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► Most demand response tools focus either on the grid (neglecting building 
dynamics), or on the buildings (neglecting their impact on power flows) 

► Distribution system operators need tools that they can seamlessly integrate with 
their simulation platforms to control DER and deploy Demand Response 

► Modular architecture based on open-standard à integrate future tools; e.g. EV 
simulation, optimization, PV inverter control, Hardware in the Loop, etc. 

VirGIL: A Demand Response Platform for Smartgrids 
 

Spyros Chatzivasileiadis, Javier Matanza, Marco Bonvini, Rongxin Yin, Thierry Nouidui,  
Zhenhua Liu, Emre Kara, Rajiv Parmar, David Lorenzetti, Emma Stewart,  Michael Wetter, and Sila Kiliccote 

  Lawrence Berkeley National Laboratory 
  Energy Technologies Area Grid Integration Group 

FMI: Functional Mock-up Interface 

For more Information:  
[1] S. Chatzivasileiadis, J. Matanza, M. Bonvini, R. Yin, T. Nouidui, Z. Liu, E. C. Kara, R. Parmar, D. Lorenzetti, M. Wetter, and S. Kiliccote. VirGIL: A co-simulation platform for 

cyber-physical modeling of distributed resources for distribution system operations. Proceedings of the IEEE, 2015.submitted.[Online]: http://arxiv.org/pdf/1505.00078v1.pdf 
 
 

VirGIL in Ptolemy (Master Algorithm) 

Contact: schatzivasileiadis@lbl.gov 
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Power FMU 
•  Powerfactory requires Windows. The rest of our tools operate on Linux. 
•  Developed a Python interface between Powerfactory API and the FMU 
•  FMU development in C 

BRCM** DRQAT* BuildingsPy*** 

• *DRQAT: Demand Response Quick Assessment Tool, LBNL.  
• Using prototypical building models, it converts building information to EnergyPlus 
models. 
• **BRCM: Matlab Toolbox developed by ETH Zurich.  
• Facilitates the physical modeling of buildings in R-C equivalent models. 
• ***BuildingsPy: LBNL tool for workflow automation 

•  VirGIL needs a building model that captures all the relevant 
dynamics, but without placing an undue burden on the solver 
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VirGIL Co-simulation Framework 

Implementing Demand Response For Buildings in VirGIL 

Motivation 

Power FMU and Communications FMU 
Communications FMU 
•  Modeling the OpenADR Framework 

Building Modeling and FMU 

Use Cases 
► Case #1: Demand Response to Reduce Cable Loading 

► Case #2: Volt/Var Control with Battery and micro-Synchrophasors 

Objectives 
► Develop a modular and efficient co-simulation platform 
► Capture the interactions between building dynamics and power systems for real-

time grid operation and planning 

►  Integrate legacy tools to decrease the barriers for adoption to the industry (e.g. 
DigSILENT Powerfactory) 

► Build the foundations for a real-time demand response tool 

Quantized State System Simulation (QSS) reduces the 
work needed to integrate the system 

► QSS decouples slow and fast dynamics 
► After a state quantization, each FMU shares individual state components with the 

rest of the system: cuts communication and computation costs between FMUs 

► State events can be handled without iteration, leading to efficient execution. 

 Lawrence Berkeley National Laboratory, CA, USA  

Building 71 Control Actions 


