
peptide of neuropeptide Y (NPY), as this peptide has its

own abbreviation, CPON. Because these proteins were

not identified directly from the tissue samples them-

selves, our identifications remain “probable”. A total of

18 proteins were detected in all regions of interest in

both species.

The proteins identified support many different biologi-

cal functions, including aerobic metabolism, cellular sig-

naling, and protein synthesis, that are typically localized

in the cytosol, mitochondrial membrane, or ribosome.

The fact that many of the identified proteins were

involved in metabolism is not surprising given that

roughly 75% of a cell’s protein mass typically supports

“housekeeping” functions (Kim et al., 2014). In this

study, the proteins with highest abundances tended to

be those with m/z scores between 4 and 10 kDa. With

this caveat in mind, the most abundantly measured pro-

tein in humans and chimpanzees was ubiquitin A-52

(UBA52), except for layer III of the chimpanzee ACC,

where the most abundant proteins are the hemoglobin

Figure 1. Nissl-stained sections of tissue with sinapinic acid matrix spots. A: Caudate nucleus; Chimpanzee 2. B: Somatosensory cortex;

Chimpanzee 3. C: Cerebellum; Human 7. D: Anterior cingulate cortex; Human 1. E: Primary motor cortex; Human 7. F: Primary visual cor-

tex; Chimpanzee 2. The sections are 10 mm thick and are mounted on a metal plate. Because Nissl stain is applied after the application

of the matrix and mass spectrometry (MS) is performed, some matrix crystals move from their original locations. Circles are superimposed

on the original positions of the matrix spots on the sections from V1 and CB. Neocortical layers and white matter (wm) are labeled in the

ACC, M1, S1, and V1. The gray matter (gm) of the CN is labeled as well as the surrounding wm. The granule cell layer (gcl), molecular

layer (ml), and wm are identified in the CB. The brightness and contrast of the panels were adjusted. Scale bar 5 500 mm in A-F.

A.L. Baurenfeind et al.
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subunits, hemoglobin a1 (HBA1) and b (HBB). Because

UBA52 was overwhelmingly the most abundant in all

regions except layer III of chimpanzee ACC, this major

difference likely had a significant impact on the group-

ing of this layer in the chimpanzee with the multivariate

statistical analyses that follow. In humans, the vast

majority of the identified proteins across all human

regions of interest show significant differences in the

expression levels across individuals (97% of P val-

ues< 0.05 by Kruskal-Wallis test), and the same was

true to a lesser extent in chimpanzees (67% of P val-

ues< 0.05; Supplementary Dataset 1). Although most

of the proteins in this study displayed similar amounts

of variation between species, 20 proteins exhibited sig-

nificant differences in the amount of interspecific varia-

tion between humans and chimpanzees in at least one

region by the Brown-Forsythe test. This was true for

each of the cytochrome c oxidase (COX) subunits,

which is surprising given that proteins involved in meta-

bolic functions are considered “housekeeping” mole-

cules and thought to contribute little to interindividual

variation in both gene (Blekhman et al., 2008) and pro-

tein expression (Wu et al., 2013). Higher levels of inter-

individual variation in either species may ultimately

drive differences in interspecific protein expression, an

observation that has been made in gene expression

studies (Khaitovich et al., 2006; Whitehead and Craw-

ford, 2006; Gallego Romero et al., 2012).

We expected that proteins with similar functions

would have expression levels that would be highly cor-

related across samples. The correlation matrix of pro-

tein expression suggested that this was largely true

(Fig. 3). HBA1 and HBB were perfectly correlated

(r 5 1.00). COX subunits, COX6A1, COX7A2, and

COX7C, also displayed strong positive correlations in

expression (r 5 0.73-0.94). Interestingly, however,

COX5A and COX5B did not show coordinated expres-

sion levels with the other COX proteins (r 5 20.39-

0.28), but they were positively correlated with each

other (r 5 0.95). Although comparative expression of

COX5B has not been explored, upregulation in the

expression of COX5A has been found in the prefrontal

cortex of humans compared with chimpanzees (Uddin

et al., 2008), which may change the relationship of

COX5A to other COX proteins. Other groups of proteins

whose constituents were highly positively correlated

(r 5 0.37-0.99) include those that support mRNA proc-

essing (small ubiquitin-related modifier 3 [SUMO3], pep-

tidylprolyl isomerase A [PPIA]), regulation of

transcription (S-phase kinase-associated protein 1

[SKP1], putative postmeiotic segregation increased 2-

like protein 3 [PMS2P3], phosphatidylethanolamine-

Figure 2. Spectra from layer III of the anterior cingulate cortex (ACC). Mean spectra from layer III of the ACC for human (top) and chim-

panzee (bottom). The overlaid green bars highlight the integration areas of the peaks representing the 31 homologous proteins that are

observed between the two species in this region.

Protein Composition of Human and Chimpanzee Brain
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binding protein 1 [PEBP1]), and protein folding (small

nuclear ribonucleoprotein D3 [SNRPD3], splicing factor

3B subunit 5 [SF3B5]). Performing correlations on

humans and chimpanzees separately produced similar

results.

A PCA (Fig. 4) was performed to examine variation in

protein expression across all regions of interest in

humans and chimpanzees. PC1 and PC2 accounted for

42.0 and 19.3% of the variation, respectively. A group

of proteins comprising the electron transport chain, the

final phase of aerobic metabolism, loaded heavily on

PC1 (NDUFA4, UQCRH, COX5B, COX6A1, COX7A2, and

COX7C). Several proteins that support regulatory func-

tions drove differences along PC2. These proteins

include PMS2P3, PPIA, PEBP1, UBA52, and CPON. PC1

and PC2 separate the CB of humans from the rest of

the human regions of interest. The human neocortex

and CN contributed a very small amount of variation to

the analysis along either axis. Whereas proteins sup-

porting aerobic metabolism were associated with the

human neocortex and CN, expression of PEBP1 was

more highly expressed in the human CB. The chimpan-

zee regions of interest displayed a much greater degree

of variation than those of humans. Although many of

the chimpanzee regions of interest clustered with the

homologous human regions of interest, layer V of S1,

layer V of the ACC, the CN, and the CB of the chimpan-

zee showed protein expression profiles that were more

like that of the human CB. Layer III of the chimpanzee

ACC was an outlier compared with all other regions of

interest. We concluded that the unusual protein expres-

sion profile in this region is driven largely by biological

variation, rather than measurement error (see the fol-

lowing paragraph). PC1 and PC2 separate this region

from all others and appear to be primarily associated

with higher expression levels of PPIA, CPON, and myo-

sin light chain 6B (MYL6B).

Because the protein expression in layer III of the

chimpanzee ACC proved to be an outlier in the PCA,

we further explored the basis of this variation. The

three chimpanzee ACC samples were analyzed on dif-

ferent days, but the intensity of the MS peaks from the

three standard mouse CBs that were analyzed contem-

poraneously displayed strong correlations across their

spectra (each r> 0.71). Moreover, the same tissue

specimen used to sample layer III was also used to

sample layer V. Layer V of the chimpanzee ACC clus-

ters with the other cortical regions of both human and

chimpanzee. Furthermore, most of the proteins that dis-

tinguish layer III of the chimpanzee ACC from other

Figure 3. Spearman correlation matrix for protein expression across all regions of humans and chimpanzees. The key serves as a guide

for the value of the correlation coefficients representing strongly positive correlations (red), no correlations (yellow), and strongly negative

correlations (blue).
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regions (PPIA, MYL6B, PMS2P3, PEBP1, FK binding pro-

tein 1A [FKBP1A]) do not exhibit significant interindivid-

ual variation in protein expression (Kruskal–Wallis,

P 5 0.19–0.95). However, the expression of CPON, a

peptide with a conserved sequence in humans and

chimpanzees, differed significantly across individuals in

layer III of the chimpanzee ACC (Kruskal–Wallis,

P< 0.001). Proteolytic processing of the NPY protein

results in three peptide products, one of which is

CPON. It is important to note that although the expres-

sion of CPON is measured in this study, the peptide is

very strongly correlated with NPY in the mammalian

nervous system (Allen et al., 1985; Gulbenkian et al.,

1985), and therefore, comparisons in the expression of

CPON with the expression of NPY in previous reports

are appropriate. As a species, chimpanzee expression

of CPON was significantly lower than that of humans

(Mann–Whitney, P 5 0.015), an interesting finding as

NPY has been implicated in learning and memory

(Lewis et al., 2005). Previous research based on quanti-

fication of NPY-immunoreactive axon fibers found that

in several cortical regions including the ACC, NPY is not

differentially expressed between humans and chimpan-

zees (Raghanti et al., 2013, 2014), although it is ele-

vated relative to nonhominoid primates (Raghanti et al.,

2014). Our data indicate that CPON exhibits differential

species expression across layers, which may have been

undetectable with other methods.

Because layer III of the chimpanzee ACC influenced

the results of the PCA by introducing a considerable

degree of variation, we performed a second PCA (with

the same parameters as the previous PCA) omitting this

region. PC1 and PC2 accounted for 36.2 and 16.7% of

the variation, respectively. As before, proteins support-

ing aerobic metabolism loaded heavily on PC1, whereas

proteins involved in cellular structure (MYL6B), the reg-

ulation of transcription (PMS2P3), protein degradation

(SKP1), and aerobic metabolism (COX7A2) drove differ-

ences on PC2. Even without the inclusion of layer III of

the chimpanzee ACC, a greater degree of variation was

exhibited among chimpanzee regions of interest along

PC1 compared with those of humans, reflecting variabil-

ity in the expression of proteins supporting aerobic

metabolism in chimpanzees.

A CVA was performed to determine which proteins

were most highly associated with differences between

humans and chimpanzees (Table 3). The proteins that

weighed most heavily in determining species assign-

ment included PMS2P3 (coefficient of CV1 5 12.7),

FKBP1A (211.0), and COX5B (9.3). Higher expression

levels of COX5B (Mann–Whitney test, P 5 0.03) and

PMS2P3 (P 5 0.09) were associated with the human

brain compared with the chimpanzee. Greater expres-

sion of COX5B in human brain regions may be expected

due to the upregulation of proteins associated with aer-

obic metabolism in humans compared with chimpan-

zees, as previously reported (Uddin et al., 2004).

Using a combined sample of humans and chimpan-

zees, a second CVA was performed to determine which

proteins were most highly associated with different

brain regions (Fig. 5A, Table 3). Four linear CVs

described the brain region of origin (CV1–CV4 describe

81.7, 11.1, 4.6, and 2.6% of the vector, respectively;

discriminant function analysis posterior probabilities,

Figure 4. Principal component analysis of protein expression data. Human regions of interest are shown in red and those of the chimpan-

zee are in blue. The ellipses represent 68% probability for humans (red) and chimpanzees (blue). The text and arrows to the right of the

graph display the loadings for each of the 18 proteins. For abbreviations, see Table 1.
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P< 0.001). In this case, CV1 was mostly responsible

for the separation of CN from the neocortical regions,

whereas CV2 separated the CB from the other regions

of interest. PEBP1 (coefficient of CV1 5 229.7),

PMS2P3 (227.5), FKBP1A (214.1), COX5B (14.1), and

NADH dehydrogenase [ubiquinone] iron-sulfur protein 5

(NDUFS5) (12.5) are the proteins most related to CV1.

Higher expression of COX5B and NDUFS5 supports aer-

obic metabolism and is associated with neocortical

regions, whereas higher expression levels of PEBP1,

PMS2P3, and FKBP1A were associated with the CN.

PMS2P3 (coefficient of CV2 5 25.4), PPIA (18.4), and

FKBP1A (212.2) were the proteins that most strongly

load on CV2. Higher expression of PMS2P3 and PPIA

was associated with the CB, whereas higher expression

levels of FKBP1A were associated with the CN and neo-

cortical areas.

A final CVA was performed omitting the CN and CB

from the analysis to distinguish the cortical regions of

interest from each other (Fig. 5B, Table 3). Two linear

CVs separated each cortical region of interest into cort-

ical layers III, IV, or V (CV1 and CV2 account for 68.5

and 31.5% of the vector, respectively; discriminant func-

tion analysis posterior probabilities, P< 0.001). Cortical

layers IV and V were separated by CV1, whereas layer

III was differentiated from layers IV and V along CV2.

PEBP1 (coefficient of CV1 5 15.8), FKBP1A (14.3), and

MYL6B (12.8) are the proteins that had the most influ-

ence on CV1. Higher expression of PEBP1, FKBP1A,

and MYL6B was associated with cortical layer V com-

pared with layer IV. PMS2P3 (coefficient of

CV2 5 230.6), PEBP1 (212.6), FKBP1A (8.0), and

TABLE 3.

Results of the Canonical Variant Analyses (CVAs)1

Species

assignment
Region assignment

Layer assignment

(only cortical

regions)

CV1 CV1 CV2 CV3 CV4 CV1 CV2

Weight of linear determinant 100.0% 81.7% 11.1% 4.6% 2.6% 68.5% 31.5%
Coefficients of linear discriminants

COX5B 9.3 14.1 4.4 3.4 4.1 24.8 7.0
COX6A1 22.2 210.8 22.1 0.3 20.1 7.1 20.2
COX7A2 2.9 20.5 1.8 22.8 21.9 21.7 20.8
COX7C 20.7 0.2 20.7 0.0 0.5 20.1 0.4
NDUFA4 0.9 6.1 3.9 0.0 21.2 25.1 23.3
NDUFS5 24.9 12.5 27.4 22.0 0.2 29.6 20.6
UQCRH 0.5 1.4 0.7 21.6 20.8 21.7 0.3
HBA1 0.6 0.3 0.1 0.1 20.2 20.1 20.1
UBA52 20.2 20.1 20.1 0.0 0.1 0.1 0.1
FKBP1A 211.0 214.1 212.2 4.2 4.7 14.3 8.0
PPIA 22.5 211.1 18.4 221.7 22.3 211.6 23.8
SKP1 24.3 3.6 27.5 3.1 3.1 2.3 6.9
PMS2P3 12.7 227.5 25.4 29.6 213.5 0.0 230.6
PEBP1 20.3 229.7 8.9 1.1 25.1 15.8 212.6
SF3B5 1.7 0.4 1.8 23.1 22.2 22.3 20.9
MYL6B 25.1 210.7 23.1 7.1 2.0 12.8 3.7
MIF 2.0 26.2 0.4 2.1 20.8 3.9 24.6
NPY (CPON) 20.1 3.4 23.3 2.4 1.1 0.4 1.9

1The first analysis included all regions of interest and was used to predict the species based on protein expression. The second analysis included

all regions of interest and was used to predict the area of the brain from which the samples originated. The third analysis included only cortical

regions and was used to predict the layer of cortex from which the sample originated. The results of each analysis predicted species, region, or

neocortical layer assignment with 100% posterior probability.

Figure 5. Canonical variate analyses (CVAs) of protein expression

data. A: CVA of all regions of interest. Axis 1 separates the CN

from all other regions of interest, and axis 2 distinguishes the CB

from the CN and cortical regions (shown here by the neocortical

layer). B: CVA of all regions with the CN and CB removed. Axis 1

separates cortical layer IV (shown here as L4) from layer V (L5),

and axis 2 separates cortical layer III (L3) from layer IV and layer

V. For other abbreviations, see Table 1.

A.L. Baurenfeind et al.
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COX5B (7.0) had the strongest influence on CV2.

FKBP1A and COX5B, which function in protein folding

and aerobic metabolism, respectively, were associated

with higher expression levels in cortical layer III of all

areas of the neocortex, whereas expression of PMS2P3

and PEBP1 were higher in cortical layers IV and V. Like

the CVA that included the CN and CB, this analysis did

not distinguish between human and chimpanzee regions

of interest.

An unsupervised hierarchical cluster analysis revealed

relationships in the expression of proteins across regions

of interest in humans and chimpanzees (Fig. 6). Remark-

ably, the human and chimpanzee brain regions did not

cluster separately according to species, but instead com-

monalities were observed in their regional patterns of

protein expression. The gcl of the CB in humans and

chimpanzees was strongly differentiated from the other

brain regions. The chimpanzee CN and layer IV of S1

were also included in this cluster. The other regions of

the brain were separated mostly by motor and sensory

areas. Human and chimpanzee M1 were similar in their

protein expression profiles. Sensory areas were clustered

mostly by supra- and infragranular layers designations.

The human CN and ACC (layers III and V) clustered with

the infragranular layers of sensory cortices, likely due to

the high degree of connectivity of these regions to sen-

sory cortices (Alexander et al., 1986; Leh�ericy et al.,

2004). Whereas layer V of the chimpanzee ACC also clus-

tered with this group, layer III of the chimpanzee ACC

and chimpanzee CN did not.

DISCUSSION

This study provides a proteomic analysis comparable

in spatial resolution to recent high-throughput studies

of RNA transcripts (Lein et al., 2007; Belgard et al.,

2011; Bernard et al., 2012; Hawrylycz et al., 2012) by

providing relative protein quantifications from specific

layers of the neocortex and CB. Until now, neither the

transcriptomic nor the proteomic composition of the

chimpanzee brain has been analyzed at a similar spatial

resolution using a high-throughput technique to allow

study of variation in molecular expression between

humans and their closest living relatives. Evolutionary

divergence in protein expression levels has been

hypothesized to be a major underlying cause of cogni-

tive differences between humans and chimpanzees

(King and Wilson, 1975). Interspecific comparisons of

protein abundances between these two species are

imperative to assess the specific and unique differen-

ces in the human brain’s molecular phenotype.

To a large extent, proteins with similar biological

functions were correlated in their expression levels

across the total sample of human and chimpanzee

brain regions. Within the groups of proteins supporting

aerobic metabolism, regulation of transcription, mRNA

processing, and nucleosome assembly, expression lev-

els were especially highly correlated, which is sugges-

tive of coordinated function of these molecules (Zhang

and Horvath, 2005). However, proteins assigned to

other broad biological functions, including cellular sig-

naling and immune response, had expression profiles

that were weakly correlated to the other proteins within

their functional groups. Because coordinated expression

levels among proteins is generally an effective predictor

of molecular interactions (Fraser et al., 2004), this find-

ing reflects the diversity of biological functions served

by the proteins represented in this study.

In some ways, our results are consistent with previ-

ous research investigating the regional transcriptome of

Figure 6. Cluster analysis of human and chimpanzee brain

regions based on protein expression. Human (red) and chimpan-

zee brain (blue) regions are largely interrelated. Although layers

III and V of human and chimpanzee M1 are very similar, other

regions cluster largely according to supra- or infragranular layers

of the neocortex. The subdivisions of layer IV of V1 are divided

among the supra- and infragranular clusters. Notably, the human

CN and both layers III and V of the ACC are found in the infragra-

nular sensory cluster. For abbreviations, see Table 1.
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the brain. In humans and chimpanzees, we found

greater variation in protein expression between the cer-

ebral cortex and the CB and CN than among regions of

the cerebral cortex itself. This result was anticipated

due to the relatively homogenous transcriptomic

expression in the human cerebral cortex compared with

subcortical structures, and to a greater extent the CB

(Khaitovich et al., 2004; Hawrylycz et al., 2012). The

pattern of protein expression was similar among supra-

and infragranular layers of the neocortex, reflecting

consistency in the cytoarchitecture of cortical layers

independent of region (DeFelipe et al., 2003). Compara-

ble results have been reported for patterns of gene

expression (Belgard et al., 2011; Bernard et al., 2012;

Hawrylycz et al., 2012), indicating that layer-specific

patterns of expression characterize both gene tran-

scripts and proteins.

However, our results highlight important differences

in region-specific expression between gene transcripts

and proteins. First, transcriptional profiling in human

brain has found similar expression levels between

neighboring regions of the neocortex (Bernard et al.,

2012; Hawrylycz et al., 2012). Our investigation of pro-

teins found no such pattern, suggesting that regulation

of protein expression levels provides an additional level

of regional specificity beyond that seen in gene tran-

scripts. Second, although reports of gene expression

have revealed a particularly unique biological signature

in V1 primates (Bernard et al., 2012; Hawrylycz et al.,

2012), we did not find this to be true in protein expres-

sion. Both of these findings, however, may be the

results of the limited number of proteins analyzed, and

this effect may appear with a more comprehensive

sampling.

Regions of the human neocortex and CN exhibited

higher expression of proteins supporting aerobic metab-

olism, which differentiates them from the human and

chimpanzee CB and from other regions of the chimpan-

zee brain. This finding is noteworthy due to the high

neuronal density of the CB in both species compared

with the neocortex (Herculano-Houzel, 2012); it is pos-

sible that brain regions with more tightly packed small

neurons have lower mass-specific metabolic require-

ments, based on the reduced heat dissipation and

reduced metabolic costs associated with neural trans-

mission (Laughlin and Sejnowski, 2003). Additionally,

human and chimpanzee protein expression profiles

revealed by our analyses generally affirm the similarities

in gene expression between cortical layers III and V

that have been noted previously in human brain (Hawry-

lycz et al., 2012; Zeng et al., 2012) but are generally

absent in the mouse (Zeng et al., 2012). Indeed, intra-

cortical connections originating from neocortical layer

III appear to have evolved during primate evolution and

result in a more integrative cortical circuitry (Rockland

and Pandya, 1979; Barbas, 1986; Hof et al., 1995). We

found that supragranular layers of the neocortex

appeared to have particularly high levels of proteins

supporting aerobic metabolism compared with other

layers. Such a result may be due to an increased den-

sity of glutamatergic corticocortical inputs in layer III

compared with infragranular layers (DeFelipe et al.,

2003), which may drive a higher metabolic demand

locally.

One of our most noteworthy results is the unique

protein expression profile in layer III of the chimpanzee

ACC relative to all other regions. The distinctiveness of

this region was driven largely by relatively lower expres-

sion of proteins supporting metabolic function. Although

proteins indicative of structural complexity, including

those associated with synapses and receptors, as well

as neurofilament proteins, are undetectable with the

methods employed in this study due to their large size,

other studies have found that the elaboration of dendri-

tic arbors is correlated with increased metabolic

demand (Jacobs et al., 2001; Liu et al., 2012). There-

fore, the human ACC, with a higher level of proteins

supporting aerobic metabolism than that of the chim-

panzee, may be specialized for neuronal communication

(Uddin et al., 2004), supporting the cognitive process-

ing of arousal of the body state and working memory

(Critchley et al., 2003). Likewise, the human CN also

displayed higher levels of metabolic proteins compared

with the chimpanzee CN, an important result consider-

ing the role of the CN in speech production (Jarvis,

2004; Crinion et al., 2006; Pfenning et al., 2014). Inter-

estingly, our data revealed commonalities in the expres-

sion profiles of the human CN with the ACC and S1,

potentially reflecting the interconnectivity of these

regions (Leh�ericy et al., 2004), as regions with dense

connections are thought to display similar patterns of

molecular expression (Oldham et al., 2008). These

results imply that the human ACC and CN are special-

ized for the integration and interpretation of sensory

information, such as that involved in empathy and lan-

guage (Nimchinsky et al., 1999; Jarvis, 2004; Singer

et al., 2004; Enard et al., 2009; Gu et al. 2013).

The study of protein expression provides value to

comparative molecular biology that cannot be obtained

by studies of gene expression alone. It has been shown

that gene transcript expression levels only explain as

little as 4% to as much as 40% of protein expression

(de Sousa Abreu et al., 2009; Ramakrishnan et al.,

2009; Schwanh€ausser et al., 2011; Khan et al., 2013;

Wu et al., 2013). Although measurement noise likely

accounts for some of the low correspondence, other
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biological factors account for the remaining variation

(Vogel and Marcotte, 2012). For instance, protein stabil-

ity, as measured by its biological half-life (the length of

time between when a protein is produced and 50% of it

is degraded), varies drastically based on function (Yen

et al., 2008). In general, proteins integrated into the

cell membrane or involved in signal transduction have

short half-lives, whereas those supporting housekeeping

functions or the cytoskeleton of the cell have long half-

lives (Yen et al., 2008; Schwanh€ausser et al., 2011).

Therefore, the stability of mRNA and protein dictates

their abundance and may cause divergence in the cor-

relation of these molecules (Zhang et al., 2014). This

fact suggests that a distinctive set of species-specific

biological signals may be accessible by differential

expression of proteins compared with transcripts. These

considerations suggest a complementary relationship

between proteomic and transcriptomic studies in deter-

mining molecular phenotype.

Although the number of proteins detected in our

study is small compared with studies of gene expres-

sion, our data support the idea that the regional pheno-

type of neurons in human and chimpanzee brains is the

result of localized specificity in molecular expression

(C�aceres et al., 2003; Johnson et al., 2009; Pont�en

et al., 2009; Hawrylycz et al., 2012). Currently, 13,000

proteins have been identified in the human brain (Lane

et al., 2014), each engaging in remarkably complex pro-

tein–protein interactions (Choudhary and Mann, 2010).

Quantification of a greater proportion of the brain’s pro-

teins at a similar spatial resolution as produced here

would allow systems biology approaches to explore

the interacting networks of the constituent molecules,

which has already produced significant insights into

the biological function of the human brain (Oldham

et al., 2006, 2008; Johnson et al., 2009; Winden et al.,

2009). Because proteins provide a closer approxima-

tion of the functional phenotype than the transcrip-

tome, comparative studies of localized proteins are

critical to our understanding of species-specific molec-

ular distinctiveness.
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