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Suppressive Effects in Single

ReviewMoving Sensory Adaptation beyond
Neurons
Samuel G. Solomon1,2 and Adam Kohn3,4

How an object is perceived depends on the temporal
context in which it is encountered. Sensory signals in the
brain also depend on temporal context, a phenomenon
often referred to as adaptation. Traditional descriptions
of adaptation effects emphasize various formsof response
fatigue in single neurons, which grow in strength with
exposure to a stimulus. Recent work on vision, and other
sensory modalities, has shown that this description has
substantial shortcomings. Here we review our emerging
understanding of how adaptation alters the balance be-
tween excitatory and suppressive signals, how effects
depend on adaptation duration, and how adaptation influ-
ences representations that are distributed within and
across multiple brain structures. This work points to a
sophisticated set of mechanisms for adjusting to recent
sensory experience, and suggests new avenues for under-
standing their function.

Introduction
Adaptation affects how neurons respond to sensory stimuli,
making them sensitive to the temporal context in which a
stimulus is embedded. Adaptation thus adjusts brain pro-
cessing to the current sensory environment, and it is gener-
ally thought that this improves performance in some way.
Understanding how the brain adapts may therefore provide
insight into its computational goals, and the constraints on
its functional organization. Adaptation is also of interest
because it is widely used in human functional imaging and
perceptual studies to infer the selectivity of neurons and
brain areas, and to deduce the computations involved in sen-
sory processing. Proper inference in these domains requires
a thorough understanding of how neurons and circuits
adapt.

Early descriptions of adaptation effects emphasized fa-
tigue of single neurons during the presentation of an effec-
tive stimulus. In mechanistic terms, these effects can be
explained by the observation that adaptation shifts a neu-
ron’s state away from the threshold required for generation
of action potentials [1–7]. This hyperpolarization is triggered
by intrinsic mechanisms that are recruited during periods of
high activity [2–4]. There are four central tenets that follow
from this description and our understanding of the mecha-
nisms responsible: first, it takes time for neurons to recover
from periods of high activity, and neurons therefore show
reduced responsiveness to subsequent stimuli; second, fa-
tigue is more pronounced when an adaptor is presented
for longer durations; third, the degree of fatigue depends
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on the effectiveness of the adaptor, so a stimulus that
matches a neuron’s preference will cause the strongest
effects; and fourth, because it involves simple fatigue, adap-
tationwill reduce sensitivity to all subsequent stimuli, not just
those that resemble the adaptor.
The simple fatigue description fails to capture the stimulus

specificity of adaptation effects: responses to stimuli that
resemble the adaptor are reduced more than responses to
stimuli that differ from it. When the adaptor falls on the flank
of the tuning curve, this specificity causes the neuron’s tun-
ing to shift away from the adaptor [8–11]. Stimulus-specific
adaptation effects can be accounted for by synaptic fatigue,
which results in less synaptic input from neurons whose
stimulus preference best matches the adaptor, either
because these presynaptic cells are fatigued or because
transmitter release from their terminals is depressed [12,13].
Stimulus-specific fatigue cannot explain all adaptation ef-

fects (see [14–20] for reviews). For instance, adaptation with
dynamic stimulus sequences have revealed that neuronal
input–output functions can adjust to encode the range of
stimuli in the environment [21,22]. Nevertheless, the stim-
ulus-specific fatigue description has provided a powerful
and simple explanation for many physiological and percep-
tual observations [14–17,20], and is central to a number of
functional proposals [9,23].
More recentwork has revealed limitations of fatigue-based

descriptions of adaptation effects, evident even in the sim-
plest adapt-test paradigm. Our aim here is to highlight the
emerging themes of this work. First, we will review evidence
that adaptation can enhance responsivity, not just reduce it.
Many of these facilitory effects of adaptation can be ex-
plained and predicted by invoking normalization, a widely
observed component of sensory processing. Second, it is
now clear that there is a complex relationship between adap-
tation duration and the effects it induces — and that one
cannot assume that longer adaptation simply causes stron-
ger effects. Third, recent work has begun to move beyond
exploring effects in single neurons at discrete stages of pro-
cessing, to studying how adaptation alters representations
distributed within and across stages of processing. We will
discuss how together this work reinvigorates, and informs,
the search for a clear functional benefit of adaptation effects.
We will focus on the visual cortex where much of this work
has been performed, and draw parallels in other systems
where available.

Normalization and Adaptation in Visual Cortex
The receptive fields of sensory neurons consist of two
distinct components. The first is the classical receptive field
(CRF), which defines the stimuli that can directly drive
spiking activity. For example, the CRF of a simple cell in pri-
mary visual cortex (V1) can be approximated by a linear filter,
which determines selectivity for stimulus parameters such
as position and orientation, and an output nonlinearity, which
relates filter responses to spiking activity. The simple fatigue
description of adaptation is captured by a change in the
nonlinearity, thus affecting responses to all stimuli (Fig-
ure 1A); changes in tuning preference caused by stimulus-
specific fatigue are captured by altering the shape of the
filter (Figure 1B).
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Figure 1. Frameworks of adaptation.

(A) Fatigue: simple models of sensory
response include a linear stage, which cap-
tures the weighted summation of synaptic in-
puts and dictates the shape of tuning curves,
and a non-linear stage that transforms this
weighted sum into an output. Fatigue is cap-
tured by a change in the non-linear function
that generates outputs, causing all subse-
quent responses to be reduced. Here and
elsewhere the red indicates sites and effects
after adaptation; black indicates before adap-
tation. (B) Stimulus-specific fatigue: fatigue is
generated in a subset of synaptic inputs to the
neuron under study and therefore deforms the
linear filter of the CRF. The impact of adapta-
tion is greatest for subsequent tests that
resemble the adaptor, often generating ‘‘re-
pulsive’’ shifts in tuning curves. (C) Normaliza-
tion models interpose a gain control between
the filter output and non-linearity. This gain
control draws on a large pool of signals that
cover the CRF and extend beyond it. Their
suppressive impact is captured by a divisive
interaction with the CRF. In this framework,
adaptation can have independent impact on
the CRF and normalization signals.
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The second component of the receptive field is composed
of ‘gain-controls’, or normalization signals (Figure 1C, left).
These inputs have a divisive effect on the output of the
CRF and thus suppress spiking activity. Normalization sig-
nals have been observed across sensory modalities, and
are an integral component of modern functional models of
sensory neurons [24]. Normalization signals are generally re-
cruited by a broader range of stimuli than those that drive the
CRF — a working description is that normalization arises
from the activity of a pool of neurons, with a broad range of
functional properties and receptive fields that can either
spatially overlap the CRF of the target neuron or be offset
from it. Normalization explains why there is sub-linear sum-
mation of responses to two sensory stimuli within the CRF,
as in masking and contrast saturation. It also explains why
large stimuli, which recruit normalization from the ‘surround’,
evoke weaker responses than stimuli falling wholly within
the CRF.

Recent work has shown that adaptation not only affects
the CRF, but can also weaken normalization signals
(Figure 1C, right). Because normalization is suppressive,
weakening these signals is a form of disinhibition, which
can enhance responses to subsequent stimuli. A clear
example of such facilitation is evident when an adaptor is
placed in the surround. Such adaptors elicit no response
from the CRF, by definition, but do weaken normalization
signals from the surround. As a result, responses to stimuli
that cover both the CRF and surround are enhanced after
adaptation of the surround (Figure 2A), in some cases by
two- or three-fold [25,26].

Weakened normalization signals can also shape the ef-
fects of adaptation on neural tuning. Adaptation weakens
normalization in a stimulus-specific way, yielding a tuned
disinhibition, just as the specificity of its effects in the CRF
results in tuned fatigue. Tuned disinhibition, in turn, results
in maintained or enhanced responses to stimuli similar to
the adaptor (see Box 1 for further discussion). Such effects
have been observed in V1, where a large adaptor causes
orientation tuning to be attracted towards the adapting
orientation (Figure 2C) [11,26,27]. Adaptation can cause
similar attractive shifts in V1 colour tuning (Figure 2D) [28],
and direction tuning in visual cortical area MT [29,30].
The effect of adaptors that provide drive to the CRF and

normalization pool depends on the relative sensitivity of
these two receptive field components to the adaptor and
test. Responsivity will be reduced most when the adaptor
provides strong drive to the CRF (Figures 2E,F), and weak
drive to the normalization signals. Previous single neuron
studies of adaptation have emphasized reduced responsivity
because they usually tailored stimuli to match the CRF of the
recorded neuron. In these cases, adaptation effects on the
CRF overwhelm those on normalization signals. By contrast,
an adaptor that strongly drives normalization signals, but is
onlymoderately effective for theCRF, is likely to have facilita-
toryeffects. For instance, adaptation toagrating that iswithin
the CRF but orthogonal to a neuron’s preferred orientation
will weaken normalization signals (Figure 2G,H; [31] but see
[32]). If the tuning of the CRF is sufficiently narrow [33],
orthogonal adaptors will then enhance responsivity [26,31].
Importantly, because normalization signals aremore broadly
tuned than the CRF, the effects of an adaptor on normaliza-
tion signals will likely be evident in a larger population of neu-
rons than are its effects on CRFs.
The normalization framework also explains how stimulus

intensity can influence the effects of adaptation. The frame-
work predicts that responses to weak test stimuli should be
reduced particularly strongly after adaptation. These test
stimuli do not recruit substantial normalization; thus, the
impact of any adaptation-induced changes in normalization
will be limited. Responses to high-intensity test stimuli, on
the other hand, may be only slightly reduced by adaptation,
or even enhanced, as recently reported (Figure 2G)
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Figure 2. Impact of adaptation on visual sensory neurons.

Each panel compares response before (open symbols) and after (red
filled symbols) prolonged adaptation to a high contrast stimulus.
Arrows indicate the identity of the adapting stimulus when measuring
tuning curves. (A,B) Adaptation to annular stimuli can enhance respon-
sivity and change spatial summation. (A) Response of a V1 neuron to a
stimulus within the CRF is suppressed by contrast in a surrounding
annulus. Adaptation confined to the annular region weakens this sup-
pression, facilitating responses to large stimuli. (B) Responses of an
LGN neuron to stimuli of increasing size, illustrating a ‘suppressive sur-
round’ that reduces response to large gratings. After adaptation to an
annular grating, the sensitivity of the surround is reduced, increasing
the effective summation area of the neuron. (C,D) Adaptation to a stim-
ulus can attract tuning curves towards the adaptor. (C) Responses of
V1 neurons to orientations that are similar to the adapting stimulus
are facilitated, with little effect on response to other orientations. (D)
Same as (C), but for color. (E,F) Adaptation effects include reduced
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[26,31,34]. This reasoning can also explain why repeated
presentations of weak stimuli result in a greater loss of re-
sponsivity than repeated presentations of strong stimuli
[30]. The relationship between stimulus intensity and normal-
ization signals also predicts that the effects of adaptation
on tuning should depend on test stimulus intensity: adapta-
tion should repel tuning for low-intensity stimuli, but attract
tuning for high-intensity ones. These points are discussed
further in Box 1.
While the normalization framework can predict the relative

strength of adaptation effects for different stimuli, the abso-
lute strength of effects will also depend on the baseline
against which the adapted state is compared. Frequently,
the baseline involves stimuli presented in temporal isolation
(that is, separated by long presentations of a blank screen).
Such a state is highly unusual: in our everyday experience,
stimuli appear in a steady stream [35,36]. Whether recent
experience facilitates or suppresses neural responses under
continuous sensory stimulation will depend on the change it
induces in the ongoing adaptation state of both the CRF and
normalization signals. For instance, even traditional descrip-
tions would predict a relative enhancement of responsivity, if
responses after an ineffective adaptor are compared to a
baseline of greater fatigue [26].
In summary, recent work has shown that adaptation can

have a diverse set of effects on neuronal tuning. Adaptation
can sensitise or desensitise sensory neurons, deform tuning
towards or away from the adapted stimulus, and also leave
responsivity unaltered. These diverse effects can neverthe-
less be explained in a straightforwardway: that is, by allowing
normalization signals to be adaptable, and by understanding
how an adaptor and subsequent test stimuli engage the CRF
and normalization pool.

Adaptation-induced Disinhibition Outside Visual Cortex
We have so far focused onwork in visual cortex, but research
in other brain areas and sensory systems has revealed similar
evidence of adaptation-induced disinhibition. Normalization
may be a canonical computation [24], so these effects might
also be explained within this framework. Nevertheless,
because the concept of normalization has been applied less
broadly in other systems, we will refer to these findings in
more general terms — as examples of adaptation-induced
changes in the balance between excitatory and suppressive
signals.
In the retina and lateral geniculate nucleus (LGN), adapta-

tion to a small stimulus that lies within the CRF can lead to
a substantial reduction in responsivity [37–39]. Adaptation
of suppressive signals that lie outside the CRF usually en-
hances responses to stimuli that cover the CRF and the sur-
round, just as in visual cortex (Figure 2B) [38,40]. Unlike the
responsivity. (E) Contrast-response function of a V1 neuron for a stim-
ulus in its preferred orientation. Adaptation with the preferred stimulus
shifts the contrast-response curve to the right. (F) Orientation tuning
curve of a V1 neuron. Adaptation leads to weaker responses for most
orientations. (G,H) Adaptation to a non-preferred stimulus can lead to
response facilitation. Response of V1 neurons after adaptation to grat-
ings orthogonal to the preferred orientation. (G) Adaptation can in-
crease response to subsequent high contrast tests of the preferred
orientation. (H) Response is increased across a wide range of stimuli,
suggesting that adaptation has desensitised a broadly tuned normali-
zation signal. (A) Redrawn from [25]. (B) Redrawn from [38]. (C)
Redrawn from [26]. (D) Redrawn from [28]. (E) Redrawn from [31]. (F)
Redrawn from [26]. (G) Redrawn from [31]. (H) Redrawn from [26].



Box 1

Adaptation in the context of normalization models.

The normalizationmodel provides a functional description of neuronal responses. It captures the classical receptive field (CRF) as aweighted

sum of driving inputs to a neuron. The impact of the CRF on firing rate is regulated by a gain control, or normalization signal, that captures the

impact of other neural machinery [24]. Mathematically, this can be formulated as:

RðiÞ=M+Rmax

CRFðiÞn
sn +GðiÞn Equation (1)

where R is the response of the neuron, i is the intensity of the stimulus,M is the maintained activity in absence of a patterned stimulus, Rmax

the maximal response, and n an exponent that captures the impact of an output nonlinearity. Normalization is captured by this equation

because stronger drive to the CRF — the numerator — results in stronger responses; stronger drive to the normalization pool, the denom-

inator G, reduces activity, in a divisive manner. The normalization pool is typically considered to be the summed activity of many neurons,

with different stimulus preferences, which are not explicitly defined here. The effective strength of the normalization signal is determined in

part by the constant s.

Panel A in the figure shows the intensity-response function of a typical

sensory neuron: response grows with intensity, and then saturates.

The blue line in panel A shows how the relative strength of the normal-

ization signal is thought to increase with intensity [24]. Panel B in the

figure shows predicted responses of a neuron when adaptation has

an impact on the CRF (yellow line), normalization (red line), or both (or-

ange line). If adaptationdesensitisesonly theCRF, it affects responses

at all intensities, as if there was a change in ‘‘response gain’’. A weak-

ening of the normalization signal enhances responses, particularly to

stronger stimuli. Finally, if adaptation desensitises the CRF and

normalization in a balancedway, it reduces responseat low intensities

but leaves responses to strong stimuli unaffected, as if there were a

change in ‘‘contrast gain’’. Note that joint adaptation of the CRF and

normalization brings about a horizontal shift in the intensity-response

function; this shift is a characteristic effect of adaptation and in previ-

ous work has been captured by changing s [31,33,34], which has the

same impact in Equation (1).

A normalization model can also account for adaptation’s effect on

spatial tuning [24,38,57]. The black lines in figure panels C and D

show the size-tuning function of a typical visual neuron: response first

grows with size, reaches a plateau, and then declines. The initial rise

primarily reflects summation within the CRF and the subsequent

decline is because normalization from the surround is recruited

when the stimulus extends beyond the CRF (blue line). Figure panel

D shows predicted responses of a neuron when adaptation has an

impact on theCRF (yellow line), thesurround (red line), orboth (orange

line). If adaptationdesensitisesonly theCRF, it reduces response toall

sizes; if adaptation desensitises only surround normalization,

response is increased primarily at larger sizes. Note that adaptation

can have spatially specific effects in both the CRF and surround

[38]; thesecanbecapturedbysupposing thatadaptationdesensitises

only those parts of each mechanism that are covered by the adaptor.

This simple model is also capable of explaining the diverse effects

of adaptation on neural tuning along other stimulus dimensions

[11,26,28]. Figure panel E illustrates the tuning of the CRF and nor-

malization of sensory neurons when constructed by appropriately

weighing tuned inputs, drawn below the panel. The normalization

pooldrawsfromawider rangeof inputs thantheCRF.Whenanadaptor

desensitises a subset of inputs to the CRF, it reduces response partic-

ularly around the adaptor and therefore shifts the preferred stimulus

away from the adaptor (figure panel F, yellow); when it has an impact

on normalization signals, adaptation can increase response, particu-

larly for stimuli that resemble the adaptor (figure panel F, red).
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effects of adaptation on the visual cortex, however, those in
the retina and LGN have limited stimulus specificity [38,40],
except for spatial location [38,40,41].

Retinal circuits can be systematically explored in vitro, al-
lowing for detailed investigation of the mechanisms underly-
ing adaptation effects. Recent in vitro work has revealed
how adaptation alters excitatory and inhibitory signals in the
retina. Adaptation usually reduces the excitatory synaptic
input to retinal ganglion cells, in large part by reducing the
sensitivity of bipolar cell synapses [13,42,43]. Adaptation
can also depress the activity of inhibitory amacrine cells,
particularly those that use GABA as a neurotransmitter
[3,41,43,44]. As a result, adaptation can reduce the responsiv-
ity of someganglion cells and increase that of others, depend-
ing on the complement of excitatory and inhibitory inputs
each cell receives. Indeed, recent work suggests there are
distinct functional classes of retinal ganglion cells: one whose
responses are enhanced by adaptation with high contrast
stimuli, and another whose responses are reduced [41,45].

Many recent findings in the whisker somatosensory (‘bar-
rel’) system of rodents also bear a striking resemblance to
those in the visual system. Repeated whisker deflections
have long been known to reduce neuronal responsivity in
barrel cortex (for example [46]), but recently it has been
found that this adaptation is also capable of increasing re-
sponsivity [47]. This enhanced responsivity has been attrib-
uted to inhibition being weakened more than excitation by
adaptation ([48], but see [49]). Adaptation also reduces
cross-whisker suppression, akin to a reduction in suppres-
sive signals from the surround in visual processing [50].
Finally, adaptation with weak stimuli reduces barrel neuron
responsivity more than adaptation with strong stimuli [51],
as predicted by the intensity-dependence of normalization
signals.

Timescales of Adaptation
The term adaptation traditionally encompasses exposure
periods ranging from tens of milliseconds to tens of minutes.
Within this range, traditional descriptions suggest that pro-
longing adaptation will increase the magnitude and duration
of effects, but not their qualitative nature — sometimes
termed ‘duration scaling’ [52]. Duration scaling is consistent
with much previous work: for example, changes in neuronal
contrast sensitivity can be induced within 50 ms [53], but are
stronger and longer-lasting after more prolonged adaptation
[34]. Although duration scaling provides a reasonable first-
order description, recent work has shown a more complex
and sophisticated relationship between adaptation duration
and induced effects.

One violation of duration scaling arises because adapta-
tion effects are shaped by the time course of normalization
signals, particularly those from the surround. These signals
are often delayed relative to those from within the CRF
[54–56]. The effects of brief adaptation can dissipate so
rapidly that the CRF may recover before normalization sig-
nals arrive. It follows that when adapting stimuli have an
impact on normalization signals, brief and prolonged adap-
tation can generate qualitatively different effects [11,27].

It is not certain that the CRF and normalization signals
adapt at different rates, but there is evidence they might.
For instance, receptive field size changes with presentation
duration [57], suggesting effects on the CRF and surround
are induced at different rates. Furthermore, the effects of
high-intensity adaptors dissipate more rapidly than those
of weak ones [51], perhaps because excitatory and inhibitory
inputs recover at different rates [47].Within the normalization
pool, some elements may bemore susceptible to adaptation
than others [25,31,32]. Differences in induction or recovery
rates may provide flexible time scales, the expression of
which depends on both adaptation duration and how the
adaptor recruits CRF and normalization signals. Because
of this interaction, duration scaling is likely to provide a
poor description of how effects depend on adaptation dura-
tion. However, models that incorporate distinct duration
scaling rules for different sources of excitatory and suppres-
sive signals may provide a straightforward explanation for
these seemingly complex phenomena.
Duration scaling is associatedwith the idea that adaptation

effects can be explained by a single fatigable mechanism,
with a single time course. Recent work has revealed instead
that cortical networks, and even individual neurons, can store
multiple timescales of adaptation simultaneously [4,58–60].
Perceptual studies have revealed similarly sophisticated be-
haviours. Adaptation to an oriented pattern induces a robust
tilt aftereffect, in which the perceived orientation of a test
stimulus is repelled away from the adapted orientation [17].
If the adaptor is presented for four hours, a tilt aftereffect
persists for tens of minutes. This aftereffect can be entirely
reversed by 15minutes exposure to natural images; however,
this reversal dissipates quickly, and the aftereffect of the
initial, prolonged adaptor, reappears [52]. This reappearance
strongly suggests the simultaneous storage of the two after-
effects in a common neural substrate, each with a different
degree of persistence (see also [61–63]).
In addition to the flexibility that is afforded by storing mul-

tiple timescales simultaneously, these timescalesmay them-
selves be modifiable. Organisms are sometimes confronted
with environments in which statistics change slowly, but at
other times the environment changes rapidly and frequently.
A sensible strategy may be to yoke the time course of adap-
tation effects to the temporal constancy of the environment.
Consistent with such a strategy, recordings from ganglion
cells in mouse retina show that frequent switches between
low and high contrast stimuli are associated with faster
adaptive changes in response than those that occur with
less frequent switches ([64], see also [21,60]). These obser-
vations parallel those in motor control, where the timescale
of motor adjustment depends on whether errors arise from
transient or more persistent disturbances [65].
Finally, we note that the simple fact that adaptation refers

to an enormous range of timescales poses an inherent chal-
lenge to the duration scaling description. The broad range of
timescales implies an ensemble of cellular and circuit mech-
anisms. For instance, measurements of rapid adaptation can
involve exposures of brief stimuli in immediate succession.
In these paradigms the adaptor and test may both fall within
the integration time window of a neuron (w100 milliseconds;
for example [66]). Effects on such brief timescales may thus
reflect static properties of temporal integration rather than
plastic changes in neural circuitry [67]. At the other extreme,
some adaptation effects last for days [61], and these may be
better framed as semi-permanent adjustments of cortical cir-
cuits, akin to long-term learning. For duration scaling to hold
while recruiting such diverse mechanisms, they would all
need to have similar consequences on neuronal responses.
This seems unlikely.
In summary, recent work has falsified a central tenet of

traditional descriptions: adaptation effects do not simply



Box 2

Impact of adaptation on population activity.

It is well known that sensory processing requires populations of neurons. The information encoded by a population depends on the tuning of

individual neurons, their response variability, and how activity is coordinated among neurons. The structure of pairwise ‘noise’ correlations,

in particular, may strongly influence population performance [126–128].

Adaptation has been shown to alter correlations, but there is not yet consensus about its effects. In somatosensory cortex of anaesthetised

rat, adaptation increases the magnitude of correlations and response variability, particularly for weak stimuli [46,129]. In anaesthetised cat

V1, adaptation has little effect on correlations [99]; in awake monkey V1, adaptation may reduce correlations [130].

Other work has sought to understand how adaptation affects finer-temporal correlation, namely gamma-band activity or the synchronisation

of spiking responses [131]. Adaptation increases high-frequency oscillatory activity in the locust olfactory system [132] and the visual cortex

of primates [133,134]. Similar effects can be observed inMEGmeasurements fromhigher stages of human visual cortex [135]. However, other

studies have found that adaptation reduces the synchronisation of spiking activity [136,137], and power in gamma and higher frequencies of

the local field potential [75,77,138].

Some of the inconsistency across studiesmay reflect differences between species or sensory areas, or other experimental details. However, a

tantalizing possibility is that the inconsistencies may be explained in part by variations in the recruitment of normalization signals. The magni-

tude of correlations depends strongly on network state and likely on the balance between excitation and inhibition [139]. Similarly high-fre-

quency fluctuations like gamma are thought to reflect the temporal interaction of excitatory-inhibitory circuits, and are stronger for stimulus

configurations that recruit normalization signals [138,140]. In this regard, it is worth noting that visual studies havemeasured adaptation effects

on correlationswith strong stimuli [99,130], whereas the increase in correlations in the barrel system is observed forweaker stimuli [46]. Thus, it

may be important to characterise adaptation effects across a range of stimulus intensities [46], and to consider the behaviour of normalization

signals at each intensity.

A final way in which adaptation may alter population coding is by affecting how those responses are ‘read out’ by downstream areas. In

perceptual learning, another form of experience-based plasticity, there is some evidence that behavioural effects involve improved read

out [141,142]. To date, adaptation work suggests little change in how adapted responses are interpreted by downstream networks, both

because effects cascade through early stages of the visual system and because robust aftereffects suggest an inability of higher cortex

to fully correct for perturbed sensory representations. Nevertheless, read out may be adjusted when an adaptation state is experienced

repeatedly [143]. In addition, when adaptationweakens inhibition, it may alter the temporal window inwhich feedforward signals are summed

by downstream networks [136,144], altering their sensitivity to coordinated input.
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grow with adaptor duration. Rather, effects can be qualita-
tively different for brief and long periods of adaptation, and
may depend on the relative drive provided to the CRF and
normalization pool. In addition, multiple timescales of adap-
tation can be stored simultaneously, and these timescales
may be plastic themselves.

Adaptation Effects Across Stages of Visual Processing
Much of the neurophysiological work on adaptation has
focused on its effects on single neurons, at distinct stages
of processing. Sensory processing, however, reflects the ac-
tivity of neurons distributed both within and across brain
areas. This distributed processing raises a number of critical
questions. How does adaptation influence the coordination
of population activity within a local network? Do neurons at
multiple stages of processing each adapt to a sensory input,
or are effects implemented at an early stage and then simply
inherited by downstream networks? When effects are in-
herited, howdoes this influence the computations performed
in the recipient network? In Box 2, we review evidence that
adaptation alters population coordination, although findings
remain too discrepant to draw conclusions about precisely
how. Below we review progress in understanding how
adaptation affects responses across stages of the visual
hierarchy.

Neurons at nearly all stages of visual processing are
affected by adaptation. In addition to the work in the retina,
LGN, and V1 discussed above, recent studies have docu-
mented effects in higher areas such as V2 [33], V4 [68], MT
[30,69–73], IT [74–77], and FEF [78], among others [16,20].
Are the effects observed in higher stages generated locally
or inherited from earlier networks? One approach to
answering this question is to record from earlier stages,
and seewhether adaptation effects there are similar in nature
or magnitude. These comparisons can be surprisingly
thorny, however; for example, adaptation-induced changes
in contrast sensitivity were thought to arise in V1, because
there was little evidence of altered sensitivity in the LGN
[34,79]. Later studies revealed that adaptation can in fact
change contrast sensitivity in many retinal and LGN neurons
[38,40,80–82]. This discrepancy may be due to the existence
of several pathways from retina to cortex, which are differ-
ently susceptible to adaptation [38,41].
Comparisons across areas are also hindered by the use of

stimuli tailored to the preferences of individual neurons,
which typically differ across stages of the hierarchy. This
precludes a direct comparison of how different stages adapt
to a particular stimulus. For example, previous work sug-
gested that adaptation caused attractive shifts in MT direc-
tion tuning [29], but not in V1 [8–11]. Rather than reflecting
a difference across areas, these findings can be explained
by the use of large stimuli in MT (tailored to the large recep-
tive fields of neurons there), and small stimuli in V1 (where
receptive fields are smaller). Adaptation-induced shifts in
tuning are in fact similar in V1 and MT, when measured
with stimuli matched in size [30].
An alternative approach to testing for inheritance is tomea-

sure the spatial specificity of adaptation effects. The spatial
size of receptive fields increases along the visual hierarchy.
Thus, if an adapter confined to one sub-region of a receptive
field does not influence responses to stimuli presented to
another sub-region, this suggests that effects are induced
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Figure 3. Cascading of adaptation in sensory
pathways.

(A) Schematic of a generic, hierarchical
sensory pathway. The outputs of neurons at
earlier stages of processing are weighted and
summed, and transformed into spiking activ-
ity. The higher order neuron is unaware of
adaptation effects earlier in the pathway (red
symbols). (B) Neural tuning of the higher-order
neuron (open symbols), conferred by the
weights it applied to neurons at earlier stages.
Absent compensation for adaptation effects at
earlier stages, tuning may be distorted by
adaptation (red filled symbols), derailing the
computations the higher-order neurons per-
form. Redrawn from [73].
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at an earlier stage, where receptive fields are smaller. This
approach has provided evidence for inherited adaptation
effects in the retina ([37], but see [67]), and for some [71,83]
but not all effects in MT [84].

Understanding the relative contribution of inherited and
locally-generated effects only begins to address the issue
of cascading adaptation. Altering inputs to a network can
generate a range of effects, which depend on the interaction
between the pattern of adapted inputs and local recurrent
circuitry [29,85]. The effects also depend on how adapted in-
puts are combined: in general, downstream networks are
thought to produce new representations by precisely com-
bining inputs from earlier areas and imposing non-linearities
(Figure 3A; for example, [86,87]). When adaptation alters
the pattern of inputs, it may disrupt the formation of new rep-
resentations, unless there is appropriate compensation
in the downstream network.

Two recent studies [39,73] suggest that circuits do not
compensate for inputs altered by adaptation. First, the
deformation of spatial receptive fields in mouse V1 can be
explained by weakened inputs from the LGN and unaltered
pooling of these inputs by V1 neurons [39]. Second, adapta-
tion disrupts a form of motion selectivity observed in primate
MT, and this can be explained by assuming that adaptation
desensitizes some inputs from V1, but does not change
how MT neurons combine those inputs (Figure 3B) [73].

While these observations provide evidence for limited
compensation in the targets of adapted neurons, recent
work also offers a counter-example. McClelland et al. [88]
showed that LGN neurons display robust responses at the
offset of a prolonged presentation of a static stimulus. In
V1, this after-response is much smaller in magnitude and
shorter in duration [89]. This suggests that there are mecha-
nisms capable of compensating for the adaptation state of
inputs, so that downstream networks need not slavishly
follow altered inputs.

In parallel with this neurophysiological work, perceptual
experiments have also provided evidence that many ada-
ptation effects cascade. Most generally, the existence of
maladaptive aftereffects — the tilt or motion aftereffects
[17,90] — suggests that higher sensory representations
cannot easily divine the adaptation state of earlier represen-
tations. Perceptual work has also shown that adaptation to a
simple visual feature can disrupt the representation of more
complex stimuli, perhaps because effects in early stages
derail downstream computations. For instance, adaptation
to line curvature—which presumably affects the early visual
system—can alter the perception of global form [91] and the
inferred emotion of cartoon faces [92,93]. Similarly, adapta-
tion to low-level features such as luminance and contrast
can give rise to percepts of illusory motion [94]. Indeed,
many aftereffects of motion adaptation can be explained
by a model in which adapted non-directional units cascade
onto directional units [95].
In summary, we now understand that adaptation effects

cascade downstream, and can disrupt computations per-
formed at later stages of processing. These findings raise
challenges for understanding the function of adaptation-
induced plasticity and for making appropriate inferences
about sensory processing in imaging and perceptual studies.
Yet many of these observations may be explained by rela-
tively simple models in which downstream networks are ‘un-
aware’ of adaptation-induced changes in their inputs [96].

Functions of Adaptation
It is incongruous that we have learnt so much about the
impact of adaptation on sensory systems, but still know little
of the purpose of these effects. It is widely believed that
adaptation effects are beneficial, but for many effects it is
not clear how. An answer is critical for understanding adap-
tation, but it may also shed light on key questions in sensory
processing. Knowledge of how sensory systems adjust to
different environments seems fundamental to understanding
the strategies of sensory processing and the tradeoffs they
entail. The recent empirical progress reviewed above raises
questions for some existing proposals (of the many put forth
[14–20]), and offers new possibilities.
One long-standing proposal is that adaptation sharpens

acuity (discriminability) either around the adaptor or for offset
stimuli. This proposal has been contentious, and perceptual
evidence for improved acuity has been difficult to obtain
[16,20]. Measurements in visual cortex suggest that adapta-
tion can improve the acuity of single neurons [8,9], but it is
not yet clear how this translates to population performance
(Box 2).
A second hypothesis is that adaptation reduces the redun-

dancy of sensory representations. An efficient neural repre-
sentation should utilise the full range of activity patterns
that it can produce. When some stimuli are more common
than others, a subset of possible activity patterns is overrep-
resented, and the encoding capacity is underutilised. Barlow
[23] suggested that stimulus-specific fatigue alters neuronal
tuning so that the full range of a network’s activity patterns
are used to encode the environment. It is important to note
that this strategy is optimal only under the assumption that
sensory inputs are noiseless, and that noise in the system
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is the same before and after adaptation; more realistic as-
sumptions of noise give rise to distinct adaptation strategies
[97,98].

A recent study in cat visual cortex offers initial experi-
mental support for the Barlow proposal [99]. Population re-
sponses to rapid sequences of oriented patterns were
measured; the distribution of orientations over time was
either uniform, or biased such that one orientation was
more common than the others. The efficient coding hypoth-
esis predicts that neuronal tuning should adjust to reduce
the response correlations caused by some stimuli being
more common than others, and this is the case for a range
of stimulus biases.

Achieving an efficient representation is unlikely to be
the sole goal of adaptation. As discussed above, when
adaptation reduces normalization signals it can enhance re-
sponsivity and attract tuning curves towards the adaptor.
This should preserve or enhance the representation of an
adapter and stimuli like it, opposite to the effects that
motivated Barlow’s proposal. What potential alternative
functions are suggested by considering adaptable normali-
zation signals? One possibility is that the weakening of
surround normalization signals by adaptation enhances
spatial integration [50]. Another is that pathways with ‘sen-
sitizing’ adaptation effects— due, for instance, to weakened
inhibition — allow the system to ‘hedge its bets’ [45,51,100].
Reducing neuronal responsivity may be a good strategy in
the face of strong inputs, but it leaves the system vulnerable:
if the environment suddenly changes, weak signals will
be undetected. By having some neurons that sensitize
and others that fatigue, the system can function in both
environments.

A final, intriguing possibility is that adaptation modulates
stimulus salience. This possibility arises in part from the ef-
fects of adaptation on normalization. Normalization signals
from the surround are thought to be important for salience
[101,102]. Because adaptation can weaken these signals,
the salience of objects will depend on their temporal context.
Consistent with this suggestion, psychophysical studies
have shown that adaptation improves performance in visual
search tasks, by modulating the salience of objects
[103,104]. Recent physiological studies have also provided
intriguing examples of adaptation influencing stimulus
salience, by highlighting stimuli that are novel. Retinal gan-
glion cells, for instance, generate strong responses when
an expected stimulus is omitted from an established
sequence [105,106]. Direction-selective neurons in fly show
sensitized responses when peripheral regions of the CRF
experience motion opposite to that recently encountered
[107]. Finally, in primate superior colliculus, weak stimuli
have been shown to generate surprisingly strong responses
when these stimuli are unexpected [108].

These findings are consistent with the presence of mech-
anisms that boost responses to unexpected events. Novel
events are also naturally highlighted by fatigue-related adap-
tation effects: stimulus-specific fatigue reduces responses
to unchanging features of the environment, emphasizing
novel stimuli [109]. Together these processes can be thought
of as an alternative form of redundancy reduction, or of pre-
dictive coding: persistent or recurring inputs are discounted
to highlight new ones. In audition, a role in novelty detection
has been ascribed to both fatigue-based and more active
mechanisms. Specifically, the auditory evoked potential is
larger when a sound is presented rarely, or embedded in a
sequence of different sounds, than when it is presented
frequently — an enhanced response called the ‘mismatch
negativity’ [110]. Many instantiations of the mismatch nega-
tivity can be explained by stimulus-specific fatigue [111,112],
but other work suggests the mismatch negativity reflects
a more sophisticated predictive scheme [113–115]. At
the perceptual level, unexpected stimuli that are associated
with a mismatch negativity are also detected more easily
[115,116].
Lastly, modelling work suggests that, in fatigue-based

predictive coding, persistent stimuli can be ‘explained
away’ using strengthened normalization [23,117,118]. While
there is limited empirical support for stimulus-specific fa-
tigue arising from strengthened normalization at a mecha-
nistic level [119,120], the impact on neuronal tuning might
indeed be captured by the normalization framework we
have proposed for understanding disinhibitory effects of
adaptation. This raises the possibility that stimulus-specific
fatigue (strengthened normalization) and sensitization
(weakened normalization) may reflect complementary stra-
tegies, the former emphasizing ‘explaining away’ and the
latter emphasizing ‘predicting’ [41].

Conclusions
Our understanding of sensory adaptation has been greatly
enriched by work over the last decade. We have learned
that adaptation has an effect on both excitatory and sup-
pressive signals, and its effects do not simply grow with
adaptation duration. Furthermore, adaptation alters popula-
tion coordination and its effects cascade through the stages
of processing, influencing downstream networks in some-
times unexpected ways.
Adaptation effects are thus substantially more complex

than suggested by traditional fatigue-based descriptions.
Fortunately, much of this complexity may be explained by
simple models of brain circuits that incorporate a normaliza-
tion framework, and invoke fixed integration by downstream
networks. In any case, it is now clear that understanding
adaptation effects will require them to be interpreted in the
context of modern functional models of sensory processing,
rather than as occurring in isolated individual neurons.
This new knowledge means that existing experimental

approaches may need to be re-evaluated. For instance,
perceptual and human brain imaging work often assume
that repeated presentations of a stimulus reduce responsiv-
ity in the relevant neurons [121]. The cascading of adaptation
effects, the dependence of those effects on adaptation dura-
tion, and the possibility of facilitation due to weakened
normalization signals all raise significant concerns about in-
ferences based on this assumption.
The empirical progress we have reviewed also calls for

more theoretical work. We need theoretical frameworks
that explain the impact of adaptation on population re-
sponses including normalization signals, consider how these
effects influence downstream processing, and generate
predictions for how adaptation can improve performance.
We must keep in mind that the functional benefit of a repre-
sentational change at one stage may be offset by the disrup-
tion that it imposes on subsequent processing.
These new observations also offer exciting directions for

future work. First, the interaction between normalization
and adaptation suggests a role in modulating salience and
in predictive coding. Second, the normalization framework
of adaptation may also offer a way to explore its role in other
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cortical functions. This is because normalization underlies a
broad range of computations [122], and has been invoked to
explain aspects of cognition like attention [123,124] and de-
cision-making [125]. Finally, determining how adaptation af-
fects population representations — distributed both within
and across stages of sensory processing — is likely to offer
powerful tools for dissecting the functional architecture of
sensory processing.
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