.M., Ye, X., Wong, L.Y., Reidy, J.A., Needham, L.L., 2008b. Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environmental Health Perspectives 116, 39–44.
- Carpet and Rug Institute, 2008. The history of carpet. http://www.carpet-rug.org/ about-cri/the-history-of-carpet.cfm (accessed 04.02.08).
- CDC (Centers for Disease Control and Prevention), 2005. Executive Summary: Third National Report on Human Exposure to Environmental Chemicals, Atlanta, GA.
- CDC (Centers for Disease Control and Prevention), 2007. Smoking and tobacco use, Atlanta, GA. http://www.cdc.gov/tobacco/data_statistics/tables/adult/table_2. htm (accessed 20.02.08).
- Chemical & Engineering News, May 12, 2008, p. 30.
- Clausen, P.A., Hansen, V., Gunnarsen, L., Afshari, A., Wolkoff, P., 2004. Emission of di-2-ethylhexyl phthalate from PVC flooring into air and uptake in dust: emission and sorption experiments in FLEC and CLIMPAQ. Environmental Science and Technology 38, 2531–2537.
- Corsi, R.L., Lin, C-C., 2008. Emissions of 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate (TMPD-MIB) from latex paint: a critical review. Critical Reviews in Environmental Science and Technology, in press.
- Cox, W.M., Alm, R., February 10, 2008. You are what you spend. New York Times. http://www.nytimes.com/2008/02/10/opinion/10cox.html (accessed on 20.02.08).
- CPSC, 1997. An Update on Formaldehyde, Document #725. U.S. Consumer Product Safety Commission, Office of Information and Public Affairs, Bethesda, MD. http://www.cpsc.gov/CPSCPUB/PUBS/725.html (accessed 24.05.08).
- Daughton, C.G., Ternes, T.A., 1999. Pharmaceuticals and personal care products in the environment: agents of subtle change? Environmental Health Perspectives 107 (Suppl. 6), 907–938.
- Dearth, M.A., Hites, R.A., 1991. Chlordane accumulation in people. Environmental Science and Technology 25, 1279–1285.
- Derwent, R., Collins, W., Johnson, C., Stevenson, D., 2002. Global ozone concentrations and regional air quality. Environmental Science and Technology 36, 379A– 382A.
- Destaillats, H., Lunden, M.M., Singer, B.C., Coleman, B.K., Hodgson, A.T., Weschler, C.J., Nazaroff, W.W., 2006. Indoor secondary pollutants from household product emissions in the presence of ozone: a bench-scale chamber study. Environmental Science and Technology 40, 4421–4428.
- Destaillats, H., Maddalena, R.L., Singer, B.C., Hodgson, A.T., McKone, T.E., 2008. Indoor pollutants emitted by office equipment. A review of reported data and information needs. Atmospheric Environment 42, 1371–1388.
- Dunckel, A.E., 1975. An updating on the polybrominated biphenyl disaster in Michigan. Journal of the American Veterinary Medical Association 167, 838–841.
- Energy Information Administration, 2000. Trends in Residential Air-Conditioning Usage from 1978 to 1997. Department of Energy, Washington, DC. http://www.eia.doe.gov/emeu/consumptionbriefs/recs/actrends/recs_ac_trends.html (accessed 28.01.08).
- Fanger, P.O., Valbjorn, O., 1978. Indoor climate: effects on human comfort, performance and health in residential, commercial and light-industry buildings. In: Proceedings of the First International Indoor Climate Symposium. Danish Building Research Institute, Copenhagen.
- Finnegan, M.J., Pickering, C.A., Burge, P.S., 1984. The sick building syndrome: prevalence studies. British Medical Journal (Clinical Research Edition) 289, 1573–1575.
- Fromme, H., Lahrz, T., Piloty, M., Gebhart, H., Oddoy, A., R\u00fcden, H., 2004. Occurrence of phthalates and musk fragrances in indoor air and dust from apartments and kindergartens in Berlin. Indoor Air 14, 188–195.

- Fromme, H., Gruber, L., Schlummer, M., Wolz, G., Boehmer, S., Angerer, J., Mayer, R., Liebl, B., Bolte, G., 2007. Intake of phthalates and di(2-ethylhexyl)adipate: results of the Integrated Exposure Assessment Survey based on duplicate diet samples and biomonitoring data. Environment International 33, 1012–1020.
- Glasius, M., Lahaniati, M., Calogirou, A., Di Bella, D., Jensen, N.R., Hjorth, J., Kotzias, D., Larsen, B.R., 2000. Carboxylic acids in secondary aerosols from oxidation of cyclic monoterpenes by ozone. Environmental Science and Technology 34, 1001–1010.
- Gold, M.D., Blum, A., Ames, B.N., 1978. Another flame retardant, tris-(1,3-dichloro-2propyl)-phosphate, and its expected metabolites are mutagens. Science 200, 785–787.
- Gregory, B., Jalbert, P.P., 2004. National Radon Results: 1985–2003. Office of Air and Radiation (OAR), U.S. Environmental Protection Agency (EPA), Washington, DC. http://www.epa.gov/radon001/pdfs/natl_radon_results_update.pdf (accessed 24.05.08).
- Hauser, R., Meeker, J.D., Duty, S., Silva, M.J., Calafat, A.M., 2006. Altered semen quality in relation to urinary concentrations of phthalate monoester and oxidative metabolites. Epidemiology 17, 682–691.
- He, C., Morawska, L., Taplin, L., 2007. Particle emission characteristics of office printers. Environmental Science and Technology 41, 6039–6045.
- Hites, R.A., 2004. Polybrominated diphenyl ethers in the environment and in people: a meta-analysis of concentrations. Environmental Science and Technology 38, 945–956.
- Hodgson, A.T., Wooley, J.D., Daisey, J.M., 1993. Emissions of volatile organiccompounds from new carpets measured in a large-scale environmental chamber. Journal of the Air & Waste Management Association 43, 316–324.
- Hodgson, A.T., Beal, D., McIlvaine, J.E.R., 2002. Sources of formaldehyde, other aldehydes and terpenes in a new manufactured house. Indoor Air 12, 235–242.
- Hodgson, A.T., Levin, H., 2003. Volatile organic compounds in indoor air: a review of concentrations measured in North America since 1990. Lawrence Berkeley National Lab Report, LBNL-51715.
- Houde, M., Martin, J.W., Letcher, R.J., Solomon, K.R., Muir, D.C., 2006. Biological monitoring of polyfluoroalkyl substances: a review. Environmental Science and Technology 40, 3463–3473.
- IARC (International Agency for Research on Cancer), 1982a. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Some Industrial Chemicals and Dyestuffs, vol. 29, Lyon, France, 416 pp.
- IARC (International Agency for Research on Cancer), 1982b. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Chemicals, Industrial Processes and Industries Associated with Cancer in Humans, Suppl. 4., Lyon, France, 292 pp.
- Kelly, T.J., Smith, D.L., Satola, J., 1999. Emission rates of formaldehyde from materials and consumer products found in California homes. Environmental Science and Technology 33, 81–88.
- Lamorena, R.B., Jung, S.-G., Bae, G.-N., Lee, W., 2007. The formation of ultra-fine particles during ozone initiated oxidations with terpenes emitted from natural paint. Journal of Hazardous Materials 141, 245–251.
- Lee, S.C., Lam, S., Fai, H.K., 2001. Characterization of VOCs, ozone, and PM10 emissions from office equipment in an environmental chamber. Building and Environment 36, 837–842.
- Leovic, K.W., Sheldon, L.S., Whitaker, D.A., Hetes, R.G., Calcagni, J.A., Baskir, J.N., 1996. Measurement of indoor air emissions from dry-process photocopy machines. Journal of the Air & Waste Management Association 46 (9), 821–829.
- Levin, H., Hahn, J., 1986. Pentachlorophenol in indoor air: methods to reduce airborne concentrations. Environment International 12, 334–341.
- Levin, H., 1989. Building materials and indoor air quality. In: Cone, J.E., Hodgson, M.J. (Eds.), Problem Buildings: Building-Associated Illness and the Sick Building Syndrome. Hanley & Belfus, Philadelphia, pp. 667–693.
- Lewis, R.G., 2001. Pesticides. In: Spengler, J.D., Samet, J.M., McCarthy, J.F. (Eds.), Indoor Air Quality Handbook. McGraw-Hill, New York, pp. 35.1–35.21.
- Lioy, P.J., Avdenko, M., Harkov, R., Atherholt, T., Daisey, J.M., 1985. A pilot indooroutdoor study of organic particulate matter and particulate mutagenicity. Journal of the Air Pollution Control Association 35, 653–657.
- Liu, X.Y., Mason, M., Krebs, K., Sparks, L., 2004. Full-scale chamber investigation and simulation of air freshener emissions in the presence of ozone. Environmental Science and Technology 38, 2802–2812.
- London, J., Kelley, J., 1974. Global trends in total atmospheric ozone. Science 184, 987–989.
- MacLeod, K.E., 1981. Polychlorinated biphenyls in indoor air. Environmental Science and Technology 15, 926–928.
- Martens, C.R., 1981. Water-Borne Coatings, Emulsions and Water-Soluble Paints. Van Nostrand Reinhold Co.
- Menichini, E., lacovella, N., Monfredini, F., Turrio-Baldassarri, L., 2007. Relationships between indoor and outdoor air pollution by carcinogenic PAHs and PCBs. Atmospheric Environment 41, 9518–9529.
- Morgan, N.K., Sheldon, L.S., Croghan, C.W., Jones, P.A., Robertson, G.L., Chuang, J.C., Wilson, N.K., Lyu, C.W., 2005. Exposures of preschool children to chlorpyrifos and its degradation product 3,5,6-trichloro-2-pyridinol in their everyday environments. Journal of Exposure Analysis and Environmental Epidemiology 15, 297–309.
- Mott, J.A., Wolfe, M.I., Alverson, C.J., Macdonald, S.C., Bailey, C.R., Ball, L.B., Moorman, J.E., Somers, J.H., Mannino, D.M., Redd, S.C., 2002. National vehicle emissions policies and practices and declining U.S. carbon monoxide-related mortality. JAMA-Journal of the American Medical Association 288, 988–995.
- National Research Council, 1981. Indoor Pollutants. National Academy Press, Washington, DC.

- National Research Council, 1998. Health Effects of Exposure to Radon (BEIR VI). National Academy Press, Washington, DC.
- National Toxicology Program, 2005. Report on Carcinogens, 11th ed. U.S. Department of Health and Human Services, Public Health Service, Washington, DC.
- Nazaroff, W.W., Weschler, C.J., 2004. Cleaning products and air fresheners: exposure to primary and secondary air pollutants. Atmospheric Environment 38, 2841– 2865.
- NHANES (Third Report), 2005. Third National Report on Human Exposure to Environmental Chemicals. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, Georgia. NCEH Publication No. 05-0570.
- Nøjgaard, J.K., Nørgaard, A.W., Wolkoff, P., 2007. On-line analysis of secondary ozonides from cyclohexene and D-limonene ozonolysis using atmospheric sampling townsend discharge ionization mass spectrometry. Atmospheric Environment 41, 8345–8354.
- Norback, D., Wieslander, G., Nordstrom, K., Walinder, R., 2000. Asthma symptoms in relation to measured building dampness in upper concrete floor construction, and 2-ethyl-1-hexanol in indoor air. International Journal of Tuberculosis and Lung Disease 4, 1016–1025.
- Oie, L., Hersoug, L.-G., Madsen, J.O., 1997. Residential exposure to plasticisers and its possible role in the pathogenesis of asthma. Environmental Health Pesrspectives 105, 972–978.
- Olsen, G.W., Mair, D.C., Church, T.R., Ellefson, M.E., Reagen, W.K., Boyd, T.M., Herron, R.M., Medhdizadehkashi, Z., Nobiletti, J.B., Rios, J.A., Butenhoff, J.L., Zobel, L.R. Decline in perfluorooctanesulfonate and other polyfluoroalkyl chemicals in American Red Cross adult blood donors, Environmental Science and Technology, in press.
- OSHA, 59 Federal Register 41101, August 10, 1994.
- OSPAR, 2004. Musk xylene and other musks. In: Hazardous Substances Series. OSPAR Commission, Publication No. 200/2004, pp. 1–45.
- Persily, A.K., 1999. Myths about building envelopes. ASHRAE Journal 41, 39-47.
- Rowland, F.S., Molina, M.J., 1974. Stratospheric sink for chlorofluoromethanes: chlorine atom catalysed destruction of ozone. Nature 249, 810–812.
- Rudel, R.A., Camann, D.E., Spengler, J.D., Korn, L.E., Brody, J.G., 2003. Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers and other endocrinedisrupting compounds in indoor air and dust. Environmental Science and Technology 37, 4543–4553.
- Rudel, R.A., Seryak, L.M., Brody, J.G. PCB-containing wood floor finish is a likely source of elevated PCBs in residents' blood, household air and dust: a case study of exposure. Environmental Health, 7. doi:10.1186/176-069X-7-2. Available from: http://www.ejournal.net/content/7/1/2.
- Sabersky, R., Sinema, D., Shair, F., 1973. Concentrations, decay rates, and removal of ozone and their relation to establishing clean indoor air. Environmental Science and Technology 7, 347–353.
- Salthammer, T., Boehme, C., Meyer, B., Siwinski, N., 2003. Release of primary compounds and reaction products from oriented strand board (OSB). In: Proceedings of Healthy Buildings 03, Singapore, vol. 1, pp. 160–165.
- Sarwar, G., Corsi, R., 2007. The effects of ozone/limonene reactions on indoor secondary organic aerosols. Atmospheric Environment 41, 959–973.
- Seaman, V.Y., Bennett, D.H., Cahill, T.M., 2007. Origin, occurrence, and source emission rate of acrolein in residential indoor air. Environmental Science and Technology 41, 6940–6946.
- Seppanen, O., Fisk, W.J., Lei, Q.H., 2006. Ventilation and performance in office work. Indoor Air 16, 28–36.
- Seinfeld, J.H., Pandis, S.N., 1998. Atmospheric Chemistry and Physics. John Wiley and Sons, Inc., New York.
- Shair, F.H., Heitner, K.L., 1974. Theoretical model for relating indoor pollutant concentrations to those outside. Environmental Science and Technology 8, 444– 451.
- Shoeib, M., Harner, T., Ikonomou, M., Kannan, K., 2004. Indoor and outdoor air concentrations and phase partitioning of perfluoroalkyl sulfonamides and polybrominated diphenyl ethers. Environmental Science and Technology 38, 1313–1320.
- Shoeib, M., Harner, T., Wilford, B.H., Jones, K.C., Zhu, J.P., 2005. Perfluorinated sulfonamides in indoor and outdoor air and indoor dust: occurrence, partitioning, and human exposure. Environmental Science and Technology 39, 6599–6606.
- Singer, B.C., Destaillats, H., Hodgson, A.T., Nazaroff, W.W., 2006a. Cleaning products and air fresheners: emissions and resulting concentrations of glycol ethers and terpenoids. Indoor Air 16, 179–191.
- Singer, B.C., Coleman, B.K., Destaillats, H., Hodgson, A.T., Lunden, M.M., Weschler, C.J., Nazaroff, W.W., 2006b. Indoor secondary pollutants from cleaning product and air freshener use in the presence of ozone. Atmospheric Environment 40, 6696–6710.
- Smola, T., Georg, H., Hohensee, H., 2002. Health hazards from laser printers? Gefahrstoffe Reinhaltung Der Luft 62, 295–301.
- Sjodin, A., Jones, R.S., Focant, J.F., Lapeza, C., Wang, R.Y., McGahee, E.E., Zhang, Y.L., Turner, W.E., Slazyk, B., Needham, L.L., Patterson, D.G., 2004. Retrospective time-trend study of polybrominated diphenyl ether and polybrominated and polychlorinated biphenyl levels in human serum from the United States. Environmental Health Perspectives 112, 654–658.
- Sjodin, A., Wong, L.-Y., Jones, R.S., Park, A., Zhang, Y., Hodge, C., DiPietro, E., McClure, C., Turner, W., Needham, L.L., Patterson, D.G., 2008. Serum concentrations of polybrominated diphenyl ethers (PBDEs) and polybrominated biphenyl (PBB) in the United States population: 2003–2004. Environmental Science and Technology 42, 1337–1384.

- Shields, H.C., Weschler, C.J., 1992. Volatile organic-compounds measured at a telephone switching center from 5/30/85–12/6/88 – a detailed case-study. Journal of the Air & Waste Management Association 42, 792–804.
- Sony Computer Entertainment, 2008. Cumulative production shipments of hardware (until March 2007). http://www.scei.co.jp/corporate/data/bizdataps_e. html (accessed 24.02.08).
- Storey, L., January 3, 2007. Sensing opportunities in dormitory air. New York Times. http://www.nytimes.com/2007/01/03/business/media/03fresh.html?ex = 1325480400&en = cd09529b719324e7&ei = 5088&partner = rssnyt&emc = rss (accessed 25.01.08).
- Swan, S.H., Main, K.M., Liu, F., Stewart, S.L., Kruse, R.L., Calafat, A.M., Mao, C.S., Redmon, J.B., Ternand, C.L., Sullivan, S., Tague, J.L., The Study for Future Families Research Team, 2005. Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environmental Health Perspectives 113, 1056–1061.
- Thompson, C.R., Hensel, E.G., Kats, G., 1973. Outdoor-indoor levels of six air pollutants. Journal of the Air Pollution Control Association 23, 881–886.
- TV history, 2008. Television history the first 75 years. http://www.tvhistory.tv/ (accessed 14.01.08).
- Uhde, E., Bednarek, M., Fuhrmann, F., Salthammer, T., 2001. Phthalic esters in the indoor environment – test chamber studies on PVC-coated wall coverings. Indoor Air 11, 150–155.
- U.S. EPA, 2003. Toxicological Review of Acrolein. Environmental Protection Agency, Washington, DC.
- U.S. EPA, 2007. Asbestos and vermiculite. http://www.epa.gov/asbestos/index.html (accessed 23.01.08).
- U.S. Federal Register, Dec. 21, 2007. Air Fresheners; TSCA Section 21 Petition, vol. 72 No. 245, 72885–72896.
- Wallace, L.A., 1987. EPA/600/6-87/002a. The Total Exposure Assessment Methodology (TEAM) Study: Summary and Analysis, vol. I. Office of Research and Development, U.S. EPA, Washington, DC.
- Wargocki, P., Sundell, J., Bischof, W., Brundrett, G., Fanger, P.O., Gyntelberg, F., Hanssen, S.O., Harrison, P., Pickering, A., Seppanen, O., Wouters, P., 2002. Ventilation and health in non-industrial indoor environments: report from a European Multidisciplinary Scientific Consensus Meeting (EUROVEN). Indoor Air 12, 113–128.
- Weisel, C., Zhang, J., Turpin, B., Morandi, M., Colome, S., Stock, T., Spektor, D., 2005. Relationships of Indoor, Outdoor, and Personal Air (RIOPA): Part 1. Collection Methods and Descriptive Analyses. Health Effects Institute, Boston, MA, p. 127.
- Wensing, M., Uhde, E., Salthammer, T., 2005. Plastics additives in the indoor environment – flame retardants and plasticizers. Science of the Total Environment 339, 19–40.
- Weschler, C.J., 1980. Characterization of selected organics in size-fractionated indoor aerosols. Environmental Science and Technology 14, 428–431.
- Weschler, C.J., 1984. Indoor–outdoor relationships for nonpolar organic constituents of aerosol particles. Environmental Science and Technology 18, 648–652.

- Weschler, C.J., Shields, H.C., Naik, D.V., 1989. Indoor ozone exposures. Journal of the Air Pollution Control Association 39, 1562–1568.
- Weschler, C.J., Shields, H.C., 1997. Potential reactions among indoor pollutants. Atmospheric Environment 31, 3487–3495.
- Weschler, C.J., Shields, H.C., 1999. Indoor ozone/terpene reactions as a source of indoor particles. Atmospheric Environment 33, 2301–2312.
- Weschler, C.J., 2000. Ozone in indoor environments: concentration and chemistry. Indoor Air 10, 269–288.
- Weschler, C.J., 2003. Indoor chemistry as a source of particles. In: Morawska, L., Salthammer, T. (Eds.), Indoor Environment: Airborne Particles and Settled Dust. Wiley-VCH, Weinheim, pp. 167–189.
- Weschler, C.J., 2004. Chemical reactions among indoor pollutants: what we've learned in the new millennium. Indoor Air 14 (Suppl. 7), 184–194.
- Weschler, C.J., 2006. Ozone's impact on public health: contributions from indoor exposures to ozone and products of ozone-initiated chemistry. Environmental Health Perspectives 114, 1489–1496.
- Weschler, C.J., Nazaroff, W.W., 2008. Semivolatile organic compounds in indoor environments. Atmospheric Environment. doi:10.1016/j.atmosenv.2008.09.052.
- Wilford, B.H., Shoeib, M., Harner, T., Zhu, J.P., Jones, K.C., 2005. Polybrominated diphenyl ethers in indoor dust in Ottawa, Canada: implications for sources and exposure. Environmental Science and Technology 39, 7027–7035.
- Wilson, N.K., Chuang, J.C., Morgan, M.K., Lordo, R.A., Sheldon, L.S., 2007. An observational study of the potential exposures of preschool children to pentachlorophenol, bisphenol-A, and nonylphenol at home and daycare. Environmental Research 103, 9–20.
- Wisthaler, A., Tamas, G., Wyon, D.P., Strom-Tejsen, P., Space, D., Beauchamp, J., Hansel, A., Mark, T.D., Weschler, C.J., 2005. Products of ozone-initiated chemistry in a simulated aircraft environment. Environmental Science and Technology 39, 4823–4832.
- Wolkoff, P., Wilkins, C.K., Clausen, P.A., Larsen, K., 1993. Comparison of volatile organic compounds from processed paper and toners from office copiers and printers: methods, emission rates and modeled concentrations. Indoor Air 3, 113–123.
- Wolkoff, P., 1995. Volatile organic compounds sources, measurements, emissions, and the impact on indoor air quality. Indoor Air (Suppl. 3), 9–73.
- Wolkoff, P., 1999. Photocopiers and indoor air pollution. Atmospheric Environment 33, 2129–2130.
- World Resources Institute, 2008. EarthTrends, "Homes with personal computers". http:// earthtrends.wri.org/searchable_db/index.php?step = countries&cID%5B%5D = 190&theme = 4&variable_ID = 1494&action = select_years (accessed 15.01.08).
- Xu, Y., Little, J.C., 2006. Predicting emissions of SVOCs from polymeric materials and their interaction with airborne particles. Environmental Science and Technology 40, 456–461.
- Yocom, J.E., Clink, W.L., Cote, W.A., 1971. Indoor/outdoor air quality relationships. Journal of the Air Pollution Control Association 21, 251–259.