
Slide 1 - Multiple Sequence Alignment 

 
Slide notes 
This presentation will give you some information about multiple sequence alignments. 
  



Slide 2 - Slide 2 

 
Slide notes 
Charles Darwin once said, "The time will come, I believe, though I shall not live to see it, when we shall have fairly true genealogical 

trees of each great kingdom of Nature." 



Slide 3 - Overview 

 
Slide notes 
Over the next few minutes, we'll discuss why we need multiple sequence alignments and then how we calculate and score them. 
  



Slide 4 - Multiple alignment 

 
Slide notes 
Why do we need multiple sequence alignments?  What information can we learn from them that we can’t learn from pairwise 
sequence alignments?  Typically with a pairwise alignment, we infer biological relationships from the sequence similarity.  With a 
multiple alignment, we know that the sequences are biologically related, and we use the multiple alignment to find the areas of 
sequence similarity that could point to the structure of an evolutionary ancestor or provide information about the evolutionary history 
of the sequences.  Multiple sequence alignments, or MSAs, are also more sensitive to sequence similarities than a pairwise 
alignment because the conserved regions could be so dispersed that a pairwise alignment wouldn’t find them. 
  



Slide 5 - Why do we care about multiple sequence alignment? 

 
Slide notes 
So, MSAs allow us to infer phylogenetic relationships.  They can also help us to elucidate biological facts about proteins since most 
conserved regions are biologically significant.  MSAs can also help us to formulate and test hypotheses about protein 3-D structure 
and function. 
  



Slide 6 - Multiple Sequence Alignment (MSA) Defined 

 
Slide notes 

An MSA is the alignment of more than two protein or nucleotide sequences.  The alignments in an MSAare global, and gaps are 

added as the sequences are aligned so that all of the sequences have the same length. 
  



Slide 7 - Scoring Function 

 
Slide notes 
In order to score an alignment, we have to be able to quantitatively calculate how good it is.  Any scoring algorithm we use needs to 
take into account that some positions are more conserved than others, which is called position-specific scoring, and that the 
sequences are biologically related by a phylogenetic tree. 
  



Slide 8 - Scoring Functions 

 
Slide notes 
All columns in the alignment are treated as statistically independent. 
  



Slide 9 - Scoring Function:  Definitions 

 
Slide notes 
Let’s go through some terminology first.  The alignment is referred to as m.  The letter i typically refers to the column number, j 

refers to the sequence, and a refers to the specific residue. There are different scoring functions that can be used to calculate 

an MSA. 

  



Slide 10 - Scoring Function: Minimum Entropy 

 
Slide notes 
The first scoring function we are going to discuss is the minimum entropy scoring function.  The goal of this scoring algorithm is to 
minimize the entropy, or randomness, in the in the alignment.  To calculate the entropy of the alignment, first, we must calculate the 
probability of column i and then use that probability to calculate a score for that column.  This score measures the variability 
observed in the aligned column i.  By minimizing the sum of this column score over all of the columns, we minimize the entropy and 
create a “good” alignment. 
  



Slide 11 - Scoring Function: Minimum Entropy Example 

 
Slide notes 
Let’s look at a simple example.  Here is a short multiple alignment consisting of three nucleotide sequences and nine columns. 
  



Slide 12 - Scoring Function:  Sum Of Pairs 

 
Slide notes 

Another scoring algorithm is the sum of pairs algorithm.  In this scoring algorithm, the score of an MSA is the sum of the scores of 

all of the pairwise alignments. 
  



Slide 13 - Notation 

 
Slide notes 
The notation for this scoring algorithm is fairly straight forward.  At first glance, we want to do a sum of the alignment scores 
between every sequence k and every sequence l.  First, we take the sum over every sequence l and then we take the sum over 
every sequence k.  When we do that, however, we find that we are including the alignments of all of the sequences with themselves, 
such as (1,1), and that we are double-counting all of the other alignments, since the alignment of sequence 1 with sequence 2 is the 
same as the alignment of sequence 2 with sequence 1. 
  



Slide 14 - Notation 

 
Slide notes 
What we really want is the sum of the alignment scores between every sequence k and every other sequence l, where k < l.  This 
will prevent counting alignments between a sequence and itself, and it will prevent double-counting the other alignments, 
  



Slide 15 - Notation 

 
Slide notes 
…leaving us with this formula. 
  



Slide 16 - Scoring Function:  Sum Of Pairs Example 

 
Slide notes 
Let’s look at an example.  For this particular example, we have used BLOSUM50 as the pairwise sequence alignment scoring 
matrix. 
  



Slide 17 - Multiple Alignment Methods 

 
Slide notes 
Now that we have a scoring function, let’s take a brief look at the methods that use these functions: dynamic programming, heuristic, 
progressive, progressive with refinement, and model or profile alignment. 
  



Slide 18 - Dynamic Programming (Optimal Solution) 

 
Slide notes 
Let’s look at dynamic programming first.  Since this is the method used to find pairwise alignments, it seems like an obvious first 
choice to calculate multiple alignments.  The modifications to the pairwise alignment algorithm are fairly straightforward.  We now 
have k sequences, where k > 2, and the dynamic programming array now has N dimensions instead of two.  The calculations 
themselves remain the same. 
  



Slide 19 - Slide 19 

 
Slide notes 
This is an example of what the dynamic programming array looks like when aligning two sequences.  The complexity of this 
algorithm is O(n2), where n is the length of the sequence. 
  



Slide 20 - Slide 20 

 
Slide notes 
If we move to a multiple sequence alignment with three sequences, our dynamic programming array looks like a cube.  Visually, this 
is a bit more confusing to look at, and the complexity increased to O(n3). 
  



Slide 21 - Dynamic Programming 

 
Slide notes 
So, if we have k sequences, each n residues long, the complexity of the dynamic programming algorithm is O(nk).  This grows very 
quickly ask increases.  Let me show you a few examples using sequences of length 300. 
  



Slide 22 - Slide 22 

 
Slide notes 
We can decrease the number of comparisons that we need to do if we remember that for global alignments, the solution is generally 
found within a small area around the diagonal of the dynamic programming array.  We can use a heuristic method to eliminate the 
areas where solutions are rarely found.  This eliminates a lot of generally unneeded calculations at the expense of the rarely found 
solution that lies outside this region. 
  



Slide 23 - Slide 23 

 
Slide notes 

An example of a heuristic algorithm is the MSA algorithm, which uses the Carillo-Lipman Bound procedure.  This procedure 

provides a bound in the form of a polyhedron around the diagonal in a hypercube.  This bounds the search space for finding 

the MSA of a set of sequences. 

  



Slide 24 - MSAAlgorithm  (Carillo&Lipman, 1988) 

 
Slide notes 
First, we consider the pairwise alignments of each pair of sequences and create a phylogenetic tree from these scores.  We then 
produce a “draft” MSA built from the phylogenetic tree.  The pairwise alignments and draft MSA provide us with a reduced solution 
space on which we can use dynamic programming to find the solution.  This method does not guarantee an optimal alignment for all 
the sequences in the group because so much of the solution space is excluded from the search.  It does, however, give us an 
optimal alignment from within the search space. 

  



Slide 25 - Progressive Methods 

 
Slide notes 
Progressive methods are another way of calculating MSAs.  The first steps used in progressive methods are very similar to those 

used in the MSA algorithm.  However, the progressive methods do not, by default, refine the draft MSA by doing a full search in the 

smaller search area.  It also does not guarantee an optimal alignment. 

  



Slide 26 - Progressive Methods Problems 

 
Slide notes 
The progressive methods have a few drawbacks.  First, they are highly sensitive to the choice of initial aligned pairs.  These initial 
pairs are “frozen” even if subsequent steps show that they are not correct.  For example, there are a couple of equivalent looking 
pairwise alignments for these two sequences, and the algorithm happens to have chosen this one.  This alignment is now frozen 
and cannot be changed.  However, as we look at other sequences that we need to align, it becomes obvious that the gap in 
sequence y should have been placed elsewhere.  The choice of scoring matrices and gap penalties can make it more likely that you 
will get the correct initial alignments, but choosing the best one is not straightforward.  The likelihood of large errors in the initial 
alignments increases as the sequences become more distantly related. 
  



Slide 27 - Progressive Methods Iterative Refinement 

 
Slide notes 
Some researchers have attempted to improve upon the progressive methods by adding refinement steps to the procedure.  In this 
case, we generate the initial alignment and then remove a sequence from the alignment and align it with the remainder of 

the MSA.  We continue to do this until the alignment score no longer increases.  This procedure is guaranteed to converge to a local 

maximum.  If the initial alignment is poor, it may not converge to the global maximum. 

  



Slide 28 - Profile Alignment 

 
Slide notes 
Once an alignment has been generated, it is helpful to use the position specific information from the MSA when adding new 

sequences to the alignment.  Essentially, we perform a pairwise sequence alignment of the new sequence to the MSA’s 

profile.  Many progressive alignment methods, such as ClustalW, use pairwise alignment of sequences to profiles and profiles to 

profiles. 

  



Slide 29 - ClustalW 

 
Slide notes 
ClustalW is currently the most popular multiple sequence alignment algorithm.  It performs a pairwise sequence alignment between 
all of the sequences and constructs a phylogenetic tree from the results.  It then combines the results starting from the most closely 
related groups to the most distantly related groups, using dynamic programming to align the most closely related pairs of 
sequences. 
  



Slide 30 - Slide 30 

 
Slide notes 
So, ClustalW takes a group of sequences and performs all pairwise alignments.  It then calculates a similarity matrix, which it 

analyzes to see how distantly related the groups of sequences are.  It then aligns the sequences and groups of sequences, aligning 

the most closely related at each step, until the MSA is complete. 

  



Slide 31 - Summary 

 
Slide notes 

In summary, choosing the best scoring scheme is critical to the creation of a meaningful MSA.  Dynamic programming methods, 

while guaranteeing an optimal alignment, are too computationally expensive to use for even moderate numbers of sequences, 
although there are heuristics that can be used to reduce the number of calculations.  Progressive methods are much less 
computationally expensive, but they are very sensitive to initial alignments and may not produce good alignments, especially for 
distantly related sequences.  Using an iterative approach improves the alignments produced by progressive methods, but it is still 
sensitive to the initial alignment.  The profile methods allow integration of position-specific information and profile-profile 
alignments.  In general, most computational methods use a large number of heuristics to obtain an optimal alignment. 
  
  
 


