
1

Continuous Delivery and
Immutable Infrastructure
at Whistle Labs

The Challenge
With Whistle’s 2015 acquisition of Snaptracs, its
solution topology grew both in size and complexity.
What began as a single hardware device and a Ruby
on Rails application hosted in Heroku had become
several devices and applications distributed across
three unique infrastructures.

The Whistle team wanted an updated strategy
for maintaining their development agility and
the reliability of their services in this constantly
evolving environment.

The Solution
Through strong collaboration between Unif.io
and Whistle, a strategy of immutable, codified
infrastructure with full deployment automation
has been achieved. Unif.io wanted to extend the
workflow that the team was already comfortable
and successful with to encompass the entire
environment. That meant keeping the focus
application–centric, such as the Platform–as–a–
Service (PaaS) use case, while adding support for
different target infrastructures. The answer was to
treat the infrastructure like an application.

Technology and services utilized to achieve the
infrastructure included:

• �HashiCorp Atlas, Vagrant, Packer, Terraform and
Consul

• �AWS Virtual Private Cloud (VPC), Identity & Access
Management (IAM), Elastic Compute Cloud (EC2)
and AutoScaling

• Atlassian Bamboo Cloud

• Ruby / Rake

• Docker

• Puppet

Unif.io wanted to extend the
workflow that the team was
already comfortable and
successful with to encompass
the entire environment.

2

The Deployment Pipeline
First, we chose a technology for modeling the
deployment pipelines of the various services.

The deployment pipeline is central to the
methodology of Continuous Delivery (CD).
Establishing the deployment pipeline early in a
project, regardless of the level of automation, is
valuable for creating feedback loops and revealing
the phases needing improvement.

Pipelining takes the comprehensive steps required
to move from committed code to production
deployment and breaks them into phases. Phases
need to be structured with an emphasis on speed
for earlier stages with time consuming steps being
carried out in later stages. The objective is to
provide feedback as quickly as possible and ensure
that all changes pass the comprehensive gates for
deployment as frequently as possible, maintaining
confidence that the code is releasable.

A good CD tool makes the pipeline easy to visualize
while promoting communication and collaboration.
Whistle was already using Atlassian Bamboo
Cloud as well as the integrated build capabilities
of Heroku. This was working well for them for
continuous integration (CI) and because both are
Software–as–a–Service (SaaS) offerings, they
introduced little additional overhead. At Unif.io, we
believe the right solution for our clients is the one
that works best for them. For that reason, Whistle
elected to continue with its investment in the
Bamboo Cloud service.

Leveraging prior experience with the Bamboo
product, we were able to quickly highlight the
advantages and trade–offs of this approach.

Positives of Bamboo Cloud:

+ �Fully managed SaaS solution. There would be no
need to maintain software or infrastructure.

+ �Dedicated facility for deployment jobs. More
than just a build tool in that it includes special
projects and jobs designed with CD pipelines in
mind.

+ �Easy service integration. Bamboo jobs were
easy to integrate with other services in use by the
Whistle team such as New Relic and Slack.

+ �Ability to run build slaves within a Whistle VPC.
Infrastructure jobs required very broad access
to the AWS API as well as sensitive data stored
within the environment. This hybrid deployment
model allowed build slaves to be run in Whistle
VPC networks and made the use of AWS IAM roles
for credential management possible.

Negatives of Bamboo Cloud:

- �No configuration API. An inability to fully codify
the configuration of the build service. This is a
concern at scale as well as a deviation from the
ideals for the overall project.

- �No ability to load or dump configuration. An
inability to bulk export or import configuration. A
concern in that a significant amount of business
logic would only exist at this layer. A concern with
regards to potential recovery time due again to the
lack of a configuration API.

- �Minimal support for third party plug–ins. Many
features, extensions and community knowledge
for the on–premises version were not applicable to
the Cloud edition.

The inability to configure Bamboo Cloud
programmatically was not ideal, but we were able
to work around it by codifying the build logic as a
data–driven Rake build. By leveraging environment
variables exposed by Bamboo, it was possible to
maintain the flexibility of managing data in the
Bamboo service while vastly simplifying the steps
for creating or copying jobs. This approach also
kept the build logic portable, making it less of a
burden to switch build solutions later if desired
as well as ensuring that the logic used would be
easy to understand and leverage from a developer’s
workspace.

3

Immutable Infrastructure
At the time of engagement, Whistle’s solution was
distributed across several environments:

• �Primary application stacks were being managed
on Heroku

• �Data processing and warehousing were on native
AWS

• �Entire Snaptracs solution was running on physical
hardware at Rackspace

Whistle wanted to continue to consolidate services
to native AWS for capability, flexibility and economy.
While they already had a presence in native AWS,
the team had only moderate experience with those
services. This was due to the additional domain
knowledge required to manage infrastructure
as well as a separate and infrequently exercised
development workflow from the one used with
Heroku.

Prior investments were made in configuration
management tooling yielding sound processes for
managing capacity and ensuring that configurations
were repeatable. The weakness of the paradigm
however, was that it was based on managing
change in the running environment. While not an
uncommon approach, it led to infrequent use of the
automation which added to the stress of updating
those components. This result continued to isolate

that part of the environment and reinforce the
notion of siloed ownership.

Unif.io facilitated further consolidation of
infrastructure and a move to a paradigm of
immutability. The main difference was that instead
of trying to manage change directly in the solution
environment, dependency resolution along with
change would be shifted up the pipeline to the build
phase and locked in place as versioned artifacts.
This would guarantee parity across environments
and significantly reduce the complexity to rolling
out (as well as rolling back) changes at the edge.
These infrastructure artifacts could also follow a
workflow similar to that of managing applications in
a PaaS environment.

Successful implementation of an immutable
infrastructure strategy requires the deployment
pipeline and automation to be dialed in. Speed
is critical for generating artifacts for all changes
becomes a bottleneck as opposed to an
improvement. As such, the HashiCorp suite of tools,
integrated by the Atlas service, was the best-in-
class open source tooling for management of the
immutable datacenter and had strong alignment
with our values. As Whistle was already using
Vagrant and familiar with Terraform, this was a clear
path forward.

Fig 1. HashiCorp based deployment pipeline

4

Build / Artifacts
The HashiCorp Packer tool was utilized for creation
of immutable artifacts. It was an ideal choice as
it allowed for leveraging existing configuration
management investments; it provided builders
for both AWS Elastic Block Storage (EBS) backed
instances as well as Docker containers; and it
allowed for creation, management and coordination
of generated artifacts using Atlas.

Using Packer, builds were created for the following
set of artifacts:

• �Base image [amazon–ebs] A base Operating
System (OS) image for our AWS instances; used
to seed all downstream EBS Packer builds. The
primary objective was the versioning of OS and
package updates. The build was also used to
generate a Vagrant box to provide developers
with a clean environment identical to that
used in building all production nodes. Levering
Vagrant metadata in Atlas, we could ensure that
developers were always utilizing the latest image
generated by the pipeline.

• �Third party application stacks [amazon–ebs]
Application stacks built on the base image.
Targeted backing services and leveraging existing
Configuration Management (CM) code.

• �Docker hosts [amazon–ebs] Docker engine as well
as other tooling and configuration in support of
container based process management.

• �Whistle application stacks [docker]
Containerized application stack environments.
The primary objective being to provide developers
with flexibility and control at the OS layer not
offered in the managed PaaS environment.

As with the base image, Vagrant box artifact
creation was added to all Packer builds. While the
base image allowed for development and test of the
logic to be used by the Packer builders, the pre–built
images could be used for verification of behavior
on initial boot as well as deployment logic to be
discussed in the following section.

Deployment
Unif.io believes in keeping things simple where
possible. This view makes it tempting to try to avoid
the addition of new technology stacks when one
already in use could potentially address a need.

Most tool vendors at this point have realized that a
“cloud” strategy is key to their future success. This
has led to the cloud provisioning and management
space becoming fairly crowded and overlapping.
The Whistle team had been leveraging some of the
provisioning capabilities of their CM tools already,
however, we found that the capabilities of those
tools were somewhat narrow in scope and none felt
like a natural fit for the immutable use case.

When it was clear a more targeted solution was
needed, the next avenue considered was AWS
CloudFormation. Unif.io had used CloudFormation
in previous solutions and found it to be extremely
capable, as Amazon does well in keeping it up–to–
date with their continuously expanding catalog
of services. While very effective in the creation
and initial orchestration of resources, the Unif.
io team found it inadequate as a solution for the
management of existing resources.

There were two primary deficiencies behind that
assessment of the CloudFormation tool:

1. �The tool was only aware of deltas between the
data passed in and the data from the previous
run; not the actual state of the resources
provisioned. Unlike a traditional CM package
that uses a declarative syntax to define a desired
state that is then enforced, CloudFormation
would not reconcile the state of existing
resources with the desired state when calculating
an execution plan and could not effectively be
used for detection of configuration drift or true
enforcement of state.

2. �The tool did not provide a planning or no–
operation capability. This could be very
disconcerting when updating production services
and any resources containing application data,
as many types of updates can be destructive and
force new resources. While risks associated

5

with this can certainly be mitigated with good
deployment architecture and pipeline design,
mistakes do occur and can cause significant harm.

Terraform was a fairly young project at the time,
but promised to address many of the gaps with
other tools in the space and was open source and
pluggable by design. Additionally, Terraform utilized
a Domain Specific Language (DSL) that was far more
expressive than JavaScript Object Notation (JSON),
allowing for more readable and reusable code. We
collectively agreed that making an investment in
Terraform would be a move in the right direction
long–term.

Using Terraform, the Whistle environments were
modeled in layers. This was made feasible through a
Terraform mechanism of sharing state data between
stacks (groups of related resources). The foundation
was the codification of the Virtual Private Cloud
(VPC) topology. Stacks to be deployed in those VPC
environments would source required parameters
(i.e. subnets, etc.) from the VPC stacks directly. This
allowed for effective decoupling without sacrificing
automated propagation of data between resources
collectively under management.

The following are the types of stacks used in the
Whistle solution:

• �VPC – Stack for the management of all VPC
specific features (i.e. default gateways, DNS,
DHCP, subnets, routing, NATs, etc.)

• �VPN – Stack for the management of VPC site–
to–site Virtual Private Networks (VPN), VPC
peering and Virtual Private Gateways (VPG). These
resources are managed separately from the VPC
stack as their lifecycle tends to differ in that they
are less disposable.

• �Container cluster – Stack for the management of
instances configured for the purpose of running
container based processes as well as supporting
resources (i.e. IAM roles, security groups,
AutoScaling, monitoring, notifications, etc.)

• �Service nodes – Stacks for the management of
various backing and supporting services, which
are at present not container based.

Lines of stack separation were driven mostly by
application life cycle and audience. For example,
application containers are likely to be updated
more frequently than the hosts they run on and far
more frequently than the VPC in which the cluster
is deployed. These components may be managed by
different teams as well or be shared resources, so
exposing too much surface area at the application
stack layer often introduces more variables than
are necessary by default in that context (i.e. some
developers may never have a need to change
the container environment or underlying host
environment, etc.).

It is important to note that continuous execution of
stack automation is critical to regression detection
and verification that stacks are in a releasable state.
This can be accomplished with pipeline automation
and without the need to generate unnecessary
churn in live environments.

Most tool vendors at this
point have realized that a
“cloud” strategy is key to
their future success.

6

Context Management & Service Discovery
One of the areas of complexity that comes into play
when implementing an immutable strategy is how to
handle context.

For instance, take a solution which is comprised
of a staging and production environment. The
pipeline calls for changes to go through the staging
environment prior to promotion to the production
environment. Perhaps the application connects to a
database, has monitoring instrumentation requiring
a license key or is a member of a named cluster. How
does one keep the environments separated when
the configuration is immutable and set at build
time?

The answer is separation of data from code. This
same consideration exists in the PaaS
environment as well.

Applications written to run on Heroku must adhere
to the principles of “The Twelve–Factor App”. A
twelve–factor application sources configuration
from environment variables, which allows for
a generic application artifact that is portable
between contexts. The same concept lends itself to
immutable infrastructure, but there were still a few
items to work out for Whistle.

• �Where is the data going to be stored and how is it
be accessed at provision time?

• �How would non–Whistle software, that was never
intended for use as a twelve factor application, be
handled?

• �How is sensitive data (i.e. passwords) be handled?

The HashiCorp answer to these questions was
Consul*. Consul filled several roles including
service discovery, health monitoring and key/value
(K/V) storage. Consul would be the environment
management framework and would be utilized in
facilitating contextual orchestration.

To implement, the Consul agent was added to the
configurations maintained by Packer to ensure
inclusion in AWS artifacts. Also, a Terraform stack
for a highly available (HA) Consul server tier was
created and introduced into the VPC environments.
Custom solutions were implemented for the
management of the K/V data store (including
encryption management for secure data) as well as
the sourcing of data by instances at provision time.

Whistle is currently using Consul in conjunction
with AWS native capabilities as well as 3rd

party services for both service discovery and
monitoring.

*HashiCorp has since released the Vault project. Vault
specifically targets the use case of secrets management and is
now positioned as their best practice for that aspect.

How does one keep the
environments separated when the
configuration is immutable and
set at build time? The answer is
separation of data from code.

7

Bringing It All Together
With all the components in place:

• �Vagrant as an interface into the environment for
consistent development capacity;

• �Packer to produce immutable artifacts when
changes were made;

• �Atlas to manage artifacts and coordinate the
phases of the pipeline;

• �Terraform to provision and maintain the
environments as well as deploy the immutable
artifacts; and

• Consul to manage a dynamic landscape;

Whistle was able to establish the pipelines for their
environment.

Pipelines were modeled as layers of the environment
along the same lines of separation used in the
Terraform stacks. These layers roughly fell into the
following groups:

• �Base infrastructure – VPC, VPNs, etc.

• �Service infrastructure – Application clusters, etc.

• �Applications – Container deployment, etc.

This decoupling was designed to effectively model
both stack lifecycle and stack audience and to keep
each pipeline as performant as possible.

The development workflow for all components,
infrastructure and applications, was now consistent.

Results & Benefits
The transition to an immutable infrastructure has
resulted in several assets for the Whistle team:

• �The team has a single dashboard for visibility into
their pipelines with push–button deployment
capability.

• �The process of pushing applications to VPC
environments is comparable to the PaaS process.

• �Developers have the flexibility to both access and
configure the container environments in which
applications will be deployed.

• �The process of making infrastructure updates is
far more consumable and is consistent with the
process for application updates.

• �The Whistle team has a framework in place
which facilitates continuous improvement and
experimentation while ensuring the highest
quality and reliability of their services.

Fig 2. HashiCorp based application deployment pipeline

8

About Unif.io
Unif.io is a consulting services organization which
uses a full-stack, holistic approach to solution
design and automation. Unif.io’s deep partnership
with their clients guides the achievement of
business goals. The How changes quickly so Unif.io
values the Why.
Visit us online at unif.io, drop us a note at
info@unif.io, or call us at (855) 925-0010.

About Whistle Labs
Whistle is the world-leader in pet technology,
creating smart products and a mobile platform to
help pets live healthier and happier lives. Whistle
has raised the standard of pet care through intuitive
devices, like Whistle GPS Pet Tracker, Whistle
Activity Monitor and the largest comparative
database of pet health information. From providing
peace of mind for an escape artist pet, through
organizing a pet’s caretakers in one place, to giving
a voice to a pet’s unique needs, Whistle enhances
the special bond people share with their animals.
For more information visit www.Whistle.com.

Contact us: 1-855-925-0010
General Inquiries: contact@unif.io
Partnerships: partnerships@unif.io

