Snap-valve cerebral shunt design for intracranial pressure operation and ultrasound visualization

a Dartmouth College, United States
b Thayer School of Engineering at Dartmouth College, United States
c Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, United States

A R T I C L E I N F O

Article history:
Received 13 July 2018
Accepted 16 December 2018

Keywords:
Cerebral shunt
Shunt valve
Hydrocephalus
Intracranial pressure (ICP)
Shunt malfunction
Ultrasound
Monitoring

A B S T R A C T

Cerebral spinal fluid (CSF) shunts are the main treatment for hydrocephalus. They divert excess CSF from the ventricular system to the abdominal, pleural, or intravascular space where it is absorbed. The shunt valve regulates flow based on intracranial pressure (ICP) to maintain a physiologically stable and safe ICP. Shunt malfunction is difficult to detect, life-threatening and common. The present study demonstrates that snap-though buckling (STB) shells can be transformed into pressure-relief valves that act in the normal physiological range of ICP. Three different shell designs in this preliminary experiment were found to have opening and closing pressures that fall within the physiologically normal range of ICP of 6 to 25 cm H₂O. Furthermore, these STB shells demonstrate a valve actuation that is visible by ultrasound and have an implantable form-factor that is similar to currently available shunt valves. The unique characteristics of STB shell valves have potential clinical applications for shunt monitoring using ultrasound imaging and can be fabricated from antibiotic-impregnated materials to mitigate shunt infection. These characteristics make STB valves attractive for future use in cerebral shunt systems.

© 2019 IPEM. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Hydrocephalus is a medical condition characterized by an accumulation of cerebrospinal fluid (CSF) in the brain. This accumulation is due to obstruction of the circulation of CSF or an imbalance in either production or absorption of CSF. Hydrocephalus may be caused by congenital brain defects, tumors, infection, or intraventricular hemorrhage [1]. Accumulation of CSF eventually leads to a life-threatening increase in intracranial pressure (ICP) above the normal physiological range of 6–25 cm H₂O [2,3].

The current mainstay of treatment for hydrocephalus is a surgically implanted CSF shunt [4,5]. A CSF shunt consists of a proximal silastic catheter placed into the ventricular system, a valve that regulates the flow of CSF through the shunt based on ICP, an optional anti-siphon device that prevents siphoning of CSF when a patient is upright, and a distal catheter placed into a body cavity that can easily absorb the diverted CSF [6]. The most common terminus for the distal catheter is the peritoneal cavity, however shunts have been placed into the pleural cavity, venous system (typically internal jugular vein or common facial vein) [7], and even gallbladder [8] or urinary bladder [9]. Shunt valves are typically designed to continuously divert CSF as needed to maintain the ICP in a normal physiological range of 6–25 cm H₂O [2,3]. In the United States, hydrocephalus is the most common pathology surgically treated by pediatric neurosurgeons. Hydrocephalus accounts for 0.6% of all pediatric hospital admissions, and 3.1% of all pediatric hospital costs ($1.4–2.0 billion) [10].

Shunt systems fail at the alarming rate of 40% in the first year [11] and about 4.5% per year thereafter [12], with a failure rate as high as 81% after 12 years [13]. Shunt malfunction mechanisms include infection (11–23%) [5,14,15], over drainage (3.5%) [11], obstruction by intraventricular debris, ingrowth of microglia, astrocytes or choroid plexus (56.1%) [16], tubing disconnection or fracture (13.6%) [13]. Approximately 73% of shunt malfunctions effect the flow of CSF through the shunt via obstruction or over drainage [13,17], resulting in symptoms of either increased or decreased ICP, respectively.

It is difficult to diagnose shunt malfunctions early because symptoms vary in onset and acuity. Symptoms often develop over hours to days, with some patients rapidly developing severe
symptoms and some patients maintaining mild symptoms for longer periods of time. Symptoms of decreased ICP due to over drainage include neck pain or stiffness, nausea, and vomiting [18,19]. Elevated ICP due to shunt obstruction in an infant, initially causes a rapidly enlarging skull and head circumference because the skull bones are not yet fused, rather are connected by fibrous sutures that allow for the rapid brain growth in early childhood [20]. For older children and adults whose skulls bones have fused, however, symptoms of shunt obstruction and elevated ICP begin with subjective symptoms such as headache, nausea, abdominal pain and lethargy, irritability [21], and progress to more objective symptoms such as vertigo, emesis [22], somnolence [23], seizures, vision loss [24], bradycardia, loss of consciousness, and death [25–27] if left untreated. Early symptoms can be mild and can overlap with other diagnoses such as migraine, stress or tension headache, infection such as influenza or gastroenteritis, or other etiology that has headache and nausea as part of its symptomatology making early diagnosis of shunt failure difficult.

Children under three years of age and children with developmental delay are more likely to suffer morbidity and mortality from undiagnosed elevated intracranial pressure. This is thought to be due to the inability of these populations to effectively communicate the early subjective symptoms of elevated ICP prior to the development of more serious objective signs and symptoms [10]. Objective symptoms associated with shunt malfunction include bulging fontanel, fluid collection along the shunt, abnormal shunt pump test, and accelerated head circumference growth [28].

The standard clinical paradigm for identifying shunt malfunction requires onset of worrisome symptoms before patients seek medical attention [29]. Intrinsic methods for continuous monitoring of shunt systems are currently unavailable. Medical providers attempt to diagnose shunt malfunction through clinical assessment, physical examination, imaging studies and invasive procedures [30]. Comparative imaging studies may be used to assess for ventricular enlargement including ultrasound via the anterior fontanel in infants, or computed tomography (CT) and magnetic resonance imaging (MRI) in children and adults [6]. However, in as many as 36% of cases there is no consistent ventricular dilation during episodes of shunt malfunction making imaging an unreliable predictor of shunt malfunction [31]. Radiographs can evaluate the course of the shunt system for fracture or disconnection that can cause obstruction [6,26]. Invasive diagnostic procedures include shunt reservoir tap to evaluate for function or infection, ICP monitoring with implantation of a fiberoptic strain gauge, or a nuclear medicine “shunt-o-gram” to evaluate for flow through the shunt [32]. Shunt malfunction is often not recognized early because of the poor sensitivity and specificity, and poor positive and negative predictive value of these tests.

Many factors combine to make assessment of CSF shunts very challenging. An early warning system that could reliably identify lack of flow through a shunt system and then notify a physician or caregiver would be a major advance in safety for the treatment of hydrocephalus.

This work evaluates the feasibility of a snap-valve that could be used to directly assess and detect the presence of flow through a CSF shunt. Such a device could significantly lessen uncertainty surrounding shunt malfunction, decrease the danger of delayed medical attention, reduce medical costs associated with shunt diagnostic procedures, and shift the shunt diagnostic paradigm towards preventative care. Furthermore, a valve manufactured from antibiotic-impregnated materials could reduce rates of infections that cause many shunt malfunctions, further decreasing perioperative complications. This novel mechanism may eventually permit definitive detection of shunt blockage prior to the onset of symptoms.

2. Background

2.1. STB shell technology

Pressure-loaded elastic spherical shells exhibit interesting mechanical properties. They have static stability, but when there is a pressure difference across the shells, they can become unstable and buckle into an inverted geometric conformation. This phenomenon is called snap-through buckling (STB). When the pressure difference is reduced, the shells rebound into their original conformation. The theoretical pressure difference at which STB occurs for a symmetrical shell is described by

\[\Delta p = 2Eh^2R^2\sqrt{3(1-v^2)} \]

where \(\Delta p \) denotes the STB pressure difference across a thin spherical shell, \(E \) is the Young’s modulus, \(h \) is the thickness of the shell, \(R \) is the radius of the shell and \(v \) is the Poisson’s ratio. The boundary conditions are with no initial vertical displacement and the base of the structure clamped to a wall [33].

2.2. Current medical application of STB technology

Although STB devices are not currently used in cerebral shunts, these devices are used in other medical implants. For example, the ventricular assist device (VAD) produced by INCOR, Inc. (Berlin, Germany) relies on a pneumatically actuated free-floating shell to transfer the pneumatic pressure to the blood. The shell constitutes an interface between the blood and the pneumatic chambers. This internal shell has a deformation mechanism that is repeated every time the ventricular assist device pulsates. An average heart beats about 115,200 times per day, and this polyurethane VAD has proved to be durable and reliable for this medical application [34] suggesting that STB shells have reliability over a large number of cycles and for use in biomedical applications. The key challenge in adapting STB devices to the cerebral shunt application is to achieve valve characteristics and ensure operation at physiological ICP pressures.

2.3. STB valve for hydrocephalic shunting

The proposed device for application in cerebral shunts is a STB shell that acts as a relief valve placed in series with the flow of CSF. The STB (valve opening) and rebound (valve closure) events of the shell can be designed to occur at thresholds below 25 cm H₂O and above 6 cm H₂O respectively. At normal ICP, the shell is in the relaxed or closed state. As CSF accumulates in the cranium, the ICP increases according to the rules of cerebral compliance applying mounting pressure on the convex surface of the shell (Fig. 1A). Finally, the ICP reaches a critical threshold, resulting in a STB event that opens the shell (Fig. 1B). The opening in the shell drains fluid from the ventricle to the distal end of the catheter, decreasing ICP until the shell rebounds to its original closed position when ICP is at the rebound pressure (Fig. 1C). Thus, the shell acts as a valve by opening a hole in the shell at a distinct pressure and closing the hole at the rebound pressure. Dynamic permeability is the term used to describe the ability for the shell to block flow (impermeable) in one conformation and to allow flow (permeable) in its inverted conformation.

A small form-factor shell and housing is imperative for incorporation into an implantable device due to space constraints. Two concepts for in vivo valve housings are depicted in Fig. 2. Future shell designs will likely be housed in an injection-molded component.
Fig. 1. Schematic and prototype demonstration of the concept of dynamic permeability for a STB valve using the four spoke method. Solid arrows indicate direction of CSF pressure and flow from the brain to the abdomen. (A) Pressure to the left is below the STB event pressure making the shell impermeable. Impermeable shell state as viewed from the left (A1) and from the right (A2). (B) Pressure is above the STB pressure causing the shell to change its conformation. Permeability is exhibited with inlet on the left and outlet on the right in B1 and B2, respectively. (C) The dashed arrow indicates the rebound phase of the cycle, and may cause backflow or pressure in the catheter system (see discussion Section 5.5).

Fig. 2. Two concepts for in vivo valve housings. Long arrows indicate the direction of flow, short arrows indicate the pressure applied to the surface of the shell in the closed position. (A) Concept 1: the entire housing is located above the skull; (B) Concept 2: The housing is designed to decrease the profile above the skull by occupying a portion of the bur hole.

3. Methods

3.1. Shell design, fabrication and permeability

Several shell parameters were tested to determine the effects of design parameters on the behavior of the valve, and to allow for future optimization of shells that have small form-factor designs while achieving the opening and closing pressure requirements for cerebral shunts. Parameters included shell thickness, radius, and material hardness. Shell dimensions are defined in a cross section of a generic shell (Fig. 3).

Fig. 3. Shells consist of a rim and a dome. Rim dimensions were constant with length × height of 4 mm × 2 mm. Dome dimensions varied by radius and thickness for different experiments. The depicted shell has a radius of 10 mm and thickness of 1 mm for visual reference.

Shells consist of two parts: a rim for securing the shell in position, and a dome which is the active portion of the shell exposed to the testing pressure and environment. All shells had consistent rim dimensions of 4 mm × 2 mm. All shells had hemispheric domes. Dome dimensions were varied and include three different shell dome thicknesses: 0.5 mm, 0.75 mm, 1 mm, and three shell dome diameters 50 mm, 75 mm, 100 mm. All shells were fabricated from one of the SMOOTH-ON (Smooth-On Inc., Macungie, PA) Platinum Cure [35] silicone series, selected for the Shore Harnesses properties (Table 1).

3.2. Shell fabrication

All molds were designed using SOLIDWORKS (Dassault Systèmes, Inc., Vélizy-Villacoublay, France) software. Shells were fabricated using 3D printed molds acquired from ProtoLabs (Maple Plain, Minnesota) WaterShed XC 11,122 High-Resolution Stereolithography built in 0.002 in layers. SMOOTH-ON silicone was mixed and then poured and pressed by hand into the mold. After fabrication, quality control excluded shells which contained bubbles, or were asymmetric to the touch or by sight.

3.3. Opening/closing pressure recording

STB event pressures were evaluated by securing the shell into a testing apparatus then applying water pressure to the convex face of the relaxed shell using a column of water (COW) over the range of STB and rebound event pressures for each shell following
the outlined technique below. The testing apparatus consisted of a small fluid filled chamber, on the convex side of the shell. The shells were secured by clamping the rim of the shell between the chamber and a clamping disc of the testing apparatus with nuts and bolts which were tightened by hand to ensure a watertight seal (Fig. 4). The concave side of the shell was exposed to room air. The COW was sourced by a beaker of water, which was elevated or lowered at an approximate rate of 2–5 cm/s. The COW pressure was transferred through a 3 mm inner diameter flexible IV tubing to the testing apparatus to the face of the shell. To simulate increasing ICP, the beaker was steadily raised to increase the COW pressure. When the shell underwent a deformation and began to drain water through the outlet of the test apparatus, the height of the COW was recorded to ±/− 0.5 cm H₂O accuracy from the rim of the shell as the “STB pressure”. To simulate the relative decrease in ICP with the drainage of CSF, once the shell opened, the beaker was lowered until the shell rebounded to the closed position and no fluid flowed and was recorded as the “rebound pressure”.

3.4. Dynamic permeability attempts

The elastic shell domes were inflicted with a variety of intentional defects penetrating the entire thickness of the dome in attempts to achieve dynamically permeable behavior using the STB phenomenon. Defects were inflicted after shell fabrication by hand using an X-Acto knife.

3.5. Shell defects, thickness, radius and hardness effects on STB and rebound event pressures

Miniaturized STB shells were tested for STB and rebound pressures at physiologically normal ICP to assess the practicality of using them in a shunting application. All shell valves were inflicted with four orthogonal spokes of 1.1 mm length in a “+” shaped defect at the apex of each shell, converting the shell to a shell valve. Spokes were made with a custom-made die cutter for precision and reproducibility. Spoke length was 1.1 mm originating from the apex of the dome.

3.5.1. Defects

One Rebound 25A and one Sorta-Clear 18A shells, each with dome thickness of 1 mm and radius of 10 mm, were tested for their STB and rebound pressures before and after being inflicted with a slit defect. Each shell was placed in the testing apparatus, tested for one STB and rebound event pressure, then removed from the testing apparatus 10 separate times to account for error in the clamping procedure. The mean of the 10 STB and closing pressure recordings for each shell before and after defect, respectively, were then compared using unpaired, two-tailed t-tests assuming unequal variance.

3.5.2. Thickness testing

Three groups of three shells each were made with each shell thicknesses, 0.5, 0.75, and 1 mm were tested keeping material (Rebound 40), and diameter (10 mm) constant. Five STB and rebound event pressures were recorded for each of the three shells in each group. The STB and rebound data were lumped for each group respectively, and one-way ANOVA performed. The means for each group were then compared with a best fit line.

3.5.3. Radius testing

Three groups of two shells each were made with different radii, 5 mm, 7.5 mm, and 10 mm, keeping material (Ecoflex 00–30) and thickness (1 mm) constant. Five STB and rebound event pressures were recorded for both shells in each group. The STB and rebound data were lumped as 10 data points respectively for each group, and one-way ANOVA performed. The means for each group were then compared with a best fit line.

3.5.4. Hardness testing

Shore Hardness is commonly used to characterize the material properties of elastomers and is related to the modulus of elasticity [36,37]. Three groups of three shells each were made with different Shore Hardness values of 18A, 30A, and 40A, keeping radius (100 mm) and thickness (1 mm) constant. The mean STB and rebound pressures were recorded for each trial and the standard deviation was calculated from the cumulative 15 STB events of each group of shells. The means for each group were then compared with a best fit line.

3.6. Flow rates

Flow rate of water though the “+” shaped 1.1 mm spoke defects was tested using a Rebound 25A 0.5 mm thick and 10 mm radius dome. Pressure was applied such that STB event occurred and the valve opened, and pressure was then adjusted to the recording pressure. Eight data points were collected over a range from 5.5 to 110 cm H₂O. Flow rate was determined by weighing the mass of water that flowed through the valve opening in one minute.

3.7. Cycle reliability testing

To function as a shunt valve with a practical lifecycle, a STB shell must withstand a high number of STB and rebound events without significant changes to its event pressures. STB events of one Rebound 25, 0.75 mm thickness shell were tested for consistency at room temperature in 3 g/l saline for over 42,000 cycles.

Table 1
A summary of the materials used to fabricate the shells. Hardness varied from 00–30 to Shore 45A. All were platinum cure silicone materials selected only for their material hardness properties.

<table>
<thead>
<tr>
<th>Shore Hardness</th>
<th>00–30</th>
<th>18A</th>
<th>25A</th>
<th>30A</th>
<th>40A</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMOOTH-ON Product Series</td>
<td>ECOFLEX®</td>
<td>SORTA-Clear®</td>
<td>Rebound 25™</td>
<td>Mold Star®</td>
<td>Rebound 40™</td>
</tr>
</tbody>
</table>

Fig. 4. An example of a shell loaded into the testing apparatus. The shell rim is clamped in place preventing leaks from the side of the apparatus and securing the shell in place.
using a Standard Infuse/Withdraw Pump 11 Elite Programmable Syringe Pump (Harvard Apparatus Inc., Holliston, MA) programmed to oscillate 3 ml of fluid at a rate of 1 ml/s. The cycling was paused and STB and closing pressures were evaluated at approximately 2000 cycle intervals using the method described above. The number of STB cycles was recorded using an optical interruption sensing prototype and verified by the onboard pump cycle display.

3.8 Ultrasound monitoring

Monitoring of the shell valve with ultrasound was performed with a Vantage 256 (Verasomics, Inc., Kirkland, WA) system with the GE L3-12-D Linear Array transducer at a frequency of 6.25 MHz. The test apparatus was placed in a water phantom and the shell (Rebound 25, thickness 1 mm, radius 10 mm, four radial spokes of 1.1 mm length) was observed directly from the convex side of the relaxed shell, such that the STB event would occur towards the transducer.

4. Results

4.1 Dynamic permeability

Dynamic permeability resulting in a clear path of flow was demonstrated in n ≥ 2 nonlinear, spoke-like slit defects that intersected at or near the apex of the shell. Spokes intersecting at the apex exhibited a larger opening. Single slit defects did permit flow upon STB, but did not provide a clear path to flow in the permeable state resulting in a very significant reduction of the rebound pressure, which is not desirable for shunting applications. A summary of defects is shown in Fig. 5.

4.2 Shell defects, thickness, radius and hardness effects on STB and rebound event pressures

4.2.1 Defect testing

The Rebound 25A shell prototype before spoke defects had an STB pressure of 114 ± 5.5 cm H₂O and rebound pressure of 30.4 ± 2.0 cm H₂O (average of 10 trials). After introducing a spoke defect, the STB pressure was statistically unchanged at 115.1 ± 7.5 cm H₂O (t(16) = −0.36, p = 0.73, N = 20, unpaired, two-sample, t-test), and the rebound pressure on the same Rebound 25A shell decreased to 27.8 ± 3.0 cm H₂O (t(15) = 2.27, p = 0.04, N = 20).

Likewise, the Sorta-Clear 18A shell prototype without spoke defects had and STB pressure of 41 ± 4.4 cm H₂O and a rebound pressure of 14 ± 1.3 cm H₂O (average of 10 trials). After addition of spoke defects, the STB pressure was statistically unchanged at 42 ± 3.0 cm H₂O (t(16) = −0.41, p = 0.69, N = 20) and the rebound pressure statistically decreased to 10 ± 2.0 cm H₂O after addition of spoke defects (t(16) = 5.85, p < 0.01, N = 20) using an unpaired two-tailed t-test assuming unequal variance.

4.2.2 Thickness testing

One-way ANOVA indicated that the means for the three groups of shells of 1.0, 0.75, 0.5 mm thickness for each shell type were not the same for STB pressure (p < 0.01) or for rebound pressures (p < 0.01). Average values of STB and rebound events appear to correlate with the square of the shell thickness (R² = 0.99 and 0.98, respectively) as predicted by Eq. (1) (Table 2) (Fig. 6).

4.2.3 Radius testing

One-way ANOVA indicated that the means for the three groups of shells of 10, 7.5, and 5 mm radius were not the same for STB pressure (p < 0.01) or for rebound pressures (p < 0.01). Average STB and rebound event pressures for each shell type appear to follow a linear trend (R² = 0.98 and R² = 0.99, respectively) with the inverse square of the radius of the shell as predicted by Eq. (1) (Table 3) (Fig. 7).

4.2.4 Hardness testing

One-way ANOVA indicated that the means for the four groups of shells of various Shore hardness were not the same for STB pressure (p < 0.01) or for rebound pressures (p < 0.01). Average STB and rebound for each shell type were found to correlate (R² = 0.98 and 0.99) (Fig. 8) in direct proportionality with the Shore hardness of the shell (Table 4).

4.3 Flow rate

Flow rate though the open valve was recorded and appeared to be linearly proportional to the COW pressure (Fig. 9). It was noted that the two lowest pressure data points demonstrated a possible deviation from the linear trend present in the higher-pressure flow readings. This may suggest that at pressures just before a rebound event the shell begins to flex back towards a more neutral position.
Fig. 6. Effect of dome thickness on the STB and rebound pressures of the shells fit with a linear regression ($R^2 = 0.99$ and 0.99, respectively).

Fig. 7. Effect of dome radius on STB and rebound pressures fit with linear regressions ($R^2 = 0.98$ and 0.99, respectively). Horizontal lines indicate the high (solid black) and low (solid red) values of normal ICP. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 4
Mean STB ± standard error of the mean and rebound pressures ± standard error of the mean for shells of differing only by hardness.

<table>
<thead>
<tr>
<th>Harness</th>
<th>Mean STB Pressure ± SE (cm H$_2$O)</th>
<th>Mean Rebound Pressure ± SE (cm H$_2$O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shore 18A</td>
<td>25 ± 1.1</td>
<td>15 ± 0.6</td>
</tr>
<tr>
<td>Shore 25A</td>
<td>94 ± 1.4</td>
<td>33 ± 1.6</td>
</tr>
<tr>
<td>Shore 30A</td>
<td>113 ± 0.9</td>
<td>38 ± 1.6</td>
</tr>
<tr>
<td>Shore 40A</td>
<td>186 ± 2.3</td>
<td>62 ± 0.4</td>
</tr>
</tbody>
</table>

thus effectively decreasing the size of the opening and reducing flow rate. More data and quantitative visual inspection of the valve opening would need to be performed to validate this theory.

4.4. Cycle reliability testing

Cycles: The average across 42,000 STB and rebound pressures were 92.9 and 33.8 cm H$_2$O respectively with standard deviations of 0.4 and 0.5 cm H$_2$O respectively. First and last cycles had the same recorded STB and rebound event pressures figure (Fig. 10).

4.5. Ultrasound monitoring

The two distinct states, relaxed and deformed, of the shell were distinguishable from one another using ultrasound imaging (Fig. 11).

5. Discussion

To have potential for cerebral shunting, STB shells must convert effectively to valves, serve in the physiologic pressure range of 6–25 cm H$_2$O, have a small form-factor for implantation similar to currently available products, and operate reliably over many cycles. This study demonstrates that these requirements can be achieved using STB shells.
5.1. Dynamic permeability

Shell do not demonstrate statistically significant differences in STB pressures after inflicting spoke defects (Rebound 25: \(t(18) = -0.36, p = 0.73 \); Sorta Clear 18A: \(t(18) = -0.41, p = 0.69 \)), however, the rebound pressures for both shells do demonstrate statistically significant lower STB pressures after inflicting spoke defects (Rebound 25: \(t(18) = 2.28, p = 0.04 \); Sorta-Clear 18A: \(t(18) = 5.58, p < 0.01 \)). This makes sense because in the closed configuration, under compressive loading the shell stress is transmissible across the defect to the adjacent portion of the shell through contact, however in the open configuration, part of the tensile energy stored in the material at the apex is lost at the opening. This may explain the resulting loss of a portion of the spring like properties of the elastic at the opening that typically supply rebound force. This is important for understanding how the shells behave and has implications for quality control of closing pressures as well. Shells must be tested and verified for STB and rebound pressures after the slit defect has been imposed for accurate and reliable measurements.

5.2. Shell parameters

Shell parameter testing results for thickness, radius and material hardness in shells with slit defects demonstrate trends that verify the relationships of proportionality for STB found in previous theoretical work without slit defects: most notably that the STB event pressure is directly proportional to the hardness of the shell material, the square of the thickness of the dome and inversely proportional with the square of the radius of the shell

\[
P_{STB} \propto E \frac{h^2}{R^2}.
\]
Fig. 10. STB and rebound event pressures over 42,000 cycles showing stable event pressures.

Fig. 11. Ultrasound imaging of the valve with transducer marked with "T" in: (A) closed shell state after rebound event and before STB event, and (B) open shell state after STB event are clearly differentiated using ultrasound visualization. Although not well visualized, the shell defect becomes noticeable as an interruption of the smooth surface in the open shell state at the apex of the inverted shell.

Interestingly, our results also showed similar relationships for rebound pressures

$$P_{\text{rebound}} \propto \frac{E h^2}{R^2}.$$ \hfill (3)

Understanding and verifying the parameters effecting STB and rebound events pressure has already allowed production of shells that open and closes in the physiological range of ICP (6–25 cm H$_2$O). Shell parameters of 00–30 material, 1 mm thickness and either 7.5 mm and 10 mm radius had average STB pressures of 23.0 ± 1.3, and 10.4 ± 0.7 cm H$_2$O and closing pressures of 14.8 ± 0.2, and 6.5 ± 0.1 cm H$_2$O respectively. Additionally, shells made from Shore 18A hardness with a radius of 10 mm and thickness or 1 mm had STB pressures of 25 ± 1.1 and rebound of 15 ± 0.6 cm H$_2$O. These results prove that many different options for shell parameters that can be used to achieve the pressure requirements and that these parameters do not lie at extreme limits of material or manufacturing capabilities. In the future, shells of even smaller radius can be designed to fulfill the CSF pressure requirements while also maintaining an even smaller form factor than
current shells by further reducing the hardness and thickness of the shells. For example, shells designed with a radius of 5 mm can be incorporated into valve casings that have similar form factor to currently used valves, and it is possible for even smaller shells to be made (Fig. 12).

5.3. Flow rate and reliability testing

ICP is related to the intracranial volume by the Monro–Kellie doctrine [38]. As the volume of material in the skull increases, the ICP rises. The specific drainage volume from shunts varies depending on the patient from a minimum of about 2.4 ml to a maximum of 736 ml per day, with the average patient draining 194 ml per day [39]. This equates to flow rates of 0.0017 to 0.4417 min/ml. Accurate flow detection at this rate is extremely difficult. Data from infusion studies conducted by Kasprzowicz et al. suggest that, on the order of 3 ml increase or decrease in CSF volume corresponds to a change in ICP from 10 to 15 mmHg or vice versa [40]. Rate of flow through the shell opening is governed by the equation:

$$ Q = \frac{\pi r^4 \Delta P}{8\eta l} $$

where Q is the flow rate, r is the radius of the opening, ΔP is the pressure difference across the valve, l is the thickness of the valve and η is the viscosity of the fluid. Thus, the size of the opening can be modulated to determine the flow rate of the CSF through the valve. Given the approximate 13 ml/min average flow rate of the current shells valve over the 15 → 7 mmHg STB to rebound range, the valve would open on the order of 65 times per day for a total open time of ~15 min (Table 5). At this approximate rate, the 42,000 cycles tested in this paper simulates an average of 1.8 years in vivo of consistent STB shell valve opening and closing pressures.

5.4. Monitoring the shell: external and implantable monitoring

One of the main interests in using STB shells in the cerebral shunting application includes the possibility to monitor the mechanical displacement of valve actuation. We suggest two major non-invasive methods for such monitoring: clinical ultrasound and implantable constant monitoring mechanisms. Only ultrasound was examined in the methods and results of this paper, and implantable mechanisms remain theoretical, however, they do add to the importance of the current discussion.

5.4.1. Ultrasound

Preliminary work shows the ability for the large mechanical deformation afforded by the STB shell to be monitored using readily available clinical techniques such as ultrasound. The ability to actively monitor the shell for its position would be a powerful tool for clinical medicine. This may allow the physician to verify if there is flow or no flow in the shunt during various clinical maneuvers that artificially raise ICP, such as coughing or the Valsalva maneuver [41]. If STB events can be identified in a clinical setting, this would suggest that pressure is being transmitted though the shunt system and would rule out complete shunt blockages which account for 56.1% of shunt malfunctions [13]. Future work will further explore using ultrasound in the context of tissue and implantable form-factor shell casing.

5.4.2. Implantable mechanisms

These mechanisms would be implanted within the shunt valve casing to monitor the flow of CSF through the shunt and must include a sensing system, transmitter and a method of interrogation [42]. Three mechanisms we propose as viable options include: a luminous or electrical resistance measured across the valve, or making the shell from a piezoelectric polymer. There would be relatively large luminary and electrical resistance in the closed state and low resistance in the open state. Likewise, voltage would be generated by piezoelectric materials upon each valve actuation. These signals could be used to determine the number of valve openings, the current state of the valve, and establish a drainage baseline for each patient allowing for more personalized medicine. Future work will focus on refining a specific sensing mechanism to be implanted with the shell valve, and to develop an algorithm which would alert the patient or caregiver of flow abnormalities even before symptoms arise.

5.5. Infections

Infections occur as biofilms in shunt systems [43] and common prophylaxis methods include antimicrobial prophylaxis or antibiotic impregnated materials. Antibiotic impregnated catheters have
been shown as significant prognostic factors for shunt survival [44–48]. Unfortunately, no shunt valve on the market is fully antibiotic impregnated, leaving a vulnerable element in the shunt systems for bacterial colonization. STB shell valves can be made entirely from medical grade antibiotic impregnated Silastic® (Dow Corning, Midland, MI) material silicone or polyurethane type materials. Replacing non-impregnated valve with an impregnated valve system, resulting in the entire length of the shunt system being antibiotic impregnated, has the potential to significantly reduce shunt infection rates beyond the reduction enabled by impregnated catheters alone.

5.6. Observations & future work

It was noticed early on in testing that spoke lengths of 2 to 3 times longer than the thickness of the material was more likely to exhibit leaks of fluid at the slits rather than undergo STB phenomenon. More research should be focused at optimizing the characteristics of spoke parameters including spoke number and spoke length to reduce leakage and to optimize flow rates though open valves.

It was also noticed that as the valve rebounds, there is a possibility for backflow for fluid in the path of the moving shell membrane. This small back flow may prevent buildup of choroid plexus, blood and other sources of blockages from the proximal tip of the catheter located in the ventricles by applying a clearing backflow pressure wave on each rebound event. Further studies will be conducted with visible dye to ensure that particles from the distal end of the catheter do not traverse backwards up the shunt when a shell valve is used. In vivo animal models may also provide sufficient verification of the effects of the back-flow phenomenon. Backflow may be mitigated with the addition of an in-series, one-way check valve.

6. Conclusion

This study demonstrates that STB shells can be altered to act as valves that act in the physiologic range of ICP, while retaining a small form factor similar to cerebral shunts currently on the market. There is a range of shell parameters that can achieve these requirements, and these do not require extremes of manufacturing or material capabilities. Advantages of a STB shell valve compared to conventional valves include the ability to monitor the action of the valve for assessment of flow versus no flow in the clinical setting using standard ultrasound imaging techniques, and the possibility for antibiotic impregnation of the valve itself. Given the unique properties of the STB shell valve including large mechanical deformation, it may be feasible with future work to constantly monitor for flow anomalies using implantable sensors, transforming medical attention for shunt malfunction from reactionary to anticipatory. STB shells may also be helpful as a research tool to help elucidate in vivo characteristics of CSF dynamics in hydrocephalus. Other potential medical applications for STB valves include cardiovascular valves, ureteric valves, and urethral valves.

Competing interests

None declared.

Conflict of interest

The authors have filed a patent relating to STB shell valve technology.

Ethical approval

None required.

Funding

Funding for this research was provided through a career development grant by the Department of Surgery at Dartmouth-Hitchcock Medical Center and the Cook Engineering Design Center at Dartmouth College.

Acknowledgements

The authors would like to thank Professor Ryan Halter for his support of innovation related to the present work.

Supplementary material

References
