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® Objectives @ VirGIL in Ptolemy (Master Algorithm)
» Develop a modular and efficient co-simulation platform

Ccomms

» Capture the interactions between building dynamics and power systems for real- /
time grid operation and planning

» Integrate legacy tools to decrease the barriers for adoption to the industry (e.g. Building Model
DigSILENT Powerfactory) \

» Build the foundations for a real-time demand response tool
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» Most demand response tools focus either on the grid (neglecting building
dynamics), or on the buildings (neglecting their impact on power flows) A

» Distribution system operators need tools that they can seamlessly integrate with Power Grid

their simulation platforms to control DER and deploy Demand Response ® Quantized State System Simulation (QSS) reduces the

» Modular architecture based on open-standard - integrate future tools; e.g. EV work needed to integrate the system
simulation, optimization, PV inverter control, Hardware in the Loop, etc. » QSS decouples slow and fast dynamics

@® VIirGIL Co-simulation Framework » After a state quantization, each FMU shares individual state components with the
rest of the system: cuts communication and computation costs between FMUs

Master
& Algorithm % » State events can be handled without iteration, leading to efficient execution.

® Building Modeling and FMU

Power Systems J[ atia « VirGIL needs a building model that captures all the relevant DR sionals
Simulation and Control dynamics, but without placing an undue burden on the solver s
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@ Implementlng Demand Response For BUlIdlngS in VirGIL DRQAT: Demand Response Quick Assessment Tool, LBNL. i o

*Using prototypical building models, it converts building information to EnergyPlus Building
Load Consumption models. thermal model

. ccupancy
|_(Current and Forecast)—- ]( - Measurements **BRCM: Matlab Toolbox developed by ETH Zurich.
.g. SCADA, uPMU
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Demand SR Potential - > Events Facilitates the physical modeling of buildings in R-C equivalent models.
Response Ppiimization Aidorithms, e.g- Line Outages «***BuildingsPy: LBNL tool for workflow automation
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@® Use Cases
DR Amount Generation » Case #1: Demand Response to Reduce Cable Loadin
to Shed
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@® FMI: Functional Mock-up Interface Demand a

Response 50

FMI for Model Exchange FMI for Co-Simulation  at55%
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® Power FMU and Communications FMU
Power FMU Communications FMU » Case #2: Volt/Var Control with Battery and micro-Synchrophasors

» Powerfactory requires Windows. The rest of our tools operate on Linux. . Modeling the OpenADR Framework
 Developed a Python interface between Powerfactory API and the FMU
« FMU developmentin C
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