WHAT DRIVES PRODUCTIVITY AND COSTS OF ROUTINE IMMUNIZATION SERVICES IN ZAMBIA?

Anthony Kinghorn
Mott MacDonald, Johannesburg, South Africa

Carl Schutte
SDC Consulting, Pietermaritzburg, South Africa

Edmore Marinda
Mott MacDonald, Johannesburg, South Africa

Collins Chansa
Consultant, Lusaka, Zambia

This presentation is based on research funded by the Bill & Melinda Gates Foundation. The findings and conclusions reported are those of the authors and do not necessarily reflect positions or policies of the Bill & Melinda Gates Foundation.
OBJECTIVE

Identify determinants of productivity and total costs of routine immunization

- Limited previous statistical analysis of productivity and costs of immunization and other primary care services in Africa
- Part of EPIC, a multi-country study on costs of routine immunization with a Common Approach methodology to explore cost issues
METHODS (1)

- Stratified sample:
 - 3 Provinces
 - 9 Districts
 - Purposive sampling
 - 51 sites
 - Random sampling within strata in Districts

- Costing:
 - Ingredients-based approach to quantify economic costs of facility-level immunization services based on inputs, prices and outputs
 - Consistent with WHO/GAVI guidelines
METHODS (2) - ANALYSIS

- Scatter plots and adjusted multivariate log normal regression models explored association of supply, demand & environment variables with facility productivity and costs. STATA (v12) model was of form:

\[
\log(y_{\downarrow i}) = \beta_{\downarrow 0} + \beta_{\downarrow 1} \log(x_{\downarrow 1i}) + \beta_{\downarrow 2} \log(x_{\downarrow 2i}) + \ldots \beta_{\downarrow p} \log(x_{\downarrow pi}) + \varepsilon_{\downarrow i}
\]

- Total number of doses and DTP3 doses administered - proxies for facility productivity

- Cost determinant models examined associations with indicators of quantity, quality, price, capital investment and context

- Selection of variables was guided by analyzing unit costs, previous research and plausible economic reasoning
REGRESSION ANALYSIS PRODUCTIVITY MODELS

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model - 1 β (p-value)</th>
<th>Model - 1 β (err) p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln FTE Immunisation staff</td>
<td>0.22 (0.16)</td>
<td>0.26 (0.12)</td>
</tr>
<tr>
<td>Ln # Community health workers</td>
<td>-0.004 (0.91)</td>
<td>0.01 (0.85)</td>
</tr>
<tr>
<td>Ln # Zones supported</td>
<td>0.62 (<0.01**)</td>
<td>0.57 (<0.01**)</td>
</tr>
<tr>
<td>Ln Distance vaccine collection point (km)</td>
<td>-0.01 (0.89)</td>
<td>0.01 (0.83)</td>
</tr>
<tr>
<td>Facility type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>Reference</td>
<td>Reference</td>
</tr>
<tr>
<td>Rural</td>
<td>-1.04 (<0.01**)</td>
<td>-1.12 (<0.01**)</td>
</tr>
<tr>
<td>Ln District poverty index</td>
<td>-0.12 (0.04*)</td>
<td>-0.14 (0.03*)</td>
</tr>
<tr>
<td>Roads</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good/Fair</td>
<td>Reference</td>
<td>Reference</td>
</tr>
<tr>
<td>Poor/very poor</td>
<td>0.23 (0.23)</td>
<td>0.36 (0.08)</td>
</tr>
<tr>
<td>R – squared (adjusted R²)</td>
<td>0.75</td>
<td>0.74</td>
</tr>
</tbody>
</table>

- Catchment Population and Total Attendances are highly correlated (Pearson 0.87-0.92) with dependent DPT3 and Dose variables so excluded from models.
- Their correlations are potentially useful for planning.

* significant at 5% level ** significant at 1% level . # refers to number of
Facility-Level Economic Unit Costs in Zambia ($2011)

<table>
<thead>
<tr>
<th>Facility statistics and unit costs</th>
<th>Urban (UHC)</th>
<th>Rural (RHC)</th>
<th>All Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of facilities (n)</td>
<td>15</td>
<td>36</td>
<td>7,066</td>
</tr>
<tr>
<td>Total child doses delivered</td>
<td>13,325</td>
<td>2,974</td>
<td>7,066</td>
</tr>
<tr>
<td>Total DTP3 vaccinated Children</td>
<td>1,271</td>
<td>330</td>
<td>702</td>
</tr>
</tbody>
</table>

Total facility costs:

<table>
<thead>
<tr>
<th></th>
<th>Urban (UHC)</th>
<th>Rural (RHC)</th>
<th>All Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost per dose</td>
<td>3.73</td>
<td>9.43</td>
<td>7.18</td>
</tr>
<tr>
<td>Cost per DTP3 vaccinated child</td>
<td>33.38</td>
<td>87.14</td>
<td>65.89</td>
</tr>
</tbody>
</table>

Service delivery costs (excludes vaccine)*:

<table>
<thead>
<tr>
<th></th>
<th>Urban (UHC)</th>
<th>Rural (RHC)</th>
<th>All Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost per dose</td>
<td>2.43</td>
<td>8.07</td>
<td>5.84</td>
</tr>
<tr>
<td>Cost per DTP3 vaccinated child</td>
<td>21.07</td>
<td>74.72</td>
<td>53.51</td>
</tr>
</tbody>
</table>

* Service delivery costs = total facility cost – vaccines – safe injection supplies
- **UHC**: Biggest drivers are vaccines, HR and travel allowances
 - Facility-based services contribute more than outreach
- **RHC**: HR biggest cost driver; vaccines a lower proportion and lower absolute value; much lower volumes in RHC on average
 - Outreach activities a higher proportion than facility based services
- Capital costs lower than expected
UHC appear to generally be more efficient than rural.
Outliers facilities 15 and 29 illustrate effects of factors such as outreach, distance, staff levels and remoteness.
REGRESSION ANALYSIS - TOTAL COST MODELS FOR ROUTINE IMMUNISATION

Outcomes (Dependent Variables)
- Total facility cost
- Total facility cost excluding HR and vaccines

Quantity
1. Total facility doses
2. Estimated total facility doses

Price
Average cost per hour of health staff

Quality / productivity
Number of DTP3 children / FTE

Capital investment indicator
Facility m2

Environmental factors
- Number of zones supported
- Facility type & setting
- Distance from vaccine collection
- Immunization sessions per week
- District poverty index

Basic regression model
REGRESSION ANALYSIS - TOTAL COST MODELS

<table>
<thead>
<tr>
<th></th>
<th>Ln Total facility cost (n=51)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 1*</td>
<td>Model 4*</td>
</tr>
<tr>
<td>Quantity
& Ln Dose</td>
<td>0.75 (<0.01**)</td>
<td>0.55 (< 0.01**)</td>
</tr>
<tr>
<td>Quality
& Ln DTP3 / FTE</td>
<td>-0.49 (< 0.01**)</td>
<td></td>
</tr>
<tr>
<td>Price
& Ln cost / FTE Hour</td>
<td>0.17 (0.50)</td>
<td>-0.58 (0.10)</td>
</tr>
<tr>
<td>Capital
& Ln SQM</td>
<td>0.19 (<0.01**)</td>
<td>0.13 (0.11)</td>
</tr>
<tr>
<td>Facility type</td>
<td>Urban</td>
<td>Rural</td>
</tr>
<tr>
<td>Distance to vaccine collection</td>
<td></td>
<td>-0.01 (0.76)</td>
</tr>
<tr>
<td>R-Squared</td>
<td>0.89</td>
<td>0.76</td>
</tr>
</tbody>
</table>

* significant at 5% level ** significant at 1% level

- Model is not predictive if remove quantity and introduce facility type (R-squared 0.38)
- *Facility type* can represent size and quality/HR (model 4)
- Price & distance to get vaccine not associated with total cost in any model
KEY FINDINGS TOTAL COST REGRESSIONS

Total costs excluding HR and vaccines

- Significant associations remain with:
 - Quantity variable - cost increase up to 4.9% if 10% more doses
 - Size of the facility - up to 6.5% for 10% more m^2

- Model less predictive when removing quantity variable and introducing facility type
 - R-squared 0.48 vs 0.56. No significant association with facility type if quantity variable removed

- Association with facility type replaces association with quality variable when quantity variable is re-introduced

- Negative association with the price variable – uncertain reason

- Distance to vaccine collection point not significant
KEY FINDINGS & IMPLICATIONS

1. Valuable information on underlying reasons for variations in outputs and facility level costs

2. Large cost and productivity variation in strata not easily explained

3. Facility type/setting (RHC and UHC) appear to be proxies for a range of environmental, demand and service factors

4. Models of a) total facility cost and b) total service delivery cost excluding vaccines and labour, produce similar patterns.
 - Large vaccine or HR costs do not obscure other major associations

5. Improved coverage using small RHCs is likely to be costly
 - Higher RHC unit costs seem to indicate inflexible staff costs and low demand. Higher volume improves efficiency but reaches a threshold

6. Regression models may be useful to update immunization planning and budgeting tools, and resource allocation
 - Traditional planning approaches based on e.g. average costs by facility type or average staff cost can potentially be improved
ACKNOWLEDGEMENTS

- Bill and Melinda Gates Foundation for funding of EPIC studies
- Ministry of Community Development, Maternal and Child Health, Republic of Zambia
- Ministry of Health, Republic of Zambia
- Dr Penny Kalesha, Logan Brenzel, Damian Walker, Darwin Young, Project Steering Committee, data collection and entry team
- GAVI and development partners