

METHODOLOGICAL CHALLENGES

1 November 2022

This work is supported by the Bill & Melinda Gates Foundation

Why COVID-19 vaccine delivery costing studies?

- New program with unprecedented challenges: delivery volume, reaching new target populations, and delivery strategies
- ➤ What it costs to deliver these vaccines is highly uncertain.

To address this gap, generating evidence to estimate the cost of delivering COVID-19 vaccines:

- Support budgeting and planning in countries where the studies are implemented
- Provide concrete evidence to feed into global models
- · Generate estimates that can be used for further modelling

Estimating the cost of delivering COVID-19 vaccines

Implementing 6 costing studies to estimate:

- i. Delivery costs at different levels of delivery volume
- ii. Costs for different delivery strategies
- iii. Delivery costs of reaching different target populations
- iv. Resource requirements of different delivery strategies (# of health workers, cold chain equipment, etc.)
- v. [Bangladesh only] Direct financial expenditures incurred by beneficiaries to reach the different types of vaccination

General methodology

- Ingredient-based, bottom-up costing component
 - Financial and economic costs
 - Payer perspective (MOH, partners, private sector if relevant)
 - Purposive sampling of 25-35 facilities incl. all immunization sites below them, as well as intermediary levels (districts/provinces/regions), MOH and partners
 - Results disaggregated by **activity** (e.g. training, social mobilization, service delivery, etc.) and **cost item** (e.g. paid labor, vehicles and transport, per diem, etc.)
- Qualitative component to contextualize the cost findings and illustrate operational challenges and funding flows
- Retrospective primary data collection with structured inperson interviews with key informants at all levels

General protocol can be found here: https://thinkwell.global/wp-content/uploads/2021/12/General-research-protocol-17-Nov-2021.pdf

Overview by country

	Bangladesh	Mozambique	Cote d'Ivoire	Vietnam	DRC	Philippines
Implementation	Continuous delivery + campaigns	Phase I + Continuous delivery	Continuous delivery + monthly intensification	100+ rounds varying in duration/intensity	"Continuous" delivery + campaign(s)	Continuous + temporary mass sites + NIDs
Doses delivered *	317.6 M	23.6 M	14.5 M	151 M	3.8 M	162.1 M
Coverage level *	> 70%	> 65%	> 30%	>85%	< 1%	>70%
Sample	~37 health facilities	27 health facilities	30 health facilities	26 health facilities	26 health facilities	~30 sites (facilities, outreach, shopping malls)
Research partners	Institute for Health Economics	Eduardo Mondlane University	Genesis Analytics & University Felix Houphouet Boigny	Hanoi School of Public Health	University of Kinshasa	Ateneo de Manila University

Cocody

^{*} As of date of data collection (approx. April to September 2022)

Challenging context, challenging methods

- Unprecedented effort, involving several entities
- Massive changes in volume delivered over time
- New and not clearly defined delivery strategies
- Delivery strategies were introduced and discontinued
- Unclear where the program is headed
- Detailed recordkeeping not a priority

For what period of time should we estimate the costs of delivering COVID-19 vaccines?

Classic immunization costing studies:

 New routine vaccine introduction: short campaign followed by continuous routine administration delivering consistent volume

 Preventive or outbreak response campaigns: usually a clearly defined target group, implementation period and delivery strategy

C19 vaccinations:

- On and off implementation of different delivery strategies
- Recurrent campaigns with changing target populations
- Dramatic changes in volume delivered

For what period of time should we estimate the costs of delivering COVID-19 vaccines?

- 1. In depth costing of selected periods of interests to generate costs at different levels of volume delivered
 - ➤ Mozambique: lower volume phase I (March-April 2021) + three months from a higher volume phase (December 2021 to February 2022)

For what period of time should we estimate the costs of delivering COVID-19 vaccines?

- 1. In depth costing of selected periods of interests to generate costs at different levels of volume delivered
 - ➤ Mozambique: lower volume phase I (March-April 2021) + three months from a higher volume phase (December 2021 to February 2022)
- 2. In addition, for key recurrent costs, also collect data for longer periods of time, to analyse how costs have evolved over the entire implementation
 - ➤ Bangladesh: in depth costing of April to June 2022 & the last campaign implemented + capture overall HR costs from the first vaccinations (Feb 2021) to the time of data collection

What is the 'right' denominator to calculate results?

Classic immunization costing studies:

- Cost per dose delivered
- Cost per fully vaccinated child/person
- Cost per targeted child/person

C19 vaccinations:

- Fluctuating volume
- · Very low volume delivered
- Mix of vaccine schedules at many sites
- Changing target population
- A mix of campaigns and routine-style delivery

What is the 'right' denominator to calculate results?

- 1. Cost per dose delivered in each period of interest to show how costs evolve as at different levels of volume
 - ➤ In Vietnam we generated separate cost per dose for the first four months (low volume period) and for the remaining 6 months of 2021 (high volume period)

What is the 'right' denominator to calculate results?

- 1. Cost per dose delivered in each period of interest to show how costs evolve as at different levels of volume
 - ➤ In Vietnam we generated separate cost per dose for the first four months (low volume period) and for the remaining 6 months of 2021 (high volume period)
- 2. Present separate cost per dose for campaigns vs routine-style delivery
 - In the Philippines we separate out the costs per dose of National Immunization Days

What is the 'right' denominator to calculate results?

- 1. Cost per dose delivered in each period of interest to show how costs evolve as at different levels of volume
 - ➤ In Vietnam we generated separate cost per dose for the first four months (low volume period) and for the remaining 6 months of 2021 (high volume period)
- 2. Present separate cost per dose for campaigns vs routine-style delivery
 - In the Philippines we separate out the costs per dose of National Immunization Days
- 3. Model costs at different levels of delivery volume to better inform planning for future phases
 - ➤ In DRC, where overall delivery volume is very low, simply estimating a cost per dose delivered may not accurately reflect the cost of implementing the program moving forward

How should we treat initial investments ('start-up costs')?

Childhood routine vaccine introduction:

- Initial investments before and around time of introduction
- Investments and capital costs allocated to predictable annual delivery volume
- Recurrent investments such as training have a clear cadence

C19 vaccination:

- Initial start up period not clearly defined
- Some investments took place before the scale up
- Potentially different useful lives (e.g. training)
- Unclear program duration and unpredictable delivery volume
- Very low volume delivered in some countries

How should we treat initial investments ('start-up costs')?

OUR APPROACH

1. Capture one off costs for the entire period, not just before initial vaccinations

How should we treat initial investments ('start-up costs')?

- 1. Capture one off costs for the entire period, not just before initial vaccinations
- 2. Present results in two ways:
 - 1. <u>Single out start-up costs</u> and present them as lump sum to show the impact on the budget while avoiding to overestimate cost of running the program
 - ➤ In DRC where the volume delivered is extremely low allocating initial investments across doses delivered would significantly overestimate costs (if coverage eventually picks up)

Fig 2. Total COVID-19 vax doses delivered at sampled facilities in DRC

How should we treat initial investments ('start-up costs')?

- 1. Capture one off costs for the entire period, not just before initial vaccinations
- 2. Present results in two ways:
 - 1. <u>Single out start-up costs</u> and present them as lump sum to show the impact on the budget while avoiding to overestimate cost of running the program
 - ➤ In DRC where the volume delivered is extremely low allocating initial investments across doses delivered would significantly overestimate costs (if coverage eventually picks up)
 - 2. <u>Annualize start up costs</u> and include them in cost per dose for each delivery period to enhance comparability across countries
 - ➤ In Vietnam where high coverage was achieved, initial investments were annualized and allocated to the low-volume and the high-volume periods to show full costs

1. Wrapping up our COVID-19 vaccine delivery costing studies

- Final results for all studies by the end of this year or early next year
- Cross-country analysis to tease out cost learnings for global audience
- Document lessons learned on methods
- Results will be published on: www.immunizationeconomics.org

2. Starting 2023: more costing studies on the horizon

- Working with 3 countries (TBD) to develop capacity to generate cost evidence
- Theme: what does it cost to reach zero dose children?

